Chapter 1

Local setting for trace formulas

In this chapter we establish almost all needed local setting for Selberg trace
formula and Kuznetsov trace formula for G := GLy(F) (where F' is a local
field) and their comparison.

Before go further, we need to fix some notation which we shall use in this
chapter.

1.1 The p-adic case

In this section we work with a finite extension F' of @, where p is a certain
odd prime number. The field F' is then the field of fractions of a discrete
valuation ring O. Let p be the maximal ideal of O and k = O/p the residue
field. Thus £ is finite and of characteristic p. We shall denote the cardinality
of k by gq.

We choose one for all an uniformizer w of p, that is, an element such that
wO = p. Every element x € F* can be written uniquely in the form

T =Uuw

with u € O* and n € Z. (Note that the integer n does not depend on the
choice of @.) The integer number n is called the valuation of x over F' and
is denoted by vg(x) (we shall drop the subindex F' when the field is clear).
The absolute value |.|r : F' — R defined by

l2|p = ¢ F@), Vo € F* and [0]p = 0

gives a metric on F. In the metric space topology, F' is a complete, locally
compact, totally disconnected (that is no nonempty subsets are connected
except singleton sets), Hausdorff topological field.
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The matrix ring My(F) ~ F* of 2 x 2 matrices with entries in F' car-
ries the product topology, relative to which it is a locally compact, totally
disconnected, Hausdorff topological ring. Since det : My(F) — F is a
polynomial in the matrix entries, det is a continuous map. It implies that
GLy(F) = det " (F*) (F* = F\{0} is an open subset of F) is an open subset
of My(F). We give G = GLy(F) the topology it inherits as an open subset of
M, (F). The inversion of matrices is continuous, so G is a locally compact,
totally disconnected, Hausdorff topological group. In the terminology of [5]
such a group is called an /-group. From now on, we shall add /-group beside
G to indicate that a statement is true not only for GLy(F') but also for any
(-group. The subgroups

are compact open, and give a fundamental system of open neighborhood of
the identity in G.

1.1.1 Smooth representations of GLy(F)

A (continuous) representation (7,V’) of an ¢-group G consists of a topo-
logical C-vector space V' and a group homomorphism 7 : G — GL(V) from
G to the group of invertible linear operators on V' such that for each v € V,
the map

G—=V:g—mn(g

is continuous. The space V' is called the representation space of G. We may
refer to the representation as 7 (when V' is clear from the context), or we may
just say V' (when the action 7 clear from the context). When V' is equipped
with the discrete topology, we obtain than a smooth representation of G.
(Since the discrete topology on V is the finest topology on V| the smooth
representation is continuous for any kind of topology on V.)

Lemma 1.1.1. Let (7, V') be a representation of an -group G. The following
conditions are equivalents:

1. The representation (m,V') is smooth.

2. For each v € V, the map ¢, : G = V : g = 7(g)v is smooth, i.e
locally constant.

3. For each v € V, the set Stabg(v) := {g € G|n(g)v = v} is open in G.

4. For each v € V', there exist an open compact subgroup K, (depends on
v) of G such that 7(K,)v = v.
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Proof. e (1) & (2). Since V is equipped with the discrete topology, a
function ¢, : G — V is smooth if and only if it is continuous.

e (2) = (3). Since ¢, is locally constant, there exits an open neighbor-
hood U of 1 (the unit element of G) such that 7(u)v = 7(1)v = v for
all u € U. It implies that U C Stabg(v). Let g € Stabg(v), we have
m(gu)v = 7(g)(m(u)v) = w(g)v = v for all uw € U. Hence gU is an open
neighborhood of g and is contained in Stabg(v). So the set Stabg(v)
is open.

e (3) = (4). Since 1 € Stabg(v), the set Stabg(v) is an open neighbor-
hood of 1 in G. Since G is an ¢-group, there exist an open compact
subgroup K, C Stabg(v). For example for GLy(F), we choose i large
enough such that K, := K; = 1 + @w'M,(O) C Stabg(v) . We have
m(K,)v =wv.

e (4) = (2). For all g € G, gK, is an open neighborhood of g. Set ¢’ =
gu € gK,, we have ¢,(¢)) = m(gu)v = n(g)(x(u)v) = T(g)v = @ulg).
Hence, ¢, is locally constant.

O

Given a smooth representation (m,V) of an ¢-group G, a subspace W of
V' is said to be G-invariant if for every w € W and every g € G we have
m(g)w e W.

If (m,V) and (n/,V’) are two representations of an f-group G then we
denote by Homg (7, 7’) the space of all linear maps f : V' — V' such that
f(m(g)v) =7'(g)f(v) for all v € V and all g € G. We say that 7 and 7’ are
equivalent (or isomorphic) if Homg(m, 7') contains an invertible element.
In that case, we write m ~ 7.

For every representation V' of an /-group G, a vector v € V' is a smooth
vector if its stabilizer Stabg(v) is open in G. We shall denote by V™ the
G-invariant subspace consisting of smooth vectors of V. By Lemma 1.1.1,
V™ is a smooth representation of G.

Let (m,V) be a representation of G. We denote by V* the space of all
linear forms on V. For every v* € V* and g € G, we define 7*(g)v* € V* by

(7" (g)v")(w) = v*(x(g")u), YueV.

Clearly, (7*,V*) is a representation of GG. The dual representation V* might
not be smooth even if V' is smooth. Let 7 be the G-invariant subspace

V = V=™ of m*. The representation (7,V’) is called the contragredient of
(m, V).
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It doesn’t like the representation theory of finite group; in general the
representation 7 is not equivalent to w. However, we shall soon see that this
phenomena is true when we add some more condition to 7.

A smooth representation (m, V') of an ¢-group G is said to be admissible
if for every compact open subgroup K of G, the subspace VE = {v €
Vim(K)(v) = v} is finite dimensional. In the case G = GLy(F'), because
V9K — 7(g)(VE) and all the maximal compact subgroups of GLy(F) are
conjugate to K, a smooth representation V is admissible if and only if V&

is finite dimensional for every open subgroup K of Kj.

Proposition 1.1.2. If a representation (7, V') of an (-group G is admissible,
then the representation (7, V') is also admissible. Futhermore, we have T ~ .

Proof. Let K be a compact open subgroup of G. Since Stabg (v) = Stabg(v)N
K is open in K, we can consider V as a smooth representation of compact
group K . Set

V(K) = Span({m(g)(v) —v|lg € K,v € V}).

Observe that V(K) and V¥ are two K-invariant subspace of V. We make
the following claim:
Claim: “V =VE ¢ V(K).”
Assuming the claim for the time being we prove the proposition as follows.
Let v € VX, By definition of VX, we have

O (g)u —u) = 0(r(g)(w)) — V(u) = F(g~)(@)(u) — V(u) =0

for all ¢ € K and w € V. It implies that 7jy(x) = 0. Thus 7 € (V¥)*.
By the admissibility of V', we have dimc((VE)*) = dime(V%) < oo. Hence
dime(VE) < .

Now given v* € (VE)* we extend ¥ to an element of V* by letting v equal
to zero on V(K). We shall prove that o € V.

e Let u € V. We have then u = u® +w where v € VX and w € V(K).
For all g € K we have

T(g9)(0)(u) = V(r (g™ ) (" +w)) = o™ +7(g~") (w)) = 0(u™) = T(w).
Thus v is invariant under the action of K.

e Assume that g € Stab,-(v) (we use this notation to show that we are
considering the action of G via 7*). Then ¢gK is an open neighborhood
of g which is contained in Stab,«(v). It implies that Stab,«(v) is open.
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We have shown that (V)& = (VE)*. It implies that

(V) = (7)) = (V¥)) = VK.

For each u € V', we consider the linear map f, : V= C, v~ v(u). We
have Stab.(u) C Stab)-(f.). Because Stab,(u) is open in G (since (7, V) is
a smooth representation), it contains an open compact subgroup H of G. Let
g € Stabg)-(fu). Since gH is an open neighbourhood of g which is contained
in Stabe)«(f.), then Stab)«(f.) is open in G. Therefore f, is an element of

V. _
We consider the natural map ¢ : V — ‘7, v f,. As above gy« is an

isomorphism between V% and (V)% for any open compact subgroup K of G.

e Let f be any element of V. Since Stab)-(f) is open in G, then there

exists an open compact subgroup H C Stabg)-(f). It implies that
~ ~H

f e (V)H. Since @i is an isomorphism between V' and V , there
exist then v € VH C V such that ¢(v) = f. Hence ¢ is an epimorphism.

e Assume that ¢(v) = ¢(v'). Because Stab,(v) and Stab,(v’) are two
open subgroups of G, the subgroup Stab,(v) N Stab,(v) is also open
in G. There exists then an open compact subgroup H C Stab,(v) N

Stab,(v'). We have v,v' € V. Since @vu is an isomorphism between
~H
VH and V | we have v = v'. Hence ¢ is injective.

e We have
7(9)(£)(@) = f(F(g™)W) = (F(g™))(v) = Ur(g)v) = Fr(oy(T).
It implies that p o = To ©.

In conclusion, ¢ is an isomorphism between two representations (7, V') and
(%, V). In other word,

T~ T.

It suffices now to prove the claim. Let v be any vector of V. Because
Stabg (v) is open in K and K is compact and totally disconnected, the set
S := K/Stabg(v) is finite. We have

v= #%Zsﬂg)v - #ng)v ).

geSs
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It easy to check that in the right hand side, the first factor is a vector of VE
and the second one is a vector of V(K). Hence V = V& + V(K).

Now we prove that > _s7(g)v =0 if v € V(K). By definition of V(K),
it suffices to prove for v = m(go)u — u for some gy € K and u € V. In fact,
we have:

> wlg=>_ w(g)(r(go)u—u) = wlg)v—> m(ggo)u=0.

ges ges geSs geS

The last equation is a consequence of the fact that ggo runs through all the
equivalent classes of K/Stabg(v). Therefore, if v € VE N V(K), we have

then .
v = %Zw(g)v = 0.

geSs

Thus VENV(K) = 0. O

From the definition of a contragredient representation, it easy to check
that the canonical non-degenerate bilinear form (v,v*) = v*(v) on V x V

satisfies
(m(v), 7 (v")) = (v, v7).

A very natural question is that do a non-degenerate bilinear form invariant
under the action of G defines a contragredient representation?” The answer
is yes in the case when 7 is admissible. More precisely, we have the following
proposition.

Proposition 1.1.3. Let (7, V') be an admissible representation. Assume that
there exists an another admissible represenation (7', V') and a non-degenerate
bilinear form ¢ : V x V' — C such that

¢(m(g)(v), 7'(9) (V")) = d(v,v").
Then (v, V') ~ (7,V).
Proof. Denote p(v') = ¢(.,v') € V* for all v’ € V. We have
T(9)(p(W))(v) = ¢(v")(m(g7 ) = d(n (g~ )v,0) = d(v, 7' (g)v)).  (1.1.1)

Since ¢ is non-degenerate, then Stabzp(v') = Stab,/(v'). In other word, ¢(v")
is a smooth vector in V™.
We consider a homormorphism

VIS Vv e o).

We now prove that this homomorphism is G-isomorphic.
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e The identity (1.1.1) implies that

T(9) () = p(n'(g)v') Vge G v eV

e Since ¢ is non-degenerate, ¢(v') = 0 if and only if v = 0. Hence ¢ is
injective.

o Let € V. Take K be a compact subgroup contained in Stabz(§). We
have then £ € VK. By the admissibility of 7, 7" and non-degenerateness
of ¢, we have dimc (V%) = dimc((V')X) < co. Using the proof Propo-
sition 1.1.2, we also have dime(VE) = dime(VE) < 0o. Thus Q|vryx is
an isomorphism. In other word, there exists ¢ € V’ such that p(¢') = €.

]

A smooth representation (7, V') of an f-group G is said to be irreducible
if the only G-invariant subspaces of V' are 0 and V itself.

Lemma 1.1.4 (Schur’s lemma). Let (m, V') be an irreducible admissible rep-
resentation of an {-group G. Then we have dim¢c(Homg(m, 7)) = 1.

Proof. Let A € Homg(m, 7). We take an arbitrary v € V. Using Lemma
1.1.1, there exist an open compact subgroup K such that v € VE. By
definition of A we have 7(g)(Au) = A(n(g)u) = Au for all ¢ € K and all
u € V. Thus Ajyx is a linear homomorphism form V¥ to itself. Moreover
VE is a finite dimensional space, since (m,V) is admissible. Thus, Apyx
is an automorphism of the finite dimensional space VX. Let A € C be a
proper value of A. Then there exist v # 0 such that Av = A.v. Denote by
V' :={v € V|Av = A\.v} the proper subspace w.r.t the proper value A of V.
It is easily seen that V' is a G-invariant subspace of V. By the irreducibility
of V, we have V! = V. Tt follows that A = A1y (here 1y is the identity
automorphism of V). O

Corollary 1.1.5. Let Z = {g € G|¢'.g = g.9', Vg € G} be the center of G. If
(m, V) is an irreducible admissible representation of an -group G, there ezists
then a quasicharacter (that is, a smooth one-dimensional representation)
Xr of Z such that w(z) = x.(2).1y for all z € Z. (This xr is called the
central quasi-character of 7.)

Proof. Let z be any element of Z. We have

m(g9)m(2) = 7(gz) = m(29) = 7(2)7(g)
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for all ¢ € G. It implies that m(z) € Homg(m, 7). By the Schur’s lemma,
there exists ¢, € C such that 7(z) = ¢,.1y. We denote by

Xr:Z —C*, z—c,.

It is easy to check that x, is a group homormorphism and 7(z) = x.(z).1y.
Finally, let v be a non-zero of V. By Lemma 1.1.1, there exists an open
compact subgroup K of G such that v € VE. We have v = 7(2)v = x.(2)v
for all z € KN Z. It implies that x.(z) =1 for all z € K N Z. Thus for all
c € C the map Z — C: z = x.(2)c is locally constant. By loc. cit., x, is a
smooth representation of Z. O

Lemma 1.1.6. Let (w, V') be an admissible representation of an (-group G
and (%, V) its contragredient. Then (7, V) is irreducible if and only if (7, V)
is 1rreducible.

Proof. Assume that 0 # U is a G-invariant subspace of V. Let W be a
subspace of V such that V =U @& W (W does not need to be G-invariant).
Each element A € U* can be extended to an element of V' by letting A(w) = 0
for all w € WW. In this sense, we can view U* as a G-invariant subspace of
V*. Then U is a G- invariant subspace of V. Moreover, by Proposition 1.1.2,

U # 0 (otherwise 0 = U~U ). Thus U is a non-zero G-invariant subspace
of V. The lemma is a direct consequence of this argument and loc. cit.. For
example, to prove that (m, V') is irreducible if (7, V) is irreducible, we do as
follows.

Assume that (m,V) is reducible. There exists then a non-zero proper
G-invariant subspace U of V. By irreducibility of V we have U = V. Now,

using loc. cit., we have U ~ U = V ~ V (contradictory).
[l

One of the main goal of this chapter is to classify irreducible admissible
representations of G. The finite dimensional admissible irreducible smooth
representations of G are not very interesting. Each is a one dimensional space
on which the element of G acts by scalar. This is the content of Proposition
1.1.8. The proof of this proposition requires the following lemma.

Lemma 1.1.7. The matrices (}7) and (V) with z,y € F generate SLy(F)

Proof. Every (45) € SLy(F) can be written in the following form

6 a)=( )6 ")
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On other hand, if ¢ # 0, we have

a b\ (1 cla\[(0 1\ (- O 1 ¢ 'd
c d) \0 1 -1 0 0 —c! 0 1 '
Those identities imply that SLy(F) is generated by (% §) and the matrices
(59), (31/ (1))7 (8 291), with 2,y € F and z € F*.
Moreover, we have

(Bro)=( )6 ) ()
() R S O3 | (S [ (R

for all z € F*. The proof of the lemma is a direct consequence of the above
two identities. [

Proposition 1.1.8. A finite admissible irreducible of G is one dimensional.
Moreover, it is of the form g — x(det(g)) for some quasi-character x of F*.

Proof. Let (m,V) be a finite dimensional irreducible admissible representa-
tion of V. Let {v1,vs,...,v,} be a basis of V. By Lemma 1.1.1, for each
i€ {1,...,n} there exists an open compact subgroup K; C G that stabilises
v;. We denote by K the intersection of K;. Then K is an open compact
subgroup of G and fixes V. So the kernel H := ker(n) of the representation
contains a compact open subgroup. In other word, H is a non-trivial open
normal subgroup of G.

Now let x € F be arbitrary. We choose b € F' such that |bz|g is sufficient
small so that (%) € H. Then

G- (@ en

Similarly, we also can show that (?1/ (1)) € H for all y € F. It immediately

follows from Lemma 1.1.7 that SLy(F) C H. Note that gg1g~'g; " € SLa(F)
for all g,g1 € G. Thus n(g)n(g1) = 7(g1)7(g) for all g,¢1 € G. It implies
that 7(g) € Homg(m, 7). By the Schur’s lemma, there exists 6, € C* such
that 7(g) = d,.1v.

We consider the subspace V; := Cv; generated by the vector vy of V. For
any g € G, k € C, we have 7(g)(kvy) = kdyv1 € Vi. It implies that V; is a
G-invariant subspace of V. By the irreducibility of V', we have V = V;. We
have shown that the dimension of V' is one.
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Now we consider 7 : G — C* being a smooth representation of G. We
define an application y : F* — C* by

x(2) =7((§7))-

It is clear that x is a quasi-character of F”* and

m(g9) = x(det(g)), Vg € G.
0

Corollary 1.1.9. Any quasi-character of G is of the form ¢ o det, for some
quasi-character ¢ of F*.

1.1.2 Haar measures and the Hecke algebra

Let G be an (-group. Let C2°(G) be the space of functions f : G — C which
are locally constant and of compact support. The group G acts on C°(G)
by left and right translation by the formulas

Cof(y) = flz™ly), and o f(y) = flyx).

Local constancy and compactness of support of function in C2°(G) imply
that both of the G-representations (C°(G), ), (C*(G),r) are smooth.

Definition 1.1.10. A left invariant distribution on G is a linear form & :
C*(G) — C such that £(0,f) = &(f) for all z € G and f € C(G).

A left Haar distribution on G is a non-zero left invariant distribution &
such that £(f) > 0 whenever f > 0.

We can also define a right invariant distribution (resp. right Haar distri-
bution) similarly, using right translation r instead of left translation /.

Proposition 1.1.11. There ezists a left Haar distribution I : C*(G) — C.
Moreover, the space of left invariant distributions on G is one dimensional
C -vector space.

Proof. Let K be a compact open subgroup of G, we denote by C®(G)¥
the space of functions in C2°(G) that are right invariant under K. The
(C*(G)%, ¢) is then a smooth representation of G.

Lemma 1.1.12. Viewing C as the trivial G-representation, we have

There exists a non-zero element I € Homg(CX(G/K),C) such that I (f) >
0 whenever f > 0. If 1 is the characteristic function of K, then I (1x) > 0.
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Proof. The space C2°(G/K) has a basis 1,x consisting of characteristic func-
tion of right cosets K. A linear form ¢ : C*(G/K) — C is G-invariant
if and only if {(1,x) = &(1k) for all x € G. In other words, the map
Homg(CP(G/K),C) — C given by £ — £(1k) is an isomorphism. In par-
ticular Homg (C°(G/K), C) is one dimensional.

The linear form I : 1,5 + 1 has the required properties. O

We choose a descending sequence {K;};>; of normal compact open sub-
group K; of G such that (), K; = 1 (due to van Dantzig’s lemma, there always
exists this kind of sequence - in the case when G = GLy(F') we can choose
K; =1+ @'M,(O) for all i > 1). We have then:

Cx(@) = oz (G/Ky).
i>1
For each i > 1, there is a unique left G-invariant linear form I; : C*(G/K;) —
C which maps the characteristic function of K; to (#(K;/K;))"!. Since the
restriction of ;1 on CX(G/K;) is I;, the form I : C*(G) — C defined by
I(f) = L(f) whenever f € C*(G/K;) is well-defined. The statements of
Proposition are immediate. O]

Proposition 1.1.13. content...

Let H be a closed subgroup of G with module dy. Let § : H — C* be
a character of H. We consider the space C2°(H\G,#) = ¢ — Ind$6, i.e the
space of functions f : G — C which are G-smooth under right translation,
compactly supported modulo H, and satisfy

f(hg) =6(h)f(9), heHged.

Proposition 1.1.14. Let ding(h) = 0u(h)'dc(h), h € H. There exist a
non-zero linear functional I : C°(H\G, dma) — C having the following
two properties:

(1) Imc(rg(f)) = Ime(f), for all f € CX(H\G,0me) and all g € G.

(2) If g € G, K is a compact open subgroup of G, and f € C®(H\G,dma)*
is supported on the double coset HgK, then I\ is a positive multiple
of f(9)-

Proof. Let pg, pg be left Haar measures on G, H respectively. For each
f € C2(G), we define f: G — C by

Flg) = /H () f (hg)djusa (h).
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By definition, we have
Fling) = [ 8a(h) " f(hsg)dpa(h)
= Sinalin) [ Sa(bin) ™ F(hhag)u () 1)

— malhn) /H 56 (hhy) ™ f (hhyg)dpuss ()
= Sma(h)f(g)

for all hy € H. Since the support of f is compact, the support of f is compact
modulo H. If K is a compact open subgroup of G such that f(gk) = f(g)
for all g € G and k € K, then f(gk) = f(g) for all g € G and k € K. Hence
f e C>(H\G, ). Moreover, we have

ro (D) = Flog) / 5a(h) " £ (hggn)dus ()

= 7,.(Nlg).

It implies that the map (C°(G),r) = (CP(H\G, 6m\¢),r) which sends f to
f is a G-homomorphism.
This homomorphism satisfies

b (Ng) = /H () f (i hg)dpun ()
— Salh) " f(9)

for hy € H and f € C°(G). We now prove that it is surjective.

Let ¢ € C°(H\G, ). Then there exists a compact open subgroup K
of G such that ¢ € C®(H\G,0)X (the subspace of C*°(H\G, #) which is
invariant under the action of K). Since ¢ has compact support modulo H,
there exist g1,...,9, € G/K such that ¢(g9) = 0if g & | |._, Hg: K. We
define a function f : G — C as follows

fgik) = vol(H N g; K g; “)p(g;)
and f(g) =0 for g € ||, ;K. By definition, f € C>(G) and
Fhngik) = 8(h)f(gik) = O(a) /H (0621) () (hgek)dpsa (1)

= ) [ 05 ol (i o )

]
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1.1.3 Parabolic induction and Jacquet module

One of the way to construct representations of G is to induce representations
from smaller subgroups. In this section, we induce the representations of B
which are trivial on its nilpotent subgroup N. Non-trivial characters on N
(Whittaker functionals) are also interesting. They will be studied in Section
1.1.6.

Definition 1.1.15. Let (o, W) be a smooth representation of 7. We consider
the space IndGW of smooth functions f : G — W which satisfy

(G 22 )

We define a homomorphism Ind%o : G — Autc (Indi) by

ai

az

Indga(g)f cx— f(zg), z,9€G.

The pair (Ind$eo, Ind%W) provides a smooth representation of G. It is called
the (normalized) parabolic induction of o.

Remark 1.1.16. (1) Due to Iwasawa decomposition G = BK|, the sub-
space ¢ — Indga of smooth functions f € Indga which are compactly
supported modulo B (this means that the image of the support of f in
B\G is compact) is the whole space Ind$o. In other word, Ind§o is
also the compact induction of o.

(2) Let x = x1 ® x2 be a quasi-character of T. The representation Indgx
is called the principal series representation of G.

Lemma 1.1.17. The principal series Indgx 18 admussible.

Proof. Let K be a compact open subgroup of G. We may assume that
K C Ky (since all the maximal compact subgroups of G are conjugate to
Ky). Since G = BK, (Iwasawa decomposition) and K,/K is finite, the set
of double cosets B\G/K is also finite. By definition, a function f € Ind%y is
defined uniquely by its image over the set of double cosets B\G/K. Hence,

dime((Ind%x) ") < co.

]

1/2

The character 5]15,/ * . diag(ay, az) — ‘ﬂ was introduced so that Ind%y

a2

preserves unitarity.



14 CHAPTER 1. LOCAL SETTING FOR TRACE FORMULAS

Proposition 1.1.18. If x is unitary then Indgx has a natural G-invariant
Hermitian inner product, defined by ||f]|* = fKo |f(K)|2dk.

Definition 1.1.19. Let (V,7) be a smooth representation of G. Let
V(N) := Span({n(n)v —v|ln € N,v € V}).

This V(N) is an N-invariant subspace of V. Let Vy = V/V(N) the largest
quotient of V' on which N acts trivially. Because N is invariant under T,
the Vyy inherits a representation my of B/N = T (can be also viewed as a
representation of B which is trivial on N), which is smooth. The (normalized)

Jacquet module JacGm or Jach (V) is the representation (my ® 5;1/2, V) of
B.

Theorem 1.1.20 (Frobenius reciprocity). For any smooth representation
(m, V) (resp. (o,W)) of G (resp. T') we have a natural isomorphism

Homg (7, Ind§o) ~ Homy (Jachn, o).

Corollary 1.1.21. Let (m,V) be an irreducible smooth representation of G.
If JacG (V') # 0 (equivalently, Viy # 0) then V is embeds in a principal series
representation of G (i.e in a Ind$x for some quasi-character x of T).

Let wqg be the longest Weyl element of G, i.e

01
U)()I:(l 0)

For each smooth representation o of T', we define the representation o0 :
t = o(wetwy ), and view it as a representation of B which is trivial on N.

Lemma 1.1.22 (Restriction-Induction Lemma). Let (o, W) be a smooth rep-
resentation of T'. There is an exact sequence of representations of T':

0— 5;1/2 Qo — Jacglndga AN 6)19/2 ®o— 0,

where o is the canonical T-map Jac$(IndG(W)) — W defined by f — f(1).

Theorem 1.1.23 (Irreducibility Criterion). Let x = x1 ® X2 be a quasichar-
acter of T'.

(1) The representation Ind$y is irreducible unless x1x5+ = |.|**.

(2) If xixy ' = |.| then Ind%x contains an irreducible admissible G-subspace
of codimension 1.
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(3) Ifx1x3" = |.|7" then Ind$x contains a 1-dimensional G-subspace whose
quotient is 1rreducible.

Theorem 1.1.24 (Classification theorem). Let w be an irreducible admissible
representation of G. Then 7 is equivalent to one of the following disjoint

types:

1) the irreducible induced representations IndGy, where x # ¢ ® 5E? for
B B
any quasi-character ¢ of F*;

(2) the special representations x @ Stg, where x ranges over the quasi-
characters of F*;

(3) the cuspidal representations;

(4) the 1-dimensional representations yodet, where x ranges over the quasi-
characters of F'*.

Moreover
(a) in (1), we have IndSx ~ Ind%e if and only if 1 = x or x*;
(b) in (2), we have x ® Stg ~ X' ® Stg if and only if x = X/;

(c) in (4), we have we have x o det ~ x’ o det if and only if x = x’.

1.1.4 Cuspidal representations

Let E//F be a separable quadratic extension of local field F'. We fix a non-
trivial additive character ¢ = ¢p : ' — C*. Then ¢p = ¢p o trg/p is
a non-trivial additive character of E. Let C°(E) be the space of complex
valued smooth functions of compact support on E. Given f € C°(F), define
the Fourier transform f € C>(FE) by

fly) = / Fla)s(ay)de,

where dx is the self-dual measure with respect to ¥ on E (i.e dz is the

normalized Haar measure so that f(z) = f(—z)). Since dz is self-dual, we
have then the Fourier inversion formula

f(z) = [E F(g)im(en)dy.

Lemma 1.1.25 (Weil constant). There exist a constant (¢, E) such that
for every function ¢ € C°(E)

/E (& % F)(@he(ay)dz = (e, E)f~ () f ).
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1.1.5 Kloosterman integrals and Shalika germs

In this section, we shall prove the existence of Shalika germs for orbital
(Kloosterman) integrals which are appeared in the geometric side of
Kuznetsov trace formula for GLs. The main reference for this subsection
is [10, 12]. (In these loc. cit. Jacquet and Ye proved the existence of Sha-
lika germs for a more general orbital integrals which are appeared in the
geometric side of Kuznetsov trace formula for GL,).

For a convenience, we recall the definition of the orbital integral. Let G
be the group GL, viewed as an algebraic group over F'. We often write G for
G(F). We denote by C°(G) the space of complex valued, locally constant
functions of compact support on G. Let Z be the center of G. Let W be the
Weyl group of GG. Let T be the subgroup of diagonal matrices of G and N
the subgroup of upper-triangular matrices with unit diagonal. We fix a non-
trivial additive quasi-character v of F' and define a character § : N — C*
by the formula

O(u) = (ni2),

_ (1nip2
Wheren—(o 1

The Kloosterman integrals of a function f € C2°(G) which we want to
study are the functions:

I(g, f) = /f(tnlgng)Q(nlng)dnldng.

Here g is a relevant element, i.e g satisfies a condition that 6(n;ny) = 1 if
‘nigny = g. The integral is taken over the quotient of N(F) x N(F) by the
subgroup NY of elements (ny,ny) of N(F) x N(F) satisfying ‘nigns = g.

Lemma 1.1.26. Let N x N operate on G by (n1,n2).g = ‘nigny. Then any
relevant orbit of N x N contains a unique representative of the form wt with

ven@ye e (2w (0 )] o

teT,:= r Z:fw:e,
Z if w = wy.

Suppose that w € R(G). Let M, be the standard Levi subgroup such
that w is the longest element of M,, " W. Let P, = M,U, be the standard
parabolic subgroup which has Levi factor M,,. Set V,, = N N M,,. For every
t € Ty, (by an elementary matrix calculation) we have

N = N" = {(ny,ny) € V2|ny = w'ny w}.
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Lemma 1.1.27. Any point of the orbit of wt under the action of N(F) X
N(F) can be uniquely written in the following form

p(ug, v, ug) = ugwtvug
with u; € U, and v € V.

Proof. Since N C P,, by using the Levi decomposition for elements of N, we
can rewrite any element of the orbit of wt under the action of N(F) x N(F)
as below:

tnlwtng = tultvlwtvgug
=y [foywt(whor tw)][(whorw)ve]ug

= tUIU)tUUQ.

Here u; € Uy, v; € V,, v € V,, such that viu; = nq, vous = ny and v =
(w'viw)vy. The last identity follows (‘vy, wivy 'w) € N™.

Suppose that ‘ujwtvuy = “ujwtv'uy with u;, u; € U, and v,v" € V,,. We
have then

Hluy M) wt(v'uhuy o) = wt.

Hence, v'ubuy 'v~! € V,, and *(u; 'u)) € Vi,. It implies that {ubuy ', uy'u)} C
Uy NV, = {e}. Thus u; = u} for all i € {1,2}. As a consequence, we have
v="1. O

Since the orbits of N(F') x N(F') are closed, the map p is an isomorphism
of Uy (F) x Vo (F) x Uy (F') onto the orbit of wt. Recall that we let dx be the
self-dual Haar measure on F' with respect to the fixed non-trivial additive
character ¥. If « is a root let X, be the corresponding root vector in the
Lie algebra of N (entry at « is 1, the other entries are 0). If U is a subgroup
of N generated by a set of roots S (i.e U = {u =1+ .qxaXs}) we set
du = Rqcsdr,. We take for invariant measure on the orbit of wt the product
measure du;dvduy. Thus

I(wt, f) :/ I (Cugwtvus)0(urug)0(v)duydodu,. — (1.1.2)
Uw (F)X Vi (F) X Uy (F)

Since the orbit is closed, for f € C2°(G), the integral on the right hand
side has compact support. Thus the integral converges and define a smooth
function on T,,(F') which send ¢ € T,,(F) to I(wt, f).

We denote by T := {t € T,| det(wot) = det(w)} for each w € R(G).
For instance, the set T: is the set of matrices of the form

()
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Theorem 1.1.28. There is a locally constant function K on T satisfying
the following properties. For each function f € CX(G), there is a function
w € C2(T.) such that

I(et, ) = w(t) + Y K (b)I(woc, f).
(bye)

The sum is taken over the finite set
{(b,c) € T} x Ty, lbc = t}.

Proof. Let Gi = {g € G|det(g) = det(wp)}. We have woT,NG1 = weT,°, a
finite set. If wot where t € Ty, is in G, then the scalar matrix ¢t = diag(z, z)
verifies 22 = 1. We can choose fy € C>°(G) such that I(wy, fo) = 1 and
I(wodiag(z, 2), fo) = 0 if z # 1 and z is a square-root of 1 in F. (For
example, we can choose fy = ¢, with m large enough as in Lemma 1.1.29
below.)

We define a function K on 77" by

K (t) = I(et, fo).
We define a function f; on G by the formula

filg) = folg)I(woe, f),

(glzc)

where the sum is over the finite set
Sy ={(g1,¢) € G1 X Toyy|g1c = g}

It is a smooth function on G.
For t € T., we consider all possible decompositions

'nyetny = gic,
with g; € G; and ¢ € T},,. Since c is in the centre of G, we can write
g = ‘niete  ng = tnyebns

where b = tc™! € T*0 (since g; € G;). Thus

fi(*nietny) = Z fo(*'nyebny) I (woe, f)
(b,c)
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where the sum is over the finite set
{(b,c) € T} x T, |bc = t}.

Since c is in the centre of G, we have N° = N. After integrating two side
of above identity over the quotient of N(F) x N(F) by the subgroup N¢,
we obtain then

I(et, f1) = ZI (eb, fo)l(woc, f) = ZK“’O I(woc, f).

(b,e) (b,e)

We define a function w on T, by the formula

W(t) = I<eta f) - I(6t7f1) = ](€t7f - fl)
It is a smooth function on 7, and we have
I(et, f) = w(t —i—ZKwO I(woc, f).
(b,c)

O]
Lemma 1.1.29. Let t = diag(z,2) with 2> = 1 and ¢,, a product of the

characteristic function of the congruence group K,, and the scalar vol(p™)~!.
For m large enough, we have then
1, ifz=1,

0, otherwise.

I<w0t7 ¢m) = {

Proof. Firstly, we calculate the integral I(wq, ¢). This integral has the form
(cf. the formula (1.1.2))

)= [ o(w(y 1)) v

Now we take ¢ be a product of the characteristic function of wykK,, and
the scalar vol(p™)~1, this integral is equal to

vol(p / U(x

For m large enough (for example m is larger then the level of ¢), we have
(x) = 1. It implies that

/ Y(x)dx = vol(p™).
pm
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In consequence, the first assertion is proved.

Choosing m large enough such that z € K,, for all z which satisfy 2% =1
and z # 1. We have then ‘njwytny € woK,, for all (ny,ns) € N,.(F)x N,.(F).
The second assertion follows. O]

Proposition 1.1.30. The germ K" is given, for |z| small enough, by

€5 )=l o (3) G

Proof. Let f = ¢, as in Lemma 1.1.29. The relation defining germ K°
reads

1

2z

I(t, pm) = we(my(t +2Kw° I(woc, ). (1.1.3)

(b,c)

Since wy,, is of compact support, for |z| small enough we have

z 0

z 0
0 —z71
Lemma 1.1.29, we have then

wo (2 0 B z 0
Keo <0 _Z—l) - I (<O _2—1) 7¢m)
o z zZxy
= /F:XF(bm <Zl’2 _271 +$1ZL‘22> w(ﬂfl +x2)d:c1d:c2.

After changing 1 to x1/2 and x5 to xo/z, the germ K*°(diag(z,—271))
is equal to

- K 1 T+ X2
i /F><F¢m <5U2 —z 1+ Z_lzclxz) v ( z ) daydzs.

The integral is 0 unless z € p™. We can choose |z| small enough such that
z € p™. We see that then the integral is equal to

| 2|~ 2vol (p™) /w (xl + x2> dz1dz

z

Substituting ¢t = ) with |z| small enough to (1.1.3) and using

integrated over the domain defined by:

;=1 mod p™ for i =1, 2,
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r1re =1 mod zp™.

We change variables and set
To = txl_l,

where now the domain of integration is defined by:
r1=1 modp™, t=1 mod zp™.

(Since z € p™, the two conditions on z; and ¢ guarantee that t/x; = 1
mod p™.) After integrating over ¢ the integral becomes

e v (2) dar,
r1=1 mod p™ <

where the phase function ¢ is given by:

1
¢:LL’1—|——.
x1

We set 1 = 1 + v with v € p". The phase function takes the form
p=14+v+——.
v
The Taylor expansion of this function at the origin has the form

2 + v? + higher degree terms.

By the principle of the stationary phase there is a compact neighborhood €2
of 0 in F' such that, for |z| small enough, the integral is equal to

2+ 12 1Y% /9 2
o o () a0 (2)0 ().

1.1.6 Kirillov models and Whittaker models

We fix a non-trivial character ¢ of the additive group F. Let (m,V) is
a representation of G(F). Let N = {n = ((1) f) |z € F}, 1 defines a
character ¢ of N by
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Definition 1.1.31. e A Kirillov model for (7,V) is a sub-C-vector
space K(m, 1) of the space of C-valued on F*, and an action m of
G(F) on K(m,1) with the property that

m (G 1) (@) = v f(a) Vaw e Fbe FS € Kiro)

such that the representation V' and KC(, ) are isomorphic.

e A Whittaker model for (7, V') is a sub-C-vector space W(m, 1) of the
space of locally constant C-valued functions on G satisfying

f (((1) f) g) = U(2)f(g), VgEGaeF,

and an action of G(F) on W(m,v) defined by a right translation, i.e.
(9-f)(¢") = f(¢'g) such that the representation V' and W(m, 1) are
isomorphic.

Theorem 1.1.32 ([9, Theorem 1, p. 1.3]). If (m, V) is an irreducible ad-
missible infinite-dimesional representation of G(F') then (m,V') has a unique
Kirillov model IC(m,). Furthermore, every x € K(m,¢) is a locally con-
stant function on F* and vanishes outside some compact subset of F'. The
space C2°(F*) of locally constant functions on F* with compact support is a
subspace of finite codimension of K(m, ).

Proof. Assume that (7, V") has a Kirillov model IC(7, ). Then the subspace
Ko of K(m, 1) consisting of f such that f(1) = 0 has codimension 1. ]

Corollary 1.1.33. If (m, V) is an irreducible admissible infinite-dimesional
representation of G(F) then (w, V') has a unique Whittaker model.

Proof. Let K(m,1) be a Kirillov model for (7, V'). For every x € K(m,1), we
consider the function

Wilg) = m(g)(x)(e).

The vector space generated by {W,|x € K(m, )} is a Whittaker model for
(m, V).
Let W(m, 1) be a Whittaker model for (7, V'). The vector space generated
by {kw(z) = W(diag(x,1))|W € W(m,¢)} is a Kirillov model for (7, V).
Using the existence and uniqueness of the Kirillov model for irreducible
admissible infinite-dimensional representation (cf. Theorem 1.1.32), we ob-

tain then a proof for this corollary.
O
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Definition 1.1.34. Let (m,V) be a representation of G. A ¢» Whittaker
functional on (7,V) is non-zero linear form L : V' — C such that

forallne N and v € V.

We have a relation between Whittaker functional and Whittaker model as
follows: given a Whittaker model W(m, ) define L by L(v) = W, (e) where
e is the neutral element of G, W, is the image of v via the G-isomorphism
V. — W(m, ), and given a Whittaker functional L define W(m, 1) as the
space of W, : G — C defined by g — L(m(g)v) when v runs through V.
In other word, we have that to give a Whittaker functional (up to scalar

multiples) is to give a Whittaker model and vice-versa.

Let w = (O _01) and n(t) = Lt Now let 7 be an irreducible

1 0 1)'

admissible infinite-dimensional representation of G(F') and K(m, 1)) its cor-
responding Kirillov model. Since K(m, ) is irreducible, it is generated by
me(g)C°(F*). Moreover, C2°(F*) is stable under the action of Borel sub-
group of G, and m (n(t)w) k — me(w)r belongs to C°(F*) for every k €
K(m,1) and every ¢t € F. Using Bruhat’s decomposition, we obtain then

K(m, ¢) = CZ(F) + me(w)CFE(F7).

Theorem 1.1.35 ([9, Theorem 2, p. 1.18]). Let (m, V) be an infinite-
dimensional irreducible admissible of G(F'). Then the contragredient 7 of w is
equivalent to x; ' @, where X is the central character of , and the Kirillov
space K(7,v7") is the set of function x — Y. (x)'k(z) with k € K(m, ).
Furthermore the invariant duality between K(m, ) and K(7,¢~1) is given by
the bilinear form (k,n) such that

o) = [mlen(-a)aa + [ rale)Fulwin(-)d*s

if k= k1 + me(w)ky with Ky, ko € CX(F™) and n € K(T, ™).

1.1.7 Bessel distributions and Bessel functions

Let (m, V) be an infinite-dimensional irreducible admissible representation of
G. Due to Corollary 1.1.33, there exists an unique (up to scalar multiples)
v Whittaker functional L : V' — C. Let Lbea ©~1 Whittaker functional on
the representation contragredient (7, V) to (m, V). It follows from Theorem
1.1.35, we normalize L so that if v € V and ¥ € V are such that either
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x — L(r (diag(z,1))v) or = — L(7 (diag(z,1))?) has compact support in
F* then

v(v) = (v,v) = L(r (diag(z, 1)) v)L(7 (diag(z, 1)) 7)d* .

Fx

(Note that L(r (diag(z, 1)) v) € K(, ) and L(7 (diag(x, 1)) ) € K(F,v™1)).
For f € C°(G) we define the linear functional p(f)L : V — C by

(o(H)D) (@) = /G f@) LG )y, TET. (1.1.4)

It clear that p(f )Z % (i.e a smooth linear functional). Using the canonical

isomorphism 7 ~ 7 (cf. Proposition 1.1.2), we can identify p(f)L with a
vector v,y € V.

Definition 1.1.36 (Bessel distribution). Let (7, V') be an infinite-dimensional
irreducible admissible representation of G. The (Gelfand-Kazhdan) Bessel
distribution of 7 is the distribution J, : C2°(G) — C defined by

Jx(f) = L(v; 7)-
Our main theorem in this section is the following:

Theorem 1.1.37. There exists a locally integrable function j. on G such
that

1) = [ o)), f e @)
The strategy to prove this Theorem is that:

e We firstly define the function j, via the uniqueness of Whittaker model
for m on the open Bruhat cell. (We follow the work of Soudry in [17]).
This function is the Bessel function of 7.

e We then prove that j is a locally integrable function and J(f) =
J=(f) == [, dx(9)f(g)dg for all f € C*(G). (We follow the work of
Baruch in [1]).

Let N,, be the subgroup of N defined by

e {(§ e}
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Let W(m, ) be the Whittaker model of (7, V'). Let W € W(m,v). We define
W, : G — C by

_ /N W (gn)= (n)dn. (1.1.5)

Since W smooth and N, compact, this function is well defined. We can
easily verify that

Wi(ng) = ¢¥(n)Win(g), Vn€e N,geG.
Lemma 1.1.38. We have W,,(diag(y, 1)) € C°(F*) C K(m, ).

Proof. Tt easy to see that W, is a smooth function.
We have

(D6 ) (G 76 ) e (1)

It implies that

W(diag(y, 1)) = W (diag(y, 1)). / lay)de.

@O
Since
/ Soy)de = {qm R
@O 0  otherwise,
where ¢ is the conductor of v, W, has a compact support. O]

As a consequence of Lemma 1.1.38, we have W,,, € W(w, ).

Lemma 1.1.39. If g € BwB then there exists mo = myg 4 such that Wy, (g) =
Wino(g) for all m > my.

Proof. We note that for any W € W(m,v), (dlag(y, 1)) €
CX(F*) + me(w)CX (F*). Assume first that W (diag(y, 1)) € C°

C

(F
for a fixed g = (2%) € BwyB (i.e ¢ # 0), the function W (g (é i)

K(m, ) =

, then

s
)h

compact support in z. Indeed, let |z| be so large that

(Crg DW=
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then

(D6 ) = (C D6 ) eten 1)

det(g)
_ W<Cz+gd az—i—b)

0 cz+d
az+b det(9) )
= Xr d W | (cz+d)? )
Xalez +d)y (cz—i—d) ( 0 1

By our assumption, there exist mg (depending on g) such that

det(g) 0
W | (eztd)? =0
0 1

if |z| > ¢™°. It implies that W,,,(g) = W,,,,(g) for all m > my.
Now let W be any function in W(m,v). Fix an integer m; > 0. Let
m > my, and g € BwyB, we have

Win(g) :/ W, (gn)yp = (n)dn.

Using Lemma 1.1.38 and above argument, we obtain then a proof for this
Lemma. [

For g € BwoB, we define L,(W) = lim,,_oo Wi,(g). Due to Lemma
1.1.39, this limit converges. For each v € V, assume that W, is the image
of v via the isomorphism V' — W(m, 1). We abuse the notation of L, to
define a function from V' to C: L,(v) := Ly(W,). It is easily to check that
L, is a Whittaker functional on (7, V). From the uniqueness of Whittaker
functional, there exists a function j, : BwgB — C independent of v, such
that

Ly(v) = j=(9)Wy(e), g€ BwyB,veV.

Lemma 1.1.40. Assume that g = nqzdiag(z, 1)wons € BwoB with ny,ny €
N, z€ Z(G) and x € F*. We have then

Jn(g) = P (n1)(n2) X (2) i (diag(z, 1)wo).
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Proof. By definition, we have

Ly(v) = lim W, (gn)="(n)dn

m—0o0 Nm

= lim W, (ny zdiag(z, 1)woenan)y ™" (n)dn

m—r00 N,
m

= lim Y (ng) W, (nzdiag(z, 1)wengn )™ (ngn)dn

m—0o0 Nm

= lim Y (ng) W, (nizdiag(z, 1)wen)y ™! (n)dn  (changing variable)

m— 00 N,
m

= lim b(n2)t(n1) W, (diag(z, 1)wonz)y ™ (n)dn

m—o0 Nm

= lim 7vb(n2)¢<nl)I/Vw(z)(v) (dlag('xa 1)w0n)¢71(n)d”

m— 00 N’rn

= lim Y(n2)(ni) Wy, )0 (diag(z, Dwon )y~ (n)dn

m—o0 Nm

= lim [ d(n)e(n)xa (=) Wi (diag e, Duwgn)u ! (n)dn

() (12) X (2) Liing(o 1y (0)
() (1) X (2) (ding (, o) Wi ).

The last identity implies that j.(g) = ¥(n1)Y(ne)xx(2)jx(diag(z, Dwy). O

Lemma 1.1.41. For |z| large enough, we have then

j7r (dlag(x, 1>w0) = / I (diag<za .TZ), 1w0K0) Xﬂ'(z)ildxz'

FX

(Recall that I(wt, f) is the orbital integral defined in Section 1.1.5.)

Proof. Let ng be an arbitrary non-negative integer. Take W = Wy in W(m, ¢)
such that the function Wy(diag(z,1)) is the characteristic function of 1 +
w™O.

Since Wy is smooth, there exists m such that if |z| > ¢™ then

™ ( 1—1 (1)> (Wo) = W,

—z
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and then

(06 3) = (G a6 ) ()

I
=
A~
ould

8w oy
N2

I

=
P

N
P
O =
— s

It implies that

. 1 _
Ldiag(m,l)w()(WO) = /|< WO (dlag(m, 1)11)0 (0 i)) w 1(2)d2
z|<q™m

Let C ,, be such that

W (diag(z,l)wo ((1) i)) =0

for all |z| < ¢™ and all |z| > Cy,, and using Wy(e) = 1 we obtain

Xr(2)0 <§ — z> dz
(1.1.6)

Jr(diag(x, 1)wo) = Laiag(z,1)w, (Wo) = /

2z 24+1€wm0 O

for all |z| > Cr 4, -
On the other hand,

z ZT9

I(diag(z, 27), luek,,) = / Lo Ko (le o xz) Y(21 + z9)dx1ds.

This is 0 unless z € @™ O = p™. We change x; to x1/z and x5 to z5/2. We
obtain then

I(diag(z, 22), lugk,,) = |z|_2/@/) ($1 i x2> drdxs,
integrated over the domain defined by:
x; =1 mod pmo fori=1,2,

1179 = —222 mod zp™.
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2 =1 mod p™. We change variables and

This domain is empty unless —zz
set

To = txl_l,
where now the domain of integration is defined by:

2

r1 =1 mod p", t = —xz" mod zp™°.

Choose ng large enough such that ¢(u) = 1 for all u € p"°, after integrating
over t the integral becomes

o) [ o (%) an.
z1=1 mod p"0 <

where the phase function ¢ is given by:

—I22

¢ =z + .
Ty

We set 1 = 1+ v with v € p™. The phase function takes the form

—ZEZZ

=1 .
0] +v+1+v

The Taylor expansion of this function at the origin has the form
(1 —x2%) + (1 + 22%)v — (x2*)v* + higher degree terms.

By the principle of the stationary phase there is a compact neighborhood €2
of 0 in F' such that, for |z| small enough, the integral is equal to

2 1/2
VA G L= O]

We note that for |z| > ¢2, the condition —z2z2 =1 mod p™ implies that
z € p"°. Hence

/ I(diag(2, 22), Loy (=)~ = / (1.1.7)
Fx x22+1€pno

]

Lemma 1.1.42. Let W € W(m, ) be such that the function W (diag(z, 1))
belongs to C°(F>). Then

W(g) = / nlgdiag(a™, 1)W (diag(z, 1)d"s

for all g € BwgyB.



30 CHAPTER 1. LOCAL SETTING FOR TRACE FORMULAS

Proof. We put

then

We have

Pwg(y / ow(z

/|y| Yow(y '2)Y " (2)dz  (changing variable)
_ 1 1y _
= [ (a(y V7))o

<
by ) )

= |yl ¢W(g 0) W)V o)(Z)w_l(Z)dz

T
= |yl "jr(g.diag(y~",1)).7 (49) (W)(e)
= |yl 'jx(g-diag(y~", 1))W (diag(y, 1))

and hence

W(g) = dwsl0) = dmy(0 / ey

]

Lemma 1.1.43. Let W € W(T, 0™ be such that the function W(diag(w, 1))

belongs to CX°(F*). Then

—

g = / i (ding(r, 1)g) W (ding(r, 1)) "z

for all g € BwyB.
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Proof. We define W by .
W(g) = W (wog"wo)

where g* = (¢*)"1. Since W € W(7, 1), W is a locally constant C-valued
function on G' and

(99 - (D))

Moreover,
W(diag(z,1)) = W(wodlag(a: 1)*wg) = W(difimg(l,x_l))
W(wdlag(l z71)) = xa(a™") W (diag(z, 1))
= Xa(2)W (diag(z, 1))

belongs to C°(F*) C K(m, ). (Due to Theorem 1.1.35, we have yz(z) =
X«(x)~!.) Hence W satisfies the condition of Lemma 1.1.42. By using Lemma
1.1.42 for W and g = diag(y, 1)wg, we have then

W(g™') = W(wodiag(y,1)™") = W(wo(g~")*wo) = W (diag(y, 1)wo)
_ /F n(diag(y, wodiag(e™", 1) W (diag(z, 1))d"x

= [ n(ding(y. woding (o™, 1)) (@) (ding, 1)

= /F jx(zdiag(y, Dwodiag(z ", 1)) W (diag(z, 1))d*z

_ /F e(cling(ar, 1)cling(y, 1) W (diag(z, 1))d"a (1.1.8)
Now for g = nyzdiag(y, 1)wens we have

W(g™) = Wing's  wodiag(y, 1))
97 g xa(eT R (W (wodiag(y, 1))

]

Corollary 1.1.44 (cf. [1, Corollary 4.2]). There ezist constants C' = C, and
D = D, such that for |x| > C,

ljx(diag(z, 1)wo)| < Dlxx ()24
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Proof. We denote by ¢ a square root of _71 Another square root of _71 is

then —(. Using germ expansion (cf. Theorem 1.1.28), for any f € C*°(G)
and z € F'* we obtain then

¢
wo _C 0 —<
+K€ ( 0 C [ (TU}O,][) . (119)

O

I(diag(z, xz), f) = wy(diag(z, z2)) + K° (g g_1> I <Ewg,f)

Proposition 1.1.45 (cf. [1, Proposition 4.3]). Let f € C*(G).

(a) There exists a positive constant M = My such that for |z| < M we
have

/|f (nqwodiag(x, 1)zns) x+(2)|d*z = 0.

b) There exist positive constants C = Cy and D = Dy such that for
f f
|z| > C we have

/ | (muwodiag(a, 1)zns) xa ()| d*= < Dlxa ()] V]2V

Proof. We let
flo) = [ 1#(mzg)s(2)and
NZ

Since f is smooth and compactly supportted, f is well-defined. Moreover,
[ is smooth on the right (i.e there exists a compact open subgroup K of G
such that f(gk) = f(g) for all g € G), compactly supported modulo NZ

()

Theorem 1.1.46. The function j, is locally integrable.

Proof of Theorem 1.1.37. We define the distribution on C2°(G) to be

L (f) = /G i@ f(9), feCz(a).

By Theorem 1.1.46, J, is well defined. We shall prove that J, = J;.
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Let f € C°(G). Since (Cg°(G), £) smooth, there exist an integer m such
that E(% (1))f = ffor all x € K,,. Let v € V be such that

L(7(diag(x,1))v) = "1k, (x) € CF(F™)
for all z € F'*. We have

jﬂ'(f) =

) F)L(7(diag(z, 1))0)d"x

X
qku
—
)
—
o8
—o

jn(9)f (ding(a~", 1)g) dg) L (7(diag(x, 1)7)d"z

<
8
—_

X
T~ N
S

[ Jn (e 1)9) £ 9) dg) L (7 (diag(x, 1)) dz

~
—~
)

N~—

/F Jx (diag(z, 1)) L(7(diag(, 1))5)dxx> dg

(9)L(7(g~")?)dg ( cf. Lemma 1.1.43(1))

(HD)@) (cf. (1.1.4)). (1.1.10)

In other hand, we have:

—

I
—

I
—
s

51 = [ Jalegs ) DD (dinglo, D))
_ /F  Lin(diag(e, 1))y ) L (diag(e, D)T)d"s  (by definition of Jy)

v;z:V)  (By the normalization of L)
p(F)L) (D). (1.1.11)
Combining (1.1.10) and (1.1.9), we obtain then

Jo(f) = J=(f).
U]

The rest of this section is devoted to calculate the Bessel function j,.

Bessel functions for the principal series of G. (We will follow the
work of Baruch and Mao in [2].) Now let 7w be the infinite dimensional
irreducible component of Indgx where Y = 1 ® x2 and Y1, x2 are two mul-
tiplicative quasi-characters on F'*.

For a smooth representation (m, V) of N, we denote by Vi (V) the sub-
space generated by all vectors in V' of the form

m(n)(v) — P (n)v
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wheren € N and v € V. Weset Vy, vy := V/V,,(N). This space can be viewed
as Jacquet space of the twisted N-representation ¢»"!® V. The group N acts

on Vy n by ¢ m(n)(v) = ¥(n)v.
Lemma 1.1.47. We have

Vp(N) = {U e V| . 7(n) ()" (n)dn = 0 for some m} )

Proof. Let e, be vol(N,,)”! times the characteristic function of N,,. By
definition we have

[ wme wyin = [ e n)dn

Let v € V, n € N. There exist some m € Z such that n € N,,. Because
N,, is a group and n € N,,, we have e,,(n'n™!) = e,,(n’) for all n’ € N, so

/ (1) (w(n) (v) " () )dny, = /N em(n1)7(n1) (m(n) (v)) " (1) dny
- /N‘fm(nznlﬁr(nz)(v)wl(nzn1>dn2
= (n) 7(ng) (v)y " (ng)dns.

Nm

This implies [, 7(n1)(m(n)(v) — P (n)v)p~" (n1)dn, = 0. Thus
Ve(N) C {v evV| 7(n)(v)y~H(n)dn = 0 for some m} )

Suppose v € V and [, m(n)(v)y~!(n)dn = 0 for some m. Let Ny, =
{n € Ny|m(n)v = v}nker(y). Then N,,, is an open subgroup of the compact
group N,,. Thus N,,/N,,, is finite and

[ m @ = NN S R0 ()

m kEENm /Nm v

This implies
vo= v—/N 7(n) (V) (n)dn
= = Na/Noo ™ D T R (R) (0) = (k).

kENm/Nm,v
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Proposition 1.1.48. The functor V. — Vy n (viewing as a functor in the
category of N-modules) is exact.

Corollary 1.1.49. Let f € Indgx. We can then always write f as
f=r+1r,
where f"is in V,(N) and " has support in BwoN .

Proof. Let V be subspace of Indgx contains all the functions have support
in BwyN. We have then the following exact sequence (of N-modules):

0—V = IndGy — C — 0.

Note that C,; 5y = 0. Using Proposition 1.1.48, we obtain then Vj, y ~
(Indx)y,n- u

Corollary 1.1.50. Let f € IndGy. Then the integral
L, = fwon)y =t (n)dn
Nm

converges when m tends to oo. Moreover L = lim,, ,o L., is a Whittaker
functional on Indgx.

Proof. Denotes
I, = f(won)y ™ (n)dn.

N
We shall prove that there exists mg such that I, = I,,,, for all m > m.
Using Corollary 1.1.49, the function f can be written as

f=f+f

where f' € (Ind%x),(N) and f” has support in BuwN.
Due to Proposition 1.1.48, there exist m; € Z such that

f'(won)p=t (n)dn =0
for all m > m;.

Furthermore, the function n — f”(wen) has a compact support in N.
Indeed, let |z| be so large that

SRR
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(efe ) - (2
= 0 () ue

It implies that there exists my € Z such that

then

2
(2 9o

f(won)y~ (n)dn = [ f"(won)y~" (n)dn

Nm Nm

for all m > ms.
Take mg = max{m;, ms}, we obtain then our claim.
The second assertion of this corollary is obvious. O

We can now describe the Whittaker model associated to Indgx. Let
f(g) € Indgx. We define

Wilg) = L(ry(f)) = lim [ f(wong)d" (n)dn.

m—r o0 Nm

Since
1 z\ .. —% 1 1 %
Wo (0 1> dla’g(a’ ].)U)() - ( 0 Z) Wo (0 1) )
we have
, , lel<q” a als  [a
Wy, (diag(a, 1)wo) = lim a (=2) e |5 v (5 -2) de

n—oo a
| g |§qrn

Theorem 1.1.51. Let w be the infinite dimensional irreducible component
of IndGx. We have

éw<%—$>dx

if g = nyzdiag(a, 1)wong withny,ne € N, z € Z(G) and j.(g) = 0 otherwise.
Here

(o) = vlmmure) [ (2 |5

o ¢(x)dr = lim o(z)dx,

M=o Jg=m<|z|<gm

if the limit exists.



1.1. THE p-ADIC CASE 37

Bessel functions for cuspidal representations of G. (We will follow
the work of Baruch and Snitz in [4]). We have known that (for p is odd)
all cuspidal representations are given by the construction of Jacquet and
Langlands (cf. Section 1.1.4). For a convenience, we recall their construction.
Let E be a quadratic extension of the p-adic field F. Let 8 be a quasi-
character of £ which does not factor through the norm, i.e there does not
exist a quasi-character o of F* such that 5(z) = a(N(z)) for all z € E*. Let
7 be the non-trivial quadratic character defined on F*/N(E*) and extended
to F*. Let C2°(E) be the Schwartz space of locally constant and compactly
supported functions on E. Let Sg(E) be the subspace of functions f €
C°(E) such that

flzz) = B(=7") f(2) (1.1.12)
for all z € F' := {z € E|N(z) = 1}. Let G, be the subgroup of matrices

in G whose determinant is a norm. Let a € F' be a norm. Then there exists
2, € E such that N(z,) = a. The group G acts on Sz(E) as follows:

(n(2) ) (y) == ¢(=y*) f (),

(diag(a, 1) £)(y) == |2 *B(za) f(y2a), (1.1.13)

(diag(b,b™")f)(y) := 7(0) bl (by).
and
(wf)(y) ==, E)f (@)
where (¢, F) is the Weil constant defined in Lemma 1.1.25. We denote by
rg the cuspidal representation attached to 8 of G via the construction of

Jacquet and Langlands. Then 73 is the representation of G induced from the
above representation of G4. In other word, the space of rz is given by

Vi = A{F: G = Ss(E)[f(ha) = hf(x),h € Gy},

and G acts by right translation: (rsz(g)f)(z) = f(zg).

Before stating our formula for Bessel functions for cuspidal representa-
tions of GG, we need to fix some Haar measures. Let dr be a self dual measure
on F with respect to . We let d*r = dr/|r|r be a multiplicative Haar
measure on F*. Let dz be an additive Haar measure on F. Let {¢1,..., €}
be a set of representatives of F*/(F*)2. Then, E* is the disjoint union of
E., (i=1,...,{), where

E. :={2€ E|3r, € K*,N(2) = r’¢}.

Note that £, is empty if €; is not a norm, and 7, is defined up to a sign. If
E., is non-empty, we define a measure on E,, to be the restriction of dz to



38 CHAPTER 1. LOCAL SETTING FOR TRACE FORMULAS

the open sets F.,. Assume that ¢; is a norm and choose z., € E such that
N(z,) = €. Then every element z € E,, can be written in the form (unique
up to the sign of r, and a) z = z.,7.a with o € E'. We define then a Haar
measure do on E' such that

Elr. |}3/2drdoz.

dz = |z,

It is easy to check that this measure does not depend on ;.

For z € K, we define E* := {z € E|N(z) = z}. It is easy to see that E®
is empty when z is not a norm. If E% is non-empty, then £ = zE!, where
z is any element satisfying N(z) = xz. We define a measure d,« on E* by

dyo = |z|}5/2da. It is clear that this measure does not depend on the choice
of z.

Theorem 1.1.52. Let B be a quasi-character of E* which does not factor
through the norm form E to F. Let rg be the cuspidal representation of
GLo(F') attached to B. We have

Jrp(9) = ) 8276, E) | la)u(tr(a)dua

if g = nyzdiag(a, 1)wng with ny,ne € N, z € Z(G), a is a norm and j.(g) =
0 otherwise.

Proof. We consider a Whittaker functional L : V;, — C defined by L(f) :=
f(I1)(1), where I is unit matrix of G and 1 is the unit element of E. The
corresponding Whittaker function is then Wj(g) := L(rs(g)f). Using the
standard way, we obtain then the Kirillov functions

¢5(b) == Wi(diag(b, 1)) = L(rs(diag(b, 1))f). (1.1.14)

It follows from the definition that the mapping § — ¢; is one to one and the
space of all such function ¢5 is C°(F*). Due to Lemma 1.1.42, the Bessel
function j,., can be calculated by calculating ¢, .;j(b) = L(rs(diag(b, 1)w)f).

Since {e1, ..., €} is a set of representatives of F* /(F*)?, there exist 7}, €
F* and j € {1,...,¢} such that b = rZe;. We can write then

diag(b, 1)w = diag(r7, 1)diag(e;, ej)wdiag(ej_l, 1),
and ¢, (u);(b) becomes

L(rg(diag(rs, 1)diag(ej, ej)wdiag(ej_l, 1)f).
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Now 72 is the norm of the element r, € F viewed as a vector in F, and
the scalar matrix diag(e;,€;) acts by the central character. So we get (cf.
(1.1.12))

Groii(D) = |rl 2 B(ry)B(e;)f(wdiag(e;t, 1)) (rs)
o] /2 m,e]) (v, E)f(diag(e; %, 1)) ()
= 2By / f(diag(e ", 1)) (9) (tx(ry))dy.

Recall that E is the disjoint union of E., (i = 1,...,¢). Therefore, the
integral over E breaks up into a sum of integrals over the sets E,, i.e,

¢
i=1
where

‘[Ei(b7 f) = rb|}15/26(7ﬂb€j)/7(¢7 E) f(diag<€g'_17 1))(y)¢(tr(rby>)dy

If E., = (is equivalent to that ¢; is not a norm), we set I, (b,f) = 0. Recall
that if F, is non-empty, then every element y € E,, can be written in the
form y = z,ry,a with @ € E', r, € F* and 2z, € E such that N(z,) = €.
So, I, can be written as a double integral

|7'b|111_«7/25(7“b€j)7/ f(diag(e;l’ 1) (ze,ry)p (tr(rpze, rya) )da| ze, 1y | pd 1y
X E‘l

Using relation (1.1.11), I, is then

8 [ (G D) ear)zemyls [ Bla itttz o) dad™,,

Now using equations (1.1.13) and (1.1.12), we have
O(ryeie; ) = Lirg(diag(ryeie; )P = Iryze i Blryze)f(diag(e ', 1) (ryze,),
S0

0.0 = 2800y [ rtriee )z 2B (an) '

Bla™? Y (tr(rpzerycr))dod ™ .
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We define

Je, (b€ € 17“2) |Tb261ry|E (ro€jz,, / Bla™ ) p(tr(rpze,rya) )do

(1.1.16)
if €; is a norm and J(b, e;¢; 'r2) = 0 otherwise. We have then

I, (b,f) = / oi(r? €65 ) J (D, €ie; -t 2)dxry.

2

We change the variable of integration to x = ry

set €;€; “HF*)?, and we get

eiej_l and integrate over the

Lbf) = / o T D@ (1.1.17)

For any = € F*, there exists uniquely ¢ € {1,...,¢} such that the square
class of bx is €. Recall that b = ¢;r2. So there exist uniquely (up to a sign)
ry, € K* such that z = eiej’l'r’g. We define

J(b,x) = Je (b, €e; 'r7).
Combining equations (1.1.14), (1.1.16) and definition of J(b, x), we get
Prayi(0) = [ J(b,x)¢y(x)d"w. (1.1.18)
FX

Let z = ryryz,, . As « varies over E', z varies over E**. Recall that
_ 1/2
dz = |rpryze; | 4 da,

so we can write J as (cf. equation (1.1.15))

J(b,x) =yBb) | Blz"")i(tr(2))dz = yB(a™") [ Blbrz ) (tr(2))dz

Ebz Ebz
Since N(z) = 2z = bz, we have bzz~! = 2z27! = z. Moreover tr(z) = tr(2),
SO
I0,3) =456 [ Bl
E T
Combine above equation with (1.1.17), we obtain then

brsui®) = [ o1(@)BEY) [v [ S|

FX

It implies that j,,(w) = O
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1.1.8 Orbital integrals

We denote by G, the set of semi-simple regular elements of G, i.e the set of
matrix has a separable characteristic polynomial. Let 7" be a maximal torus
of G , we shall denote by T(,_,., = T" — Z the subset of regular elements. (7"
can be a centralizer of an elliptic element which has an irreducible (in F[X])
characteristic polynomial or the “standard” split torus 7'.)

For g € G we denote D(g) = 4 — det(g) 'tr(g)*.

Proposition 1.1.53 (Orbital integrals). Let v € G and f € C°(G). Then
fGV\G (g~ vg)dg where G., is the centralizer of v € G converges absolutely.
The integral

0,(f) = /G S0

is called orbital integral of f at .

Proof. If «y is central, then G, = G. So the statement is trivial.

Now we look at the case when ~ is a hyperbolic (or split) semi-simple
regular element (which is conjugated to diag(z,y) € T for = # y). We
can assume that v € T, so that G, = T. Using Iwasawa decompostion
G =T x N x Ky we have

Ov(f):/N B f(E™'n"tynk)dndk.

Denote vy = diag(z,y) and n = (§4%). Then n~'yn =~ (} ©"%/"") and
we have

0u(p) = [=y/al [ nk)dban

— DO V262() / F(kynk)dkdn.  (1.1.19)

K()XN

Since f € C°(G), there exists K C Ky an open compact subgroup of G such
that f is bi-K-invariant. ]

Theorem 1.1.54 (Germ expansion). Let vy be an elliptic element in G which
15 sufficiently close to e. Write E for the splitting field of the quadratic torus
T’ -determined uniquely up to conjugation in G by v. Then

O,(f) = g E 1V01(K0)Oe(f) + ”T’C<T/)|D(7)’71/20((1) 1

) (),
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2 if E/F is ramified
% if EJF is unramified,
root of the absolute value of a generator of the discriminant of the splitting
field E over F.

where Ky = and c(T") = c(E) is the square

Proof. First we need to describe v A local field F' has the form F,((w)),
power series in the variable @ over the field F, where ¢ is a power of an odd
prime number p. Its ring of integers O = F,[[w]], has the maximal ideal wO,
and group of units O* = O — wO.

The ramified quadratic separable extension of F' are F = F(r) where r
is a root of x? O

Corollary 1.1.55. Let C' be a compact subset of G/Z. Then there is ¢ =
c(C) > 0 such that
0,(1c) < e[ D(7)[~?e(B)

for every v € G where 1¢ is the characteristic function of C in G/Z and
E=F(v).

Proof. Using Germ expansion (cf. Theorem 1.1.54) for f = 1o and taking
=203 1) (1o)
we obtain then the Corollary. O

Theorem 1.1.56 (Change of variable formula). Let ¢ : X — Y be a mor-
phism between p-adic manifolds of constant dimensions such that the differen-
tial of ¢ is everywhere invertible (in particular, dim(X) = dim(Y") ). Assume
that the fibers of ¢ have bounded cardinality, and denote cy : Y — Z>o,
y— #(@({y})). Then for any differential form w on'Y and any function
f Y — C that is integrable with respect to |w|, we have

/Xfocf>|¢*w|=/yf0¢|w|-

1.1.9 Harish-Chandra characters

Theorem 1.1.57. Let (m,V) be an irreducible representation of G. Then
there is a unique smooth function ©, : G, — C such that ©, is locally
integrable on G, and for any f € H(G) we have

ter(f) = / £(9)©-(g)dg.
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Definition 1.1.58. Let (7,V) be a smooth representation of G. Assume
that x, is its central quasi-character. We say that 7 is square-integrable
(or part of the discrete series) if x, is unitary and for any v € V andv € V,

/ [ (g)0, ) *dg < +oo.
G/Z

We say that 7 is essentially square-integrable if there exists s € R,
such that | det |* ® 7 is square-integrable.

Lemma 1.1.59. Any irreducible square-integrable representation is unita-
rizable, i.e admits a G-invariant hermitian inner product. Moreover the G-
invariant hermitian inner product is unique up to R, .

Proof. Let (m,V) be an irreducible square-integrable representation of G
with central character y,. We denote by L?*(G, x.) the space of measur-
able functions G — C such that f(zg) = xx(2)f(g) for all z € Z, g € G and
fG/Z |f(9)|?dg < +o0. This space has a canonical Hermitian form

Ho(f, f) = f(9)f'(g)dyg.

G/z

For each 0 € V — {0}, the function g — (x(g)v, D) is belong to LX(G, x»)
and the map v — (g — (m(g)v,v)) gives a G-equivariant embedding of V
into L?(G, x,). Thus V admits a G-invariant hermitian inner product.

Let H(.,.) be any G-invariant hermitian inner form on V. We denote by
V the C-vector space V but with the product C x V. — V : (c,v) + cv.
Then H(.,.) is a G-invariant non-degenerate bilinear form on V' x V. Using
Proposition 1.1.3, H(.,.) can be see as a G-isomorphism @y : V — V. More

precisely,

H(’Ul,UQ) = <U1790H('U2)>'
Since V is irreducible, by Schur’s lemma, the G-invariant hermitian inner
product is unique up to a scalar. Due to positive-definiteness of inner prod-

uct, this scalar should be in R, .
O

Proposition 1.1.60 (Formal degree). Let (m, V') be an irreducible essentially
square-integrable representation of G. Then for any u,v € V and u,v € V
the integral

/ (n(g)u, T) (v, 7(g)D)
G/Z



44 CHAPTER 1. LOCAL SETTING FOR TRACE FORMULAS

converges absolutely and there exists a unique d, € R, called the formal
degree of m such that

| o e 7o) = - (0,50,
G/Z

™

Proof. Assume that y, is the central quasi-character of 7. Since 7 is equiv-
alent to x;! ® 7 (cf. Theorem 1.1.32), the absolute convergence of

| o w0
G/Z
is equivalent to the absolute convergence of
[, @i x den(s)dg
z

Moreover, since (m, V') is essentially square-integrable we have

| liroy i in(e, oG ety < 5 [ lirlo)u DI + (rlg)o.7) g
G/Z G/Z
< +o00.

Now we fix & € V and v € V, then the integral
| o m s
G/z

is a G-invariant non-degenerate bilinear form on V' x V. Since V is irreducible
(cf. 1.1.6), using Proposition 1.1.3 and Schur’s lemma, it is a complex number
times the canonical non-degenerate bilinear form on V' x V. In other word,
there exist a function ¢, : V x V — C such that

[ o e 7@y = env, ) .)€V x T,
G/z
Fix w € V and ¥ € V. The integral

/G (T 7o)

is also a G-invariant non-degenerate bilinear form on V' x V. It implies
that ¢, (v,u) is a G-invariant non-degenerate bilinear form on V' x V. Using
Proposition 1.1.3 and Schur’s lemma again, there exist ¢, € C such that

cr(v, ) = ¢ (v, ).
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Hence
/G/Z<7r(g)u, u) (v, m(g)v)dg = cx(u,v) (v, u). (1.1.20)

It remains to show that ¢, € Ry. Up to twisting by a character, we can
assume that 7 is square-integrable. Pick any G-invariant hermitian inner
product H(.,.) on V, which is equivalent to an isomorphism ¢y : V — V
(cf. proof of Lemma 1.1.59). Taking © = ¢g(v) and v = ¢y (u) for arbitrary
u,v € V — {0}, the LHS of (1.1.19) is equal to

H((g)u, v)H (v, 7(g)u)dg = / \H (n(g)u, v)|2dg

G/zZ Glz

which is non-negative and not identically vanishing, and the RHS of (1.1.19)
is equal to ¢, H (u,u)H (v, v), therefore ¢, € R,. O

Theorem 1.1.61 (Weyl integration formula). Fiz a set T of representatives
of conjugacy classes of tori in G(F). Let f be a measurable function on G.

Then
/f g =) /T/ (D10 f)dt

T’GT G—reg
if one side 1s absolutely convergent.

Proposition 1.1.62. Let x : T — C* be a quasicharacter of T', and consider
T = Indgx. Then Theorem 1.1.57 holds for w, and O, is the unique G-
invariant function on G, which vanishes identically on G2V and such that
for any t € Tg_req we have

O (t) = DO (x(1) + X" (1))
Proof. Due to the definition of Ind%, 5x and the Iwasawa decomposition, Ind¢% BX
may be regarded as a space of function in ¢ € C*°(K,) which satisfies

B(bk) = o *(D)x (D)o k) = x(D)o(k)
for all b € BN Ky and k € K. To evaluate trm(f) we observe that if ¢ be a

such function, f € H(G) and ky € Ky, and using Iwasawa decomposition we
have then

(1)@ k) = /G F(9)6(kig)dg = /G o(9) f (ki g)dg
= / ¢(Dks) f (ky ' bkz) dkadb
- /K o(k2) /B 3 (D)6 (8) £ (k7 bks) bk

- ¢(/€2)1/1(/€1; k2)dk2
Ko
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where ©(ky, k2) fB (b 1/2 b) f (ki *bky)db is a smooth function on Ky x K.
We denote by I(¢) the mtegral operator on C*°(Kj) defined by

¢ = 1) (¢)() = i ¢(k) (., k)dk.

Then 7(f) coincides with (1)) on Ind%x. Moreover, we can easily check that
I(¥)(¢) belongs to IndGy for all ¢ € C=(K,). (In fact, for ky, ky € Ky and
b, € BN Ky we have

Slonks, k) — / \(D)64(B) (k7 by b
B

_ /B (b1 (b7 16))5 2 (b1 (b7 1B)) £ (ki (b7 b)) (b D)
= x(b)Y(k1, k2).)

Hence

ter(f) = trI(y) = [ ok, k)dk

wr(f) = [ 0 [ xiw
AR

= /Tx(t)lD(t)]l/?Ot(f)dt (cf. (1.1.18)).  (1.1.21)

and so
X ()82 (b) f (k" bk )dbdk

Vo 2 (6) f (k™ tnk)dtdndk

In other hand, using Weyl integration formula (c.f Theorem 1.1.61) and the
definition of ©,, we have then

| 1@e-tais = 5 [ ipwle.wouna

_ ! / ID()]Y2(x(8) + x"(£)Ou( £ dt

—reg

= 5| [ipenwou s

+ [ 1D ) (15 00) O, i )
T

= [ xwporEo . (1.1.22)
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Combining (1.1.20) and (1.1.21), we obtain then

trn(f /f

with O, is defined as in the Proposition.

47
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