
Chapter 1

Local setting for trace formulas

In this chapter we establish almost all needed local setting for Selberg trace
formula and Kuznetsov trace formula for G := GL2(F ) (where F is a local
field) and their comparison.

Before go further, we need to fix some notation which we shall use in this
chapter.

1.1 The p-adic case

In this section we work with a finite extension F of Qp where p is a certain
odd prime number. The field F is then the field of fractions of a discrete
valuation ring O. Let p be the maximal ideal of O and k = O/p the residue
field. Thus k is finite and of characteristic p. We shall denote the cardinality
of k by q.

We choose one for all an uniformizer ϖ of p, that is, an element such that
ϖO = p. Every element x ∈ F× can be written uniquely in the form

x = uϖn

with u ∈ O× and n ∈ Z. (Note that the integer n does not depend on the
choice of ϖ.) The integer number n is called the valuation of x over F and
is denoted by vF (x) (we shall drop the subindex F when the field is clear).
The absolute value |.|F : F → R defined by

|x|F = q−vF (x), ∀x ∈ F×, and |0|F = 0

gives a metric on F . In the metric space topology, F is a complete, locally
compact, totally disconnected (that is no nonempty subsets are connected
except singleton sets), Hausdorff topological field.
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The matrix ring M2(F ) ≃ F 4 of 2 × 2 matrices with entries in F car-
ries the product topology, relative to which it is a locally compact, totally
disconnected, Hausdorff topological ring. Since det : M2(F ) → F is a
polynomial in the matrix entries, det is a continuous map. It implies that
GL2(F ) = det−1(F×) (F× = F\{0} is an open subset of F ) is an open subset
ofM2(F ). We give G = GL2(F ) the topology it inherits as an open subset of
M2(F ). The inversion of matrices is continuous, so G is a locally compact,
totally disconnected, Hausdorff topological group. In the terminology of [5]
such a group is called an ℓ-group. From now on, we shall add ℓ-group beside
G to indicate that a statement is true not only for GL2(F ) but also for any
ℓ-group. The subgroups

K0 = GL2(O) := {g ∈M2(O)|| det(g)|F = 1}, Ki = 1 +ϖiM2(O), ∀i ≥ 1

are compact open, and give a fundamental system of open neighborhood of
the identity in G.

1.1.1 Smooth representations of GL2(F )

A (continuous) representation (π, V ) of an ℓ-group G consists of a topo-
logical C-vector space V and a group homomorphism π : G → GL(V ) from
G to the group of invertible linear operators on V such that for each v ∈ V ,
the map

G→ V : g 7→ π(g)v

is continuous. The space V is called the representation space of G. We may
refer to the representation as π (when V is clear from the context), or we may
just say V (when the action π clear from the context). When V is equipped
with the discrete topology, we obtain than a smooth representation of G.
(Since the discrete topology on V is the finest topology on V , the smooth
representation is continuous for any kind of topology on V .)

Lemma 1.1.1. Let (π, V ) be a representation of an ℓ-group G. The following
conditions are equivalents:

1. The representation (π, V ) is smooth.

2. For each v ∈ V , the map φv : G → V : g 7→ π(g)v is smooth, i.e
locally constant.

3. For each v ∈ V , the set StabG(v) := {g ∈ G|π(g)v = v} is open in G.

4. For each v ∈ V , there exist an open compact subgroup Kv (depends on
v) of G such that π(Kv)v = v.
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Proof. � (1) ⇔ (2). Since V is equipped with the discrete topology, a
function φv : G→ V is smooth if and only if it is continuous.

� (2) ⇒ (3). Since φv is locally constant, there exits an open neighbor-
hood U of 1 (the unit element of G) such that π(u)v = π(1)v = v for
all u ∈ U . It implies that U ⊂ StabG(v). Let g ∈ StabG(v), we have
π(gu)v = π(g)(π(u)v) = π(g)v = v for all u ∈ U . Hence gU is an open
neighborhood of g and is contained in StabG(v). So the set StabG(v)
is open.

� (3) ⇒ (4). Since 1 ∈ StabG(v), the set StabG(v) is an open neighbor-
hood of 1 in G. Since G is an ℓ-group, there exist an open compact
subgroup Kv ⊂ StabG(v). For example for GL2(F ), we choose i large
enough such that Kv := Ki = 1 + ϖiM2(O) ⊂ StabG(v) . We have
π(Kv)v = v.

� (4) ⇒ (2). For all g ∈ G, gKv is an open neighborhood of g. Set g′ =
gu ∈ gKv, we have φv(g

′) = π(gu)v = π(g)(π(u)v) = π(g)v = φv(g).
Hence, φv is locally constant.

Given a smooth representation (π, V ) of an ℓ-group G, a subspace W of
V is said to be G-invariant if for every w ∈ W and every g ∈ G we have
π(g)w ∈ W .

If (π, V ) and (π′, V ′) are two representations of an ℓ-group G then we
denote by HomG(π, π

′) the space of all linear maps f : V → V ′ such that
f(π(g)v) = π′(g)f(v) for all v ∈ V and all g ∈ G. We say that π and π′ are
equivalent (or isomorphic) if HomG(π, π

′) contains an invertible element.
In that case, we write π ≃ π′.

For every representation V of an ℓ-group G, a vector v ∈ V is a smooth
vector if its stabilizer StabG(v) is open in G. We shall denote by V sm the
G-invariant subspace consisting of smooth vectors of V . By Lemma 1.1.1,
V sm is a smooth representation of G.

Let (π, V ) be a representation of G. We denote by V ∗ the space of all
linear forms on V . For every v∗ ∈ V ∗ and g ∈ G, we define π∗(g)v∗ ∈ V ∗ by

(π∗(g)v∗)(u) = v∗(π(g−1)u), ∀u ∈ V.

Clearly, (π∗, V ∗) is a representation of G. The dual representation V ∗ might
not be smooth even if V is smooth. Let π̃ be the G-invariant subspace
Ṽ = V ∗,sm of π∗. The representation (π̃, Ṽ ) is called the contragredient of
(π, V ).
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It doesn’t like the representation theory of finite group; in general the

representation ˜̃π is not equivalent to π. However, we shall soon see that this
phenomena is true when we add some more condition to π.

A smooth representation (π, V ) of an ℓ-group G is said to be admissible
if for every compact open subgroup K of G, the subspace V K := {v ∈
V |π(K)(v) = v} is finite dimensional. In the case G = GL2(F ), because
V gKg−1

= π(g)(V K) and all the maximal compact subgroups of GL2(F ) are
conjugate to K0, a smooth representation V is admissible if and only if V K

is finite dimensional for every open subgroup K of K0.

Proposition 1.1.2. If a representation (π, V ) of an ℓ-group G is admissible,

then the representation (π̃, Ṽ ) is also admissible. Futhermore, we have ˜̃π ≃ π.

Proof. LetK be a compact open subgroup ofG. Since StabK(v) = StabG(v)∩
K is open in K, we can consider V as a smooth representation of compact
group K . Set

V (K) = Span({π(g)(v)− v|g ∈ K, v ∈ V }).

Observe that V (K) and V K are two K-invariant subspace of V . We make
the following claim:

Claim: “V = V K ⊕ V (K).”
Assuming the claim for the time being we prove the proposition as follows.
Let ṽ ∈ Ṽ K . By definition of Ṽ K , we have

ṽ(π(g)u− u) = ṽ(π(g)(u))− ṽ(u) = π̃(g−1)(ṽ)(u)− ṽ(u) = 0

for all g ∈ K and u ∈ V . It implies that ṽ|V (K) = 0. Thus ṽ ∈ (V K)∗.
By the admissibility of V , we have dimC((V

K)∗) = dimC(V
K) < ∞. Hence

dimC(Ṽ
K) <∞.

Now given v∗ ∈ (V K)∗, we extend ṽ to an element of V ∗ by letting ṽ equal

to zero on V (K). We shall prove that ṽ ∈ Ṽ K .

� Let u ∈ V . We have then u = uK +w where uK ∈ V K and w ∈ V (K).
For all g ∈ K we have

π̃(g)(ṽ)(u) = ṽ(π(g−1)(uK +w)) = ṽ(uK +π(g−1)(w)) = ṽ(uK) = ṽ(u).

Thus ṽ is invariant under the action of K.

� Assume that g ∈ Stabπ∗(ṽ) (we use this notation to show that we are
considering the action of G via π∗). Then gK is an open neighborhood
of g which is contained in Stabπ∗(ṽ). It implies that Stabπ∗(ṽ) is open.
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We have shown that (Ṽ )K = (V K)∗. It implies that

(
˜̃
V )K = ((Ṽ )K)∗ = ((V K)∗)∗ ≃ V K .

For each u ∈ V , we consider the linear map fu : Ṽ → C, ṽ 7→ ṽ(u). We
have Stabπ(u) ⊂ Stab(π̃)∗(fu). Because Stabπ(u) is open in G (since (π, V ) is
a smooth representation), it contains an open compact subgroup H of G. Let
g ∈ Stab(π̃)∗(fu). Since gH is an open neighbourhood of g which is contained
in Stab(π̃)∗(fu), then Stab(π̃)∗(fu) is open in G. Therefore fu is an element of˜̃
V .

We consider the natural map φ : V → ˜̃
V , v 7→ fv. As above φ|V K is an

isomorphism between V K and (
˜̃
V )K for any open compact subgroup K of G.

� Let f be any element of
˜̃
V . Since Stab(π̃)∗(f) is open in G, then there

exists an open compact subgroup H ⊂ Stab(π̃)∗(f). It implies that

f ∈ (
˜̃
V )H . Since φ|V H is an isomorphism between V H and

˜̃
V
H

, there
exist then v ∈ V H ⊂ V such that φ(v) = f . Hence φ is an epimorphism.

� Assume that φ(v) = φ(v′). Because Stabπ(v) and Stabπ(v
′) are two

open subgroups of G, the subgroup Stabπ(v) ∩ Stabπ(v
′) is also open

in G. There exists then an open compact subgroup H ⊂ Stabπ(v) ∩
Stabπ(v

′). We have v, v′ ∈ V H . Since φ|V H is an isomorphism between

V H and
˜̃
V
H

, we have v = v′. Hence φ is injective.

� We have

˜̃π(g)(fv)(ũ) = fv(π̃(g
−1)ũ) = (π̃(g−1)ũ)(v) = ũ(π(g)v) = fπ(g)v(ũ).

It implies that φ ◦ π = ˜̃π ◦ φ.

In conclusion, φ is an isomorphism between two representations (π, V ) and

(˜̃π, ˜̃V ). In other word,

π ≃ ˜̃π.
It suffices now to prove the claim. Let v be any vector of V . Because

StabK(v) is open in K and K is compact and totally disconnected, the set
S := K/StabK(v) is finite. We have

v =
1

#S

∑
g∈S

π(g)v − 1

#S

∑
g∈S

(π(g)v − v).
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It easy to check that in the right hand side, the first factor is a vector of V K

and the second one is a vector of V (K). Hence V = V K + V (K).
Now we prove that

∑
g∈S π(g)v = 0 if v ∈ V (K). By definition of V (K),

it suffices to prove for v = π(g0)u − u for some g0 ∈ K and u ∈ V . In fact,
we have:∑

g∈S

π(g)v =
∑
g∈S

π(g)(π(g0)u− u) =
∑
g∈S

π(g)v −
∑
g∈S

π(gg0)u = 0.

The last equation is a consequence of the fact that gg0 runs through all the
equivalent classes of K/StabK(v). Therefore, if v ∈ V K ∩ V (K), we have
then

v =
1

#S

∑
g∈S

π(g)v = 0.

Thus V K ∩ V (K) = 0.

From the definition of a contragredient representation, it easy to check
that the canonical non-degenerate bilinear form ⟨v, v∗⟩ = v∗(v) on V × Ṽ
satisfies

⟨π(v), π̃(v∗)⟩ = ⟨v, v∗⟩.
A very natural question is that do a non-degenerate bilinear form invariant
under the action of G defines a contragredient representation? The answer
is yes in the case when π is admissible. More precisely, we have the following
proposition.

Proposition 1.1.3. Let (π, V ) be an admissible representation. Assume that
there exists an another admissible represenation (π′, V ′) and a non-degenerate
bilinear form ϕ : V × V ′ → C such that

ϕ(π(g)(v), π′(g)(v′)) = ϕ(v, v′).

Then (π′, V ′) ≃ (π̃, Ṽ ).

Proof. Denote φ(v′) = ϕ(., v′) ∈ V ∗ for all v′ ∈ V ′. We have

π̃(g)(φ(v′))(v) = ϕ(v′)(π(g−1v)) = ϕ(π(g−1)v, v′) = ϕ(v, π′(g)v′). (1.1.1)

Since ϕ is non-degenerate, then Stabπ̃φ(v
′) = Stabπ′(v′). In other word, φ(v′)

is a smooth vector in V ∗.
We consider a homormorphism

V ′ → Ṽ v′ 7→ φ(v′).

We now prove that this homomorphism is G-isomorphic.
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� The identity (1.1.1) implies that

π̃(g)(φ(v′)) = φ(π′(g)v′) ∀g ∈ G, v′ ∈ V ′.

� Since ϕ is non-degenerate, φ(v′) = 0 if and only if v = 0. Hence φ is
injective.

� Let ξ ∈ Ṽ . Take K be a compact subgroup contained in Stabπ̃(ξ). We

have then ξ ∈ Ṽ K . By the admissibility of π, π′ and non-degenerateness
of ϕ, we have dimC(V

K) = dimC((V
′)K) <∞. Using the proof Propo-

sition 1.1.2, we also have dimC(V
K) = dimC(Ṽ

K) <∞. Thus φ|(V ′)K is
an isomorphism. In other word, there exists ξ′ ∈ V ′ such that φ(ξ′) = ξ.

A smooth representation (π, V ) of an ℓ-group G is said to be irreducible
if the only G-invariant subspaces of V are 0 and V itself.

Lemma 1.1.4 (Schur’s lemma). Let (π, V ) be an irreducible admissible rep-
resentation of an ℓ-group G. Then we have dimC(HomG(π, π)) = 1.

Proof. Let A ∈ HomG(π, π). We take an arbitrary v ∈ V . Using Lemma
1.1.1, there exist an open compact subgroup K such that v ∈ V K . By
definition of A we have π(g)(Au) = A(π(g)u) = Au for all g ∈ K and all
u ∈ V K . Thus A|V K is a linear homomorphism form V K to itself. Moreover
V K is a finite dimensional space, since (π, V ) is admissible. Thus, A|V K

is an automorphism of the finite dimensional space V K . Let λ ∈ C be a
proper value of A. Then there exist v ̸= 0 such that Av = λ.v. Denote by
V ′ := {v ∈ V |Av = λ.v} the proper subspace w.r.t the proper value λ of V.
It is easily seen that V ′ is a G-invariant subspace of V . By the irreducibility
of V , we have V ′ = V . It follows that A = λ1V (here 1V is the identity
automorphism of V ).

Corollary 1.1.5. Let Z = {g ∈ G|g′.g = g.g′,∀g′ ∈ G} be the center of G. If
(π, V ) is an irreducible admissible representation of an ℓ-group G, there exists
then a quasicharacter (that is, a smooth one-dimensional representation)
χπ of Z such that π(z) = χπ(z).1V for all z ∈ Z. (This χπ is called the
central quasi-character of π.)

Proof. Let z be any element of Z. We have

π(g)π(z) = π(gz) = π(zg) = π(z)π(g)
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for all g ∈ G. It implies that π(z) ∈ HomG(π, π). By the Schur’s lemma,
there exists cz ∈ C such that π(z) = cz.1V . We denote by

χπ : Z → C×, z 7→ cz.

It is easy to check that χπ is a group homormorphism and π(z) = χπ(z).1V .
Finally, let v be a non-zero of V . By Lemma 1.1.1, there exists an open
compact subgroup K of G such that v ∈ V K . We have v = π(z)v = χπ(z)v
for all z ∈ K ∩ Z. It implies that χπ(z) = 1 for all z ∈ K ∩ Z. Thus for all
c ∈ C the map Z → C : z 7→ χπ(z)c is locally constant. By loc. cit., χπ is a
smooth representation of Z.

Lemma 1.1.6. Let (π, V ) be an admissible representation of an ℓ-group G

and (π̃, Ṽ ) its contragredient. Then (π, V ) is irreducible if and only if (π̃, Ṽ )
is irreducible.

Proof. Assume that 0 ̸= U is a G-invariant subspace of V . Let W be a
subspace of V such that V = U ⊕W (W does not need to be G-invariant).
Each element λ ∈ U∗ can be extended to an element of V by letting λ(w) = 0
for all w ∈ W . In this sense, we can view U∗ as a G-invariant subspace of
V ∗. Then Ũ is a G-invariant subspace of Ṽ . Moreover, by Proposition 1.1.2,

Ũ ̸= 0 (otherwise 0 =
˜̃
U ≃ U). Thus Ũ is a non-zero G-invariant subspace

of Ṽ . The lemma is a direct consequence of this argument and loc. cit.. For
example, to prove that (π, V ) is irreducible if (π̃, Ṽ ) is irreducible, we do as
follows.

Assume that (π, V ) is reducible. There exists then a non-zero proper

G-invariant subspace U of V . By irreducibility of Ṽ , we have Ũ = Ṽ . Now,

using loc. cit., we have U ≃ ˜̃
U =

˜̃
V ≃ V (contradictory).

One of the main goal of this chapter is to classify irreducible admissible
representations of G. The finite dimensional admissible irreducible smooth
representations of G are not very interesting. Each is a one dimensional space
on which the element of G acts by scalar. This is the content of Proposition
1.1.8. The proof of this proposition requires the following lemma.

Lemma 1.1.7. The matrices ( 1 x
0 1 ) and

(
1 0
y 1

)
with x, y ∈ F generate SL2(F )

Proof. Every ( a b0 d ) ∈ SL2(F ) can be written in the following form(
a b
0 d

)
=

(
a 0
0 a−1

)(
1 a−1b
0 1

)
.
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On other hand, if c ̸= 0, we have(
a b
c d

)
=

(
1 c−1a
0 1

)(
0 1
−1 0

)(
−c 0
0 −c−1

)(
1 c−1d
0 1

)
.

Those identities imply that SL2(F ) is generated by ( 0 1
−1 0 ) and the matrices

( 1 x
0 1 ),

(
1 0
y 1

)
,
(
z 0
0 z−1

)
, with x, y ∈ F and z ∈ F×.

Moreover, we have(
0 1
−1 0

)
=

(
1 0
−1 1

)(
1 1
0 1

)(
1 0
−1 1

)
and (

z 0
0 z−1

)
=

(
1 0

z−1 − 1 1

)(
1 1
0 1

)(
1 0

z − 1 1

)(
1 −z−1

0 1

)
for all z ∈ F×. The proof of the lemma is a direct consequence of the above
two identities.

Proposition 1.1.8. A finite admissible irreducible of G is one dimensional.
Moreover, it is of the form g → χ(det(g)) for some quasi-character χ of F×.

Proof. Let (π, V ) be a finite dimensional irreducible admissible representa-
tion of V . Let {v1, v2, . . . , vn} be a basis of V . By Lemma 1.1.1, for each
i ∈ {1, . . . , n} there exists an open compact subgroup Ki ⊂ G that stabilises
vi. We denote by K the intersection of Ki. Then K is an open compact
subgroup of G and fixes V . So the kernel H := ker(π) of the representation
contains a compact open subgroup. In other word, H is a non-trivial open
normal subgroup of G.

Now let x ∈ F be arbitrary. We choose b ∈ F such that |bx|F is sufficient
small so that ( 1 bx

0 1 ) ∈ H. Then(
1 x
0 1

)
=

(
b 0
0 1

)−1(
1 bx
0 1

)(
b 0
0 1

)
∈ H.

Similarly, we also can show that
(
1 0
y 1

)
∈ H for all y ∈ F . It immediately

follows from Lemma 1.1.7 that SL2(F ) ⊂ H. Note that gg1g
−1g−1

1 ∈ SL2(F )
for all g, g1 ∈ G. Thus π(g)π(g1) = π(g1)π(g) for all g, g1 ∈ G. It implies
that π(g) ∈ HomG(π, π). By the Schur’s lemma, there exists δg ∈ C× such
that π(g) = δg.1V .

We consider the subspace V1 := Cv1 generated by the vector v1 of V . For
any g ∈ G, k ∈ C, we have π(g)(kv1) = kδgv1 ∈ V1. It implies that V1 is a
G-invariant subspace of V . By the irreducibility of V , we have V = V1. We
have shown that the dimension of V is one.
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Now we consider π : G → C× being a smooth representation of G. We
define an application χ : F× → C× by

χ(z) = π(( z 0
0 1 )).

It is clear that χ is a quasi-character of F× and

π(g) = χ(det(g)), ∀g ∈ G.

Corollary 1.1.9. Any quasi-character of G is of the form ϕ ◦ det, for some
quasi-character ϕ of F×.

1.1.2 Haar measures and the Hecke algebra

Let G be an ℓ-group. Let C∞
c (G) be the space of functions f : G→ C which

are locally constant and of compact support. The group G acts on C∞
c (G)

by left and right translation by the formulas

ℓxf(y) = f(x−1y), and rxf(y) = f(yx).

Local constancy and compactness of support of function in C∞
c (G) imply

that both of the G-representations (C∞
c (G), ℓ), (C∞

c (G), r) are smooth.

Definition 1.1.10. A left invariant distribution on G is a linear form ξ :
C∞
c (G) → C such that ξ(ℓxf) = ξ(f) for all x ∈ G and f ∈ C∞

c (G).
A left Haar distribution on G is a non-zero left invariant distribution ξ

such that ξ(f) ≥ 0 whenever f ≥ 0.

We can also define a right invariant distribution (resp. right Haar distri-
bution) similarly, using right translation r instead of left translation ℓ.

Proposition 1.1.11. There exists a left Haar distribution I : C∞
c (G) → C.

Moreover, the space of left invariant distributions on G is one dimensional
C -vector space.

Proof. Let K be a compact open subgroup of G, we denote by C∞
c (G)K

the space of functions in C∞
c (G) that are right invariant under K. The

(C∞
c (G)K , ℓ) is then a smooth representation of G.

Lemma 1.1.12. Viewing C as the trivial G-representation, we have

dimC(HomG(C
∞
c (G/K),C)) = 1.

There exists a non-zero element IK ∈ HomG(C
∞
c (G/K),C) such that IK(f) ≥

0 whenever f ≥ 0. If 1K is the characteristic function of K, then IK(1K) > 0.
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Proof. The space C∞
c (G/K) has a basis 1xK consisting of characteristic func-

tion of right cosets xK. A linear form ξ : C∞
c (G/K) → C is G-invariant

if and only if ξ(1xK) = ξ(1K) for all x ∈ G. In other words, the map
HomG(C

∞
c (G/K),C) → C given by ξ 7→ ξ(1K) is an isomorphism. In par-

ticular HomG(C
∞
c (G/K),C) is one dimensional.

The linear form IK : 1xK 7→ 1 has the required properties.

We choose a descending sequence {Ki}i≥1 of normal compact open sub-
groupKi of G such that

⋂
iKi = 1 (due to van Dantzig’s lemma, there always

exists this kind of sequence - in the case when G = GL2(F ) we can choose
Ki = 1 +ϖiM2(O) for all i ≥ 1). We have then:

C∞
c (G) =

⋃
i≥1

C∞
c (G/Ki).

For each i ≥ 1, there is a unique leftG-invariant linear form Ii : C
∞
c (G/Ki) →

C which maps the characteristic function of Ki to (#(K1/Ki))
−1. Since the

restriction of Ii+1 on C∞
c (G/Ki) is Ii, the form I : C∞

c (G) → C defined by
I(f) = Ii(f) whenever f ∈ C∞

c (G/Ki) is well-defined. The statements of
Proposition are immediate.

Proposition 1.1.13. content...

Let H be a closed subgroup of G with module δH . Let θ : H → C× be
a character of H. We consider the space C∞

c (H\G, θ) = c − IndGHθ, i.e the
space of functions f : G → C which are G-smooth under right translation,
compactly supported modulo H, and satisfy

f(hg) = θ(h)f(g), h ∈ H, g ∈ G.

Proposition 1.1.14. Let δH\G(h) = δH(h)
−1δG(h), h ∈ H. There exist a

non-zero linear functional IH\G : C∞
c (H\G, δH\G) → C having the following

two properties:

(1) IH\G(rg(f)) = IH\G(f), for all f ∈ C∞
c (H\G, δH\G) and all g ∈ G.

(2) If g ∈ G, K is a compact open subgroup of G, and f ∈ C∞
c (H\G, δH\G)

K

is supported on the double coset HgK, then IH\G is a positive multiple
of f(g).

Proof. Let µG, µH be left Haar measures on G, H respectively. For each
f ∈ C∞

c (G), we define f̃ : G→ C by

f̃(g) :=

∫
H

δG(h)
−1f(hg)dµH(h).
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By definition, we have

f̃(h1g) =

∫
H

δG(h)
−1f(hh1g)dµH(h)

= δH\G(h1)

∫
H

δG(hh1)
−1f(hh1g)δH(h1)dµH(h)

= δH\G(h1)

∫
H

δG(hh1)
−1f(hh1g)dµH(hh1)

= δH\G(h1)f̃(g)

for all h1 ∈ H. Since the support of f is compact, the support of f̃ is compact
modulo H. If K is a compact open subgroup of G such that f(gk) = f(g)
for all g ∈ G and k ∈ K, then f̃(gk) = f̃(g) for all g ∈ G and k ∈ K. Hence
f̃ ∈ C∞

c (H\G, θ). Moreover, we have

rg1(f̃)(g) = f̃(gg1) =

∫
H

δG(h)
−1f(hgg1)dµH(h)

= r̃g1(f)(g).

It implies that the map (C∞
c (G), r) → (C∞

c (H\G, δH\G), r) which sends f to

f̃ is a G-homomorphism.
This homomorphism satisfies

ℓ̃h1(f)(g) =

∫
H

δG(h)
−1f(h−1

1 hg)dµH(h)

= δG(h1)
−1f̃(g)

for h1 ∈ H and f ∈ C∞
c (G). We now prove that it is surjective.

Let φ ∈ C∞
c (H\G, θ). Then there exists a compact open subgroup K

of G such that φ ∈ C∞
c (H\G, θ)K (the subspace of C∞

c (H\G, θ) which is
invariant under the action of K). Since φ has compact support modulo H,
there exist g1, . . . , gn ∈ G/K such that φ(g) = 0 if g ̸∈

⊔n
i=1HgiK. We

define a function f : G→ C as follows

f(gik) = vol(H ∩ giKg−1
i )φ(gi)

and f(g) = 0 for g ̸∈
⊔n
i=1 giK. By definition, f ∈ C∞

c (G) and

f̃(h1gik) = θ(h1)f̃(gik) = θ(h1)

∫
H

(θδH)(h)
−1f(hgik)dµH(h)

= θ(h1)

∫
H∩giKg−1

i

(θδH)(h)
−1vol(H ∩ giKg−1

i )φ(gi)dµH(h).
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1.1.3 Parabolic induction and Jacquet module

One of the way to construct representations of G is to induce representations
from smaller subgroups. In this section, we induce the representations of B
which are trivial on its nilpotent subgroup N . Non-trivial characters on N
(Whittaker functionals) are also interesting. They will be studied in Section
1.1.6.

Definition 1.1.15. Let (σ,W ) be a smooth representation of T . We consider
the space IndGBW of smooth functions f : G→ W which satisfy

f

((
a1 x
0 a2

)
g

)
=

∣∣∣∣a1a2
∣∣∣∣1/2 σ((a1 0

0 a2

)
g

)
f(g).

We define a homomorphism IndGBσ : G→ AutC
(
IndGBW

)
by

IndGBσ(g)f : x 7→ f(xg), x, g ∈ G.

The pair (IndGBσ, Ind
G
BW ) provides a smooth representation of G. It is called

the (normalized) parabolic induction of σ.

Remark 1.1.16. (1) Due to Iwasawa decomposition G = BK0, the sub-
space c − IndGBσ of smooth functions f ∈ IndGBσ which are compactly
supported modulo B (this means that the image of the support of f in
B\G is compact) is the whole space IndGBσ. In other word, IndGBσ is
also the compact induction of σ.

(2) Let χ = χ1 ⊗ χ2 be a quasi-character of T . The representation IndGBχ
is called the principal series representation of G.

Lemma 1.1.17. The principal series IndGBχ is admissible.

Proof. Let K be a compact open subgroup of G. We may assume that
K ⊂ K0 (since all the maximal compact subgroups of G are conjugate to
K0). Since G = BK0 (Iwasawa decomposition) and K0/K is finite, the set
of double cosets B\G/K is also finite. By definition, a function f ∈ IndGBχ is
defined uniquely by its image over the set of double cosets B\G/K. Hence,

dimC((Ind
G
Bχ)

K) <∞.

The character δ
1/2
B : diag(a1, a2) 7→

∣∣∣a1a2 ∣∣∣1/2 was introduced so that IndGBχ

preserves unitarity.
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Proposition 1.1.18. If χ is unitary then IndGBχ has a natural G-invariant
Hermitian inner product, defined by ||f ||2 =

∫
K0

|f(k)|2dk.

Definition 1.1.19. Let (V, π) be a smooth representation of G. Let

V (N) := Span({π(n)v − v|n ∈ N, v ∈ V }).

This V (N) is an N -invariant subspace of V . Let VN = V/V (N) the largest
quotient of V on which N acts trivially. Because N is invariant under T ,
the VN inherits a representation πN of B/N = T (can be also viewed as a
representation of B which is trivial onN), which is smooth. The (normalized)

Jacquet module JacGBπ or JacGB(V ) is the representation (πN ⊗ δ
−1/2
B , VN) of

B.

Theorem 1.1.20 (Frobenius reciprocity). For any smooth representation
(π, V ) (resp. (σ,W )) of G (resp. T ) we have a natural isomorphism

HomG(π, Ind
G
Bσ) ≃ HomT (Jac

G
Bπ, σ).

Corollary 1.1.21. Let (π, V ) be an irreducible smooth representation of G.
If JacGB(V ) ̸= 0 (equivalently, VN ̸= 0) then V is embeds in a principal series
representation of G (i.e in a IndGBχ for some quasi-character χ of T ).

Let w0 be the longest Weyl element of G, i.e

w0 :=

(
0 1
1 0

)
.

For each smooth representation σ of T , we define the representation σw0 :
t 7→ σ(w0tw

−1
0 ), and view it as a representation of B which is trivial on N .

Lemma 1.1.22 (Restriction-Induction Lemma). Let (σ,W ) be a smooth rep-
resentation of T . There is an exact sequence of representations of T :

0 → δ
−1/2
B ⊗ σw0 → JacGBInd

G
Bσ

ασ−→ δ
1/2
B ⊗ σ → 0,

where ασ is the canonical T -map JacGB(Ind
G
B(W )) → W defined by f 7→ f(1).

Theorem 1.1.23 (Irreducibility Criterion). Let χ = χ1⊗χ2 be a quasichar-
acter of T .

(1) The representation IndGBχ is irreducible unless χ1χ
−1
2 = |.|±1.

(2) If χ1χ
−1
2 = |.| then IndGBχ contains an irreducible admissible G-subspace

of codimension 1.
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(3) If χ1χ
−1
2 = |.|−1 then IndGBχ contains a 1-dimensional G-subspace whose

quotient is irreducible.

Theorem 1.1.24 (Classification theorem). Let π be an irreducible admissible
representation of G. Then π is equivalent to one of the following disjoint
types:

(1) the irreducible induced representations IndGBχ, where χ ̸= ϕ⊗ δ
±1/2
B for

any quasi-character ϕ of F×;

(2) the special representations χ ⊗ StG, where χ ranges over the quasi-
characters of F×;

(3) the cuspidal representations;

(4) the 1-dimensional representations χ◦det, where χ ranges over the quasi-
characters of F×.

Moreover

(a) in (1), we have IndGBχ ≃ IndGBψ if and only if ψ = χ or χω;

(b) in (2), we have χ⊗ StG ≃ χ′ ⊗ StG if and only if χ = χ′;

(c) in (4), we have we have χ ◦ det ≃ χ′ ◦ det if and only if χ = χ′.

1.1.4 Cuspidal representations

Let E/F be a separable quadratic extension of local field F . We fix a non-
trivial additive character ψ = ψF : F → C×. Then ψE = ψF ◦ trE/F is
a non-trivial additive character of E. Let C∞

c (E) be the space of complex
valued smooth functions of compact support on E. Given f ∈ C∞

c (E), define
the Fourier transform f̂ ∈ C∞

c (E) by

f̂(y) =

∫
E

f(x)ψE(xy)dx,

where dx is the self-dual measure with respect to ψE on E (i.e dx is the

normalized Haar measure so that
ˆ̂
f(x) = f(−x)). Since dx is self-dual, we

have then the Fourier inversion formula

f(x) =

∫
E

f̂(y)ψ̃E(xy)dy.

Lemma 1.1.25 (Weil constant). There exist a constant γ(ψF , E) such that
for every function ϕ ∈ C∞

c (E)∫
E

(ϕ ∗ f)(x)ψE(xy)dx = γ(ψF , E)f
−1(ι(y))f̂(y).
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1.1.5 Kloosterman integrals and Shalika germs

In this section, we shall prove the existence of Shalika germs for orbital
(Kloosterman) integrals which are appeared in the geometric side of
Kuznetsov trace formula for GL2. The main reference for this subsection
is [10, 12]. (In these loc. cit. Jacquet and Ye proved the existence of Sha-
lika germs for a more general orbital integrals which are appeared in the
geometric side of Kuznetsov trace formula for GLr).

For a convenience, we recall the definition of the orbital integral. Let G
be the group GL2 viewed as an algebraic group over F . We often write G for
G(F ). We denote by C∞

c (G) the space of complex valued, locally constant
functions of compact support on G. Let Z be the center of G. Let W be the
Weyl group of G. Let T be the subgroup of diagonal matrices of G and N
the subgroup of upper-triangular matrices with unit diagonal. We fix a non-
trivial additive quasi-character ψ of F and define a character θ : N → C×

by the formula
θ(u) = ψ(n1,2),

where n =
(
1 n1,2

0 1

)
.

The Kloosterman integrals of a function f ∈ C∞
c (G) which we want to

study are the functions:

I(g, f) =

∫
f(tn1gn2)θ(n1n2)dn1dn2.

Here g is a relevant element, i.e g satisfies a condition that θ(n1n2) = 1 if
tn1gn2 = g. The integral is taken over the quotient of N(F )×N(F ) by the
subgroup N g of elements (n1, n2) of N(F )×N(F ) satisfying tn1gn2 = g.

Lemma 1.1.26. Let N ×N operate on G by (n1, n2).g =
tn1gn2. Then any

relevant orbit of N ×N contains a unique representative of the form wt with

w ∈ R(G) :=

{
e :=

(
1 0
0 1

)
, w0 :=

(
0 1
1 0

)}
and

t ∈ Tw :=

{
T if w = e,

Z if w = w0.

Suppose that w ∈ R(G). Let Mw be the standard Levi subgroup such
that w is the longest element of Mw ∩W . Let Pw = MwUw be the standard
parabolic subgroup which has Levi factor Mw. Set Vw = N ∩Mw. For every
t ∈ Tw, (by an elementary matrix calculation) we have

Nwt = Nw = {(n1, n2) ∈ V 2
w |n2 = wtn−1

1 w}.
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Lemma 1.1.27. Any point of the orbit of wt under the action of N(F ) ×
N(F ) can be uniquely written in the following form

µ(u1, v, u2) = u1wtvu2

with ui ∈ Uw and v ∈ Vw.

Proof. Since N ⊂ Pw, by using the Levi decomposition for elements of N , we
can rewrite any element of the orbit of wt under the action of N(F )×N(F )
as below:

tn1wtn2 = tu1
tv1wtv2u2

= tu1[
tv1wt(w

tv−1
1 w)][(wtv1w)v2]u2

= tu1wtvu2.

Here ui ∈ Uw, vi ∈ Vw, v ∈ Vw such that v1u1 = n1, v2u2 = n2 and v =
(wtv1w)v2. The last identity follows (tv1, w

tv−1
1 w) ∈ Nw.

Suppose that tu1wtvu2 =
tu′1wtv

′u′2 with ui, u
′
i ∈ Uw and v, v′ ∈ Vw. We

have then
t(u−1

1 u′1)wt(v
′u′2u

−1
2 v−1) = wt.

Hence, v′u′2u
−1
2 v−1 ∈ Vw and t(u−1

1 u′1) ∈ Vw. It implies that {u′2u−1
2 , u−1

1 u′1} ⊂
Uw ∩ Vw = {e}. Thus ui = u′i for all i ∈ {1, 2}. As a consequence, we have
v = v′.

Since the orbits of N(F )×N(F ) are closed, the map µ is an isomorphism
of Uw(F )×Vw(F )×Uw(F ) onto the orbit of wt. Recall that we let dx be the
self-dual Haar measure on F with respect to the fixed non-trivial additive
character ψ. If α is a root let Xα be the corresponding root vector in the
Lie algebra of N (entry at α is 1, the other entries are 0). If U is a subgroup
of N generated by a set of roots S (i.e U = {u = 1 +

∑
α∈S xαXα}) we set

du = ⊗α∈Sdxα. We take for invariant measure on the orbit of wt the product
measure du1dvdu2. Thus

I(wt, f) =

∫
Uw(F )×Vw(F )×Uw(F )

f(tu1wtvu2)θ(u1u2)θ(v)du1dvdu2. (1.1.2)

Since the orbit is closed, for f ∈ C∞
c (G), the integral on the right hand

side has compact support. Thus the integral converges and define a smooth
function on Tw(F ) which send t ∈ Tw(F ) to I(wt, f).

We denote by Tw0
w := {t ∈ Tw0| det(w0t) = det(w)} for each w ∈ R(G).

For instance, the set Tw0
e is the set of matrices of the form(

z 0
0 −z−1

)
.
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Theorem 1.1.28. There is a locally constant function Kw0
e on Tw0

e satisfying
the following properties. For each function f ∈ C∞

c (G), there is a function
ω ∈ C∞

c (Te) such that

I(et, f) = ω(t) +
∑
(b,c)

Kw0
e (b)I(w0c, f).

The sum is taken over the finite set

{(b, c) ∈ Tw0
e × Tw0|bc = t}.

Proof. Let G1 = {g ∈ G| det(g) = det(w0)}. We have w0Tw0∩G1 = w0T
w0
w0

, a
finite set. If w0t where t ∈ Tw0 is in G1, then the scalar matrix t = diag(z, z)
verifies z2 = 1. We can choose f0 ∈ C∞

c (G) such that I(w0, f0) = 1 and
I(w0diag(z, z), f0) = 0 if z ̸= 1 and z is a square-root of 1 in F . (For
example, we can choose f0 = ϕm with m large enough as in Lemma 1.1.29
below.)

We define a function Kw0
e on Tw0

e by

Kw0
e (t) = I(et, f0).

We define a function f1 on G by the formula

f1(g) =
∑
(g1,c)

f0(g1)I(w0c, f),

where the sum is over the finite set

Sg := {(g1, c) ∈ G1 × Tw0|g1c = g}.

It is a smooth function on G.
For t ∈ Te, we consider all possible decompositions

tn1etn2 = g1c,

with g1 ∈ G1 and c ∈ Tw0 . Since c is in the centre of G, we can write

g1 =
tn1etc

−1n2 =
tn1ebn2

where b = tc−1 ∈ Tw0
e (since g1 ∈ G1). Thus

f1(
tn1etn2) =

∑
(b,c)

f0(
tn1ebn2)I(w0c, f)
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where the sum is over the finite set

{(b, c) ∈ Tw0
e × Tw0|bc = t}.

Since c is in the centre of G, we have N et = N eb. After integrating two side
of above identity over the quotient of N(F ) × N(F ) by the subgroup N et,
we obtain then

I(et, f1) =
∑
(b,c)

I(eb, f0)I(w0c, f) =
∑
(b,c)

Kw0
e (b)I(w0c, f).

We define a function ω on Te by the formula

ω(t) = I(et, f)− I(et, f1) = I(et, f − f1).

It is a smooth function on Te and we have

I(et, f) = ω(t) +
∑
(b,c)

Kw0
e (b)I(w0c, f).

Lemma 1.1.29. Let t = diag(z, z) with z2 = 1 and ϕm a product of the
characteristic function of the congruence group Km and the scalar vol(pm)−1.
For m large enough, we have then

I(w0t, ϕm) =

{
1, if z = 1,

0, otherwise.

Proof. Firstly, we calculate the integral I(w0, ϕ). This integral has the form
(cf. the formula (1.1.2))

I(w0, ϕ) =

∫
F

ϕ

(
w0

(
1 x
0 1

))
ψ(x)dx

Now we take ϕ be a product of the characteristic function of w0Km and
the scalar vol(pm)−1, this integral is equal to

vol(pm)−1

∫
pm
ψ(x)dx.

For m large enough (for example m is larger then the level of ψ), we have
ψ(x) = 1. It implies that ∫

pm
ψ(x)dx = vol(pm).
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In consequence, the first assertion is proved.
Choosing m large enough such that z ̸∈ Km for all z which satisfy z2 = 1

and z ̸= 1. We have then tn1w0tn2 ̸∈ w0Km for all (n1, n2) ∈ Nr(F )×Nr(F ).
The second assertion follows.

Proposition 1.1.30. The germ Kw0
e is given, for |z| small enough, by

K

(
z 0
0 −z−1

)
=

∣∣∣∣ 12z
∣∣∣∣1/2 ψ(2

z

)
γ

(
2

z
, ψ

)
.

Proof. Let f = ϕm as in Lemma 1.1.29. The relation defining germ Kw0
e

reads
I(t, ϕm) = ωϕ(m)(t) +

∑
(b,c)

Kw0
e (b)I(w0c, ϕm). (1.1.3)

Since ωϕm is of compact support, for |z| small enough we have

ωϕm

(
z 0
0 −z−1

)
= 0.

Substituting t =

(
z 0
0 −z−1

)
with |z| small enough to (1.1.3) and using

Lemma 1.1.29, we have then

Kw0
e

(
z 0
0 −z−1

)
= I

((
z 0
0 −z−1

)
, ϕm

)
=

∫
F×F

ϕm

(
z zx1
zx2 −z−1 + x1x2z

)
ψ(x1 + x2)dx1dx2.

After changing x1 to x1/z and x2 to x2/z, the germ Kw0
e (diag(z,−z−1))

is equal to

|z|−2

∫
F×F

ϕm

(
z x1
x2 −z−1 + z−1x1x2

)
ψ

(
x1 + x2

z

)
dx1dx2.

The integral is 0 unless z ∈ pm. We can choose |z| small enough such that
z ∈ pm. We see that then the integral is equal to

|z|−2vol(pm)−1

∫
ψ

(
x1 + x2

z

)
dx1dx2

integrated over the domain defined by:

xi ≡ 1 mod pm for i = 1, 2,
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x1x2 ≡ 1 mod zpm.

We change variables and set
x2 = tx−1

1 ,

where now the domain of integration is defined by:

x1 ≡ 1 mod pm, t ≡ 1 mod zpm.

(Since z ∈ pm, the two conditions on x1 and t guarantee that t/x1 ≡ 1
mod pm.) After integrating over t the integral becomes

|z|−1

∫
x1≡1 mod pm

ψ

(
ϕ

z

)
dx1,

where the phase function ϕ is given by:

ϕ = x1 +
1

x1
.

We set x1 = 1 + v with v ∈ pm. The phase function takes the form

ϕ = 1 + v +
1

1 + v
.

The Taylor expansion of this function at the origin has the form

2 + v2 + higher degree terms.

By the principle of the stationary phase there is a compact neighborhood Ω
of 0 in F such that, for |z| small enough, the integral is equal to

|z|−1

∫
Ω

ψ

(
2 + v2

z

)
dv =

∣∣∣∣ 12z
∣∣∣∣1/2 ψ(2

z

)
γ

(
2

z
, ψ

)
.

1.1.6 Kirillov models and Whittaker models

We fix a non-trivial character ψ of the additive group F . Let (π, V ) is

a representation of G(F ). Let N = {n =

(
1 x
0 1

)
|x ∈ F}, ψ defines a

character ψN of N by

ψN(n) = ψ

(
1 x
0 1

)
= ψ(x).
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Definition 1.1.31. � A Kirillov model for (π, V ) is a sub-C-vector
space K(π, ψ) of the space of C-valued on F×, and an action πk of
G(F ) on K(π, ψ) with the property that

πk

(
a b
0 1

)
(f)(x) = ψ(bx)f(ax) ∀a, x ∈ F×, b ∈ F, f ∈ K(π, ψ),

such that the representation V and K(π, ψ) are isomorphic.

� A Whittaker model for (π, V ) is a sub-C-vector space W(π, ψ) of the
space of locally constant C-valued functions on G satisfying

f

((
1 x
0 1

)
g

)
= ψ(x)f(g), ∀g ∈ G, x ∈ F,

and an action of G(F ) on W(π, ψ) defined by a right translation, i.e.
(g.f)(g′) = f(g′g) such that the representation V and W(π, ψ) are
isomorphic.

Theorem 1.1.32 ([9, Theorem 1, p. 1.3]). If (π, V ) is an irreducible ad-
missible infinite-dimesional representation of G(F ) then (π, V ) has a unique
Kirillov model K(π, ψ). Furthermore, every κ ∈ K(π, ψ) is a locally con-
stant function on F× and vanishes outside some compact subset of F . The
space C∞

c (F×) of locally constant functions on F× with compact support is a
subspace of finite codimension of K(π, ψ).

Proof. Assume that (π, V ) has a Kirillov model K(π, ψ). Then the subspace
K0 of K(π, ψ) consisting of f such that f(1) = 0 has codimension 1.

Corollary 1.1.33. If (π, V ) is an irreducible admissible infinite-dimesional
representation of G(F ) then (π, V ) has a unique Whittaker model.

Proof. Let K(π, ψ) be a Kirillov model for (π, V ). For every κ ∈ K(π, ψ), we
consider the function

Wκ(g) = πk(g)(κ)(e).

The vector space generated by {Wκ|κ ∈ K(π, ψ)} is a Whittaker model for
(π, V ).

LetW(π, ψ) be a Whittaker model for (π, V ). The vector space generated
by {κW (x) = W (diag(x, 1))|W ∈ W(π, ψ)} is a Kirillov model for (π, V ).

Using the existence and uniqueness of the Kirillov model for irreducible
admissible infinite-dimensional representation (cf. Theorem 1.1.32), we ob-
tain then a proof for this corollary.
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Definition 1.1.34. Let (π, V ) be a representation of G. A ψ Whittaker
functional on (π, V ) is non-zero linear form L : V → C such that

L(π(n)v) = ψ(n)L(v)

for all n ∈ N and v ∈ V .

We have a relation between Whittaker functional and Whittaker model as
follows: given a Whittaker model W(π, ψ) define L by L(v) = Wv(e) where
e is the neutral element of G, Wv is the image of v via the G-isomorphism
V → W(π, ψ), and given a Whittaker functional L define W(π, ψ) as the
space of Wv : G → C defined by g 7→ L(π(g)v) when v runs through V .
In other word, we have that to give a Whittaker functional (up to scalar
multiples) is to give a Whittaker model and vice-versa.

Let w =

(
0 −1
1 0

)
and n(t) =

(
1 t
0 1

)
. Now let π be an irreducible

admissible infinite-dimensional representation of G(F ) and K(π, ψ) its cor-
responding Kirillov model. Since K(π, ψ) is irreducible, it is generated by
πk(g)C

∞
c (F×). Moreover, C∞

c (F×) is stable under the action of Borel sub-
group of G, and πk (n(t)w)κ − πk(w)κ belongs to C∞

c (F×) for every κ ∈
K(π, ψ) and every t ∈ F . Using Bruhat’s decomposition, we obtain then

K(π, ψ) = C∞
c (F×) + πk(w)C

∞
c (F×).

Theorem 1.1.35 ([9, Theorem 2, p. 1.18]). Let (π, V ) be an infinite-
dimensional irreducible admissible of G(F ). Then the contragredient π̃ of π is
equivalent to χ−1

π ⊗π, where χπ is the central character of π, and the Kirillov
space K(π̃, ψ−1) is the set of function x 7→ χπ(x)

−1κ(x) with κ ∈ K(π, ψ).
Furthermore the invariant duality between K(π, ψ) and K(π̃, ψ−1) is given by
the bilinear form ⟨κ, η⟩ such that

⟨κ, η⟩ =
∫
κ1(x)η(−x)d×x+

∫
κ2(x)π̃k(w)η(−x)d×x

if κ = κ1 + πk(w)κ2 with κ1, κ2 ∈ C∞
c (F×) and η ∈ K(π̃, ψ−1).

1.1.7 Bessel distributions and Bessel functions

Let (π, V ) be an infinite-dimensional irreducible admissible representation of
G. Due to Corollary 1.1.33, there exists an unique (up to scalar multiples)

ψ Whittaker functional L : V → C. Let L̃ be a ψ−1 Whittaker functional on
the representation contragredient (π̃, Ṽ ) to (π, V ). It follows from Theorem

1.1.35, we normalize L̃ so that if v ∈ V and ṽ ∈ Ṽ are such that either
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x 7→ L(π (diag(x, 1)) v) or x 7→ L̃(π̃ (diag(x, 1)) ṽ) has compact support in
F× then

ṽ(v) = ⟨v, ṽ⟩ =
∫
F×

L(π (diag(x, 1)) v)L̃(π̃ (diag(x, 1)) ṽ)d×x.

(Note that L(π (diag(x, 1)) v) ∈ K(π, ψ) and L̃(π̃ (diag(x, 1)) ṽ) ∈ K(π̃, ψ−1)).

For f ∈ C∞
c (G) we define the linear functional ρ(f)L̃ : Ṽ → C by

(ρ(f)L̃)(ṽ) =

∫
G

f(g)L̃(π̃(g−1)ṽ)dg, ṽ ∈ Ṽ . (1.1.4)

It clear that ρ(f)L̃ ∈ ˜̃V (i.e a smooth linear functional). Using the canonical

isomorphism ˜̃π ≃ π (cf. Proposition 1.1.2), we can identify ρ(f)L̃ with a
vector vf,L̃ ∈ V .

Definition 1.1.36 (Bessel distribution). Let (π, V ) be an infinite-dimensional
irreducible admissible representation of G. The (Gelfand-Kazhdan) Bessel
distribution of π is the distribution Jπ : C∞

c (G) → C defined by

Jπ(f) = L(vf,L̃).

Our main theorem in this section is the following:

Theorem 1.1.37. There exists a locally integrable function jπ on G such
that

Jπ(f) =

∫
G

jπ(g)f(g)dg, f ∈ C∞
c (G).

The strategy to prove this Theorem is that:

� We firstly define the function jπ via the uniqueness of Whittaker model
for π on the open Bruhat cell. (We follow the work of Soudry in [17]).
This function is the Bessel function of π.

� We then prove that jπ is a locally integrable function and Jπ(f) =
J̃π(f) :=

∫
G
jπ(g)f(g)dg for all f ∈ C∞

c (G). (We follow the work of
Baruch in [1]).

Let Nm be the subgroup of N defined by

Nm :=

{(
1 x
0 1

)
||x| ≤ qm

}
.
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Let W(π, ψ) be the Whittaker model of (π, V ). LetW ∈ W(π, ψ). We define
Wm : G→ C by

Wm(g) :=

∫
Nm

W (gn)ψ−1(n)dn. (1.1.5)

Since W smooth and Nm compact, this function is well defined. We can
easily verify that

Wm(ng) = ψ(n)Wm(g), ∀n ∈ N, g ∈ G.

Lemma 1.1.38. We have Wm(diag(y, 1)) ∈ C∞
c (F×) ⊂ K(π, ψ).

Proof. It easy to see that Wm is a smooth function.

We have

W

((
y 0
0 1

)(
1 x
0 1

))
= W

((
1 xy
0 1

)(
y 0
0 1

))
= ψ(xy)W

(
y 0
0 1

)
.

It implies that

Wm(diag(y, 1)) = W (diag(y, 1)).

∫
ϖ−mO

ψ(xy)dx.

Since ∫
ϖ−mO

ψ(xy)dx =

{
qm if |y| ≤ q−m−c,

0 otherwise,

where c is the conductor of ψ, Wm has a compact support.

As a consequence of Lemma 1.1.38, we have Wm ∈ W(π, ψ).

Lemma 1.1.39. If g ∈ Bw0B then there existsm0 = m0,g such thatWm(g) =
Wm0(g) for all m ≥ m0.

Proof. We note that for any W ∈ W(π, ψ), W (diag(y, 1)) ∈ K(π, ψ) =
C∞
c (F×) + πk(w)C

∞
c (F×). Assume first that W (diag(y, 1)) ∈ C∞

c (F×), then

for a fixed g = ( a bc d ) ∈ Bw0B (i.e c ̸= 0), the function W

(
g

(
1 z
0 1

))
has a

compact support in z. Indeed, let |z| be so large that

π

(
1 0

−(z + d
c
)−1 1

)
W = W
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then

W

((
a b
c d

)(
1 z
0 1

))
= W

((
a b
c d

)(
1 z
0 1

)(
1 0

−(z + d
c
)−1 1

))
= W

(
det(g)
cz+d

az + b

0 cz + d

)
= χπ(cz + d)ψ

(
az + b

cz + d

)
W

(
det(g)
(cz+d)2

0

0 1

)
.

By our assumption, there exist m0 (depending on g) such that

W

(
det(g)
(cz+d)2

0

0 1

)
= 0

if |z| ≥ qm0 . It implies that Wm(g) = Wm0(g) for all m ≥ m0.

Now let W be any function in W(π, ψ). Fix an integer m1 > 0. Let
m ≥ m1, and g ∈ Bw0B, we have

Wm(g) =

∫
Nm

Wm1(gn)ψ
−1(n)dn.

Using Lemma 1.1.38 and above argument, we obtain then a proof for this
Lemma.

For g ∈ Bw0B, we define Lg(W ) = limm→∞Wm(g). Due to Lemma
1.1.39, this limit converges. For each v ∈ V , assume that Wv is the image
of v via the isomorphism V → W(π, ψ). We abuse the notation of Lg to
define a function from V to C: Lg(v) := Lg(Wv). It is easily to check that
Lg is a Whittaker functional on (π, V ). From the uniqueness of Whittaker
functional, there exists a function jπ : Bw0B → C independent of v, such
that

Lg(v) = jπ(g)Wv(e), g ∈ Bw0B, v ∈ V.

Lemma 1.1.40. Assume that g = n1zdiag(x, 1)w0n2 ∈ Bw0B with n1, n2 ∈
N , z ∈ Z(G) and x ∈ F×. We have then

jπ(g) = ψ(n1)ψ(n2)χπ(z)jπ(diag(x, 1)w0).
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Proof. By definition, we have

Lg(v) = lim
m→∞

∫
Nm

Wv(gn)ψ
−1(n)dn

= lim
m→∞

∫
Nm

Wv(n1zdiag(x, 1)w0n2n)ψ
−1(n)dn

= lim
m→∞

∫
Nm

ψ(n2)Wv(n1zdiag(x, 1)w0n2n)ψ
−1(n2n)dn

= lim
m→∞

∫
Nm

ψ(n2)Wv(n1zdiag(x, 1)w0n)ψ
−1(n)dn (changing variable)

= lim
m→∞

∫
Nm

ψ(n2)ψ(n1)Wv(diag(x, 1)w0nz)ψ
−1(n)dn

= lim
m→∞

∫
Nm

ψ(n2)ψ(n1)Wπ(z)(v)(diag(x, 1)w0n)ψ
−1(n)dn

= lim
m→∞

∫
Nm

ψ(n2)ψ(n1)Wχπ(z).v(diag(x, 1)w0n)ψ
−1(n)dn

= lim
m→∞

∫
Nm

ψ(n1)ψ(n2)χπ(z)Wv(diag(x, 1)w0n)ψ
−1(n)dn

= ψ(n1)ψ(n2)χπ(z)Ldiag(x,1)w0(v)

= ψ(n1)ψ(n2)χπ(z)jπ(diag(x, 1)w0)Wv(e).

The last identity implies that jπ(g) = ψ(n1)ψ(n2)χπ(z)jπ(diag(x, 1)w0).

Lemma 1.1.41. For |x| large enough, we have then

jπ (diag(x, 1)w0) =

∫
F×

I (diag(z, xz), 1w0K0)χπ(z)
−1d×z.

(Recall that I(wt, f) is the orbital integral defined in Section 1.1.5.)

Proof. Let n0 be an arbitrary non-negative integer. TakeW = W0 inW(π, ψ)
such that the function W0(diag(x, 1)) is the characteristic function of 1 +
ϖn0O.

Since W0 is smooth, there exists m such that if |z| ≥ qm then

π

(
1 0

−z−1 1

)
(W0) = W0,
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and then

W0

((
0 x
1 0

)(
1 z
0 1

))
= W0

((
0 x
1 0

)(
1 z
0 1

)(
1 0

−z−1 1

))
= W0

(−x
z

x
0 y

)
= W0

(
z

(
1 x

z

0 1

)(−x
z2

0
0 1

))
= χπ(z)ψ

(x
z

)
W0

(−x
z2

0
0 1

)
.

It implies that

Ldiag(x,1)w0(W0) =

∫
|z|≤qm

W0

(
diag(x, 1)w0

(
1 z
0 1

))
ψ−1(z)dz

+

∫
|z|>qm

χπ(z)ψ
(x
z
− z
)
W0

(−x
z2

0
0 1

)
dz

Let Cπ,n0 be such that

W0

(
diag(x, 1)w0

(
1 z
0 1

))
= 0

for all |z| ≤ qm and all |x| ≥ Cπ,n0 and using W0(e) = 1 we obtain

jπ(diag(x, 1)w0) = Ldiag(x,1)w0(W0) =

∫
xz−2+1∈ϖn0O

χπ(z)ψ
(x
z
− z
)
dz

(1.1.6)
for all |x| ≥ Cπ,n0 .

On the other hand,

I(diag(z, zx), 1w0Kn0
) =

∫
1w0Kn0

(
z zx2
zx1 zx1x2 + xz

)
ψ(x1 + x2)dx1dx2.

This is 0 unless z ∈ ϖn0O = pn0 . We change x1 to x1/z and x2 to x2/z. We
obtain then

I(diag(z, xz), 1w0Kn0
) = |z|−2

∫
ψ

(
x1 + x2

z

)
dx1dx2,

integrated over the domain defined by:

xi ≡ 1 mod pn0 for i = 1, 2,

x1x2 ≡ −xz2 mod zpn0 .
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This domain is empty unless −xz2 ≡ 1 mod pn0 . We change variables and
set

x2 = tx−1
1 ,

where now the domain of integration is defined by:

x1 ≡ 1 mod pn0 , t ≡ −xz2 mod zpn0 .

Choose n0 large enough such that ψ(u) = 1 for all u ∈ pn0 , after integrating
over t the integral becomes

|z|−2vol(pn0)

∫
x1≡1 mod pn0

ψ

(
ϕ

z

)
dx1,

where the phase function ϕ is given by:

ϕ = x1 +
−xz2

x1
.

We set x1 = 1 + v with v ∈ pn0 . The phase function takes the form

ϕ = 1 + v +
−xz2

1 + v
.

The Taylor expansion of this function at the origin has the form

(1− xz2) + (1 + xz2)v − (xz2)v2 + higher degree terms.

By the principle of the stationary phase there is a compact neighborhood Ω
of 0 in F such that, for |z| small enough, the integral is equal to

|z|−1

∫
Ω

ψ

(
2 + v2

z

)
dv =

∣∣∣∣ 12z
∣∣∣∣1/2 ψ(2

z

)
γ

(
2

z
, ψ

)
.

We note that for |x| > q
n0
2 , the condition −xz2 ≡ 1 mod pn0 implies that

z ∈ pn0 . Hence∫
F×

I(diag(z, xz), 1w0K0)χπ(z)
−1 =

∫
xz2+1∈pn0

(1.1.7)

Lemma 1.1.42. Let W ∈ W(π, ψ) be such that the function W (diag(x, 1))
belongs to C∞

c (F×). Then

W (g) =

∫
F×

jπ(g.diag(x
−1, 1))W (diag(x, 1))d×x

for all g ∈ Bw0B.
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Proof. We put

ϕW,g(z) = W

(
g

(
1 z
0 1

))
then

ϕW,g
∧

(1) =

∫
F

ϕW,g(z)ψ
−1(z)dz = Lg(W ) = jπ(g)W (e).

We have

ϕW,g
∧

(y) =

∫
F

ϕW (z)ψ−1(yz)dz

=

∫
F

|y|−1ϕW,g(y
−1z)ψ−1(z)dz (changing variable)

=

∫
F

|y|−1W

(
g

(
1 y−1z
0 1

))
ψ−1(z)dz

=

∫
F

|y|−1W

(
g

(
y−1 0
0 1

)(
1 z
0 1

)(
y 0
0 1

))
ψ−1(z)dz

= |y|−1

∫
F

ϕ
π
(
y 0
0 1

)
(W ),g

(
y−1 0
0 1

)(z)ψ−1(z)dz

= |y|−1ϕ
π
(
y 0
0 1

)
(W ),g

(
y−1 0
0 1

)∧(1)

= |y|−1jπ(g.diag(y
−1, 1)).π

(
y 0
0 1

)
(W )(e)

= |y|−1jπ(g.diag(y
−1, 1))W (diag(y, 1))

and hence

W (g) = ϕW,g(0) = ϕW,g
∧∧

(0) =

∫
F

ϕW,g
∧

(y)dy

=

∫
F

|y|−1jπ(g.diag(y
−1, 1))W (diag(y, 1))dy

=

∫
F×

jπ(g.diag(y
−1, 1))W (diag(y, 1))d×y.

Lemma 1.1.43. Let W̃ ∈ W(π̃, ψ−1) be such that the function W̃ (diag(x, 1))
belongs to C∞

c (F×). Then

W̃ (g−1) =

∫
F×

jπ (diag(x, 1)g) W̃ (diag(x, 1))d×x

for all g ∈ Bw0B.
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Proof. We define W by
W (g) = W̃ (w0g

∗w0)

where g∗ = (gt)−1. Since W̃ ∈ W(π̃, ψ−1), W is a locally constant C-valued
function on G and

W

((
1 x
0 1

)
g

)
= W̃

(
w0

(
gt
(
1 0
x 1

))−1

w0

)

= W̃

((
1 x
0 1

)−1

w0(g
t)−1w0

)
= ψ(x)W̃ (w0(g

t)−1w0) = ψ(x)W (g).

Moreover,

W (diag(x, 1)) = W̃ (w0diag(x, 1)
∗w0) = W̃ (diag(1, x−1))

= W̃ (xdiag(1, x−1)) = χπ̃(x
−1)W̃ (diag(x, 1))

= χπ(x)W̃ (diag(x, 1))

belongs to C∞
c (F×) ⊂ K(π, ψ). (Due to Theorem 1.1.35, we have χπ̃(x) =

χπ(x)
−1.) HenceW satisfies the condition of Lemma 1.1.42. By using Lemma

1.1.42 for W and g = diag(y, 1)w0, we have then

W̃ (g−1) = W̃ (w0diag(y, 1)
−1) =W (w0(g

−1)∗w0) =W (diag(y, 1)w0)

=

∫
F×

jπ(diag(y, 1)w0diag(x
−1, 1))W (diag(x, 1))d×x

=

∫
F×

jπ(diag(y, 1)w0diag(x
−1, 1))χπ(x)W̃ (diag(x, 1))d×x

=

∫
F×

jπ(xdiag(y, 1)w0diag(x
−1, 1))W̃ (diag(x, 1))d×x

=

∫
F×

jπ(diag(x, 1)diag(y, 1)w0)W̃ (diag(x, 1))d×x (1.1.8)

Now for g = n1zdiag(y, 1)w0n2 we have

W̃ (g−1) = W̃ (n−1
2 z−1w0diag(y, 1)

−1n−1
1 )

= ψ−1(n−1
2 )χπ̃(z

−1)π̃(n−1
1 )W̃ (w0diag(y, 1)

−1)

=

Corollary 1.1.44 (cf. [1, Corollary 4.2]). There exist constants C = Cπ and
D = Dπ such that for |x| > C,

|jπ(diag(x, 1)w0)| ≤ D|χπ(x)|1/2|x|1/4.
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Proof. We denote by ζ a square root of −1
x
. Another square root of −1

x
is

then −ζ. Using germ expansion (cf. Theorem 1.1.28), for any f ∈ C∞
c (G)

and z ∈ F× we obtain then

I(diag(z, xz), f) = ωf (diag(z, xz)) +Kw0
e

(
ζ 0
0 −ζ−1

)
I

(
z

ζ
w0, f

)
+Kw0

e

(
−ζ 0
0 ζ−1

)
I

(
−z
ζ
w0, f

)
. (1.1.9)

Proposition 1.1.45 (cf. [1, Proposition 4.3]). Let f ∈ C∞
c (G).

(a) There exists a positive constant M = Mf such that for |x| < M we
have ∫

|f (n1w0diag(x, 1)zn2)χπ(z)| d×z = 0.

(b) There exist positive constants C = Cf and D = Df such that for
|x| > C we have∫

|f (n1w0diag(x, 1)zn2)χπ(z)| d×z ≤ D|χπ(x)|1/2|x|1/2.

Proof. We let

f̃(g) :=

∫
NZ

|f(nzg)χπ(z)|dnd×z.

Since f is smooth and compactly supportted, f̃ is well-defined. Moreover,
f̃ is smooth on the right (i.e there exists a compact open subgroup K of G
such that f̃(gk) = f̃(g) for all g ∈ G), compactly supported modulo NZ

(a)

Theorem 1.1.46. The function jπ is locally integrable.

Proof of Theorem 1.1.37. We define the distribution on C∞
c (G) to be

J̃π(f) :=

∫
G

jπ(g)f(g), f ∈ C∞
c (G).

By Theorem 1.1.46, J̃π is well defined. We shall prove that J̃π = Jπ.
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Let f ∈ C∞
c (G). Since (C∞

c (G), ℓ) smooth, there exist an integer m such

that ℓ(x 0
0 1 )

f = f for all x ∈ Km. Let ṽ ∈ Ṽ be such that

L̃(π̃(diag(x, 1))ṽ) = qm1Km(x) ∈ C∞
c (F×)

for all x ∈ F×. We have

J̃π(f) =

∫
F×

J̃π(ℓ(x 0
0 1 )

f)L̃(π̃(diag(x, 1))ṽ)d×x

=

∫
F×

(∫
G

jπ(g)f
(
diag(x−1, 1)g

)
dg

)
L̃(π̃(diag(x, 1))ṽ)d×x

=

∫
F×

(∫
G

jπ (diag(x, 1)g) f (g) dg

)
L̃(π̃(diag(x, 1))ṽ)d×x

=

∫
G

f(g)

(∫
F×

jπ (diag(x, 1)g) L̃(π̃(diag(x, 1))ṽ)d
×x

)
dg

=

∫
G

f(g)L̃(π̃(g−1)ṽ)dg ( cf. Lemma 1.1.43(1))

= (ρ(f)L̃)(ṽ) ( cf. (1.1.4)). (1.1.10)

In other hand, we have:

Jπ(f) =

∫
F×

Jπ(ℓ(x 0
0 1 )

f)L̃(π̃(diag(x, 1))ṽ)d×x

=

∫
F×

L(π(diag(x, 1))vf,L̃)L̃(π̃(diag(x, 1))ṽ)d
×x (by definition of Jπ)

= ⟨vf,L̃, ṽ⟩ (By the normalization of L̃)

= (ρ(f)L̃)(ṽ). (1.1.11)

Combining (1.1.10) and (1.1.9), we obtain then

Jπ(f) = J̃π(f).

The rest of this section is devoted to calculate the Bessel function jπ.
Bessel functions for the principal series of G. (We will follow the

work of Baruch and Mao in [2].) Now let π be the infinite dimensional
irreducible component of IndGBχ where χ = χ1 ⊗ χ2 and χ1, χ2 are two mul-
tiplicative quasi-characters on F×.

For a smooth representation (π, V ) of N , we denote by Vψ(N) the sub-
space generated by all vectors in V of the form

π(n)(v)− ψ(n)v
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where n ∈ N and v ∈ V . We set Vψ,N := V/Vψ(N). This space can be viewed
as Jacquet space of the twisted N -representation ψ−1⊗V . The group N acts
on Vψ,N by ψ : π(n)(v) = ψ(n)v.

Lemma 1.1.47. We have

Vψ(N) =

{
v ∈ V |

∫
Nm

π(n)(v)ψ−1(n)dn = 0 for some m

}
.

Proof. Let em be vol(Nm)
−1 times the characteristic function of Nm. By

definition we have∫
Nm

π(n)(v)ψ−1(n)dn =

∫
N

em(n)π(n)(v)ψ
−1(n)dn.

Let v ∈ V , n ∈ N . There exist some m ∈ Z such that n ∈ Nm. Because
Nm is a group and n ∈ Nm, we have em(n

′n−1) = em(n
′) for all n′ ∈ N , so∫

Nm

π(n1)(π(n)(v))ψ
−1(n1)dn1 =

∫
N

em(n1)π(n1)(π(n)(v))ψ
−1(n1)dn1

=

∫
N

em(n2n
−1)π(n2)(v)ψ

−1(n2n
−1)dn2

= ψ(n)

∫
Nm

π(n2)(v)ψ
−1(n2)dn2.

This implies
∫
Nm

π(n1)(π(n)(v)− ψ(n)v)ψ−1(n1)dn1 = 0. Thus

Vψ(N) ⊂
{
v ∈ V |

∫
Nm

π(n)(v)ψ−1(n)dn = 0 for some m

}
.

Suppose v ∈ V and
∫
Nm

π(n)(v)ψ−1(n)dn = 0 for some m. Let Nm,v =
{n ∈ Nm|π(n)v = v}∩ker(ψ). Then Nm,v is an open subgroup of the compact
group Nm. Thus Nm/Nm,v is finite and∫

Nm

π(n)(v)ψ−1(n)dn = |Nm/Nm,v|−1
∑

k∈Nm/Nm,v

π(k)(v)ψ−1(k).

This implies

v = v −
∫
Nm

π(n)(v)ψ−1(n)dn

= −|Nm/Nm,v|−1
∑

k∈Nm/Nm,v

ψ−1(k)(π(k)(v)− ψ(k)v).
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Proposition 1.1.48. The functor V → Vψ,N (viewing as a functor in the
category of N-modules) is exact.

Corollary 1.1.49. Let f ∈ IndGBχ. We can then always write f as

f = f ′ + f ′′,

where f ′ is in Vψ(N) and f ′′ has support in Bw0N .

Proof. Let V be subspace of IndGBχ contains all the functions have support
in Bw0N . We have then the following exact sequence (of N -modules):

0 → V → IndGBχ→ C → 0.

Note that Cψ,N = 0. Using Proposition 1.1.48, we obtain then Vψ,N ≃
(IndGBχ)ψ,N .

Corollary 1.1.50. Let f ∈ IndGBχ. Then the integral

Lm :=

∫
Nm

f(w0n)ψ
−1(n)dn

converges when m tends to ∞. Moreover L = limm→∞ Lm is a Whittaker
functional on IndGBχ.

Proof. Denotes

Im :=

∫
Nm

f(w0n)ψ
−1(n)dn.

We shall prove that there exists m0 such that Im = Im0 for all m ≥ m0.
Using Corollary 1.1.49, the function f can be written as

f = f ′ + f ′′

where f ′ ∈ (IndGBχ)ψ(N) and f ′′ has support in Bw0N .
Due to Proposition 1.1.48, there exist m1 ∈ Z such that∫

Nm

f ′(w0n)ψ
−1(n)dn = 0

for all m ≥ m1.
Furthermore, the function n 7→ f ′′(w0n) has a compact support in N .

Indeed, let |z| be so large that

f ′′
(
1 0
1
z

1

)
= f ′′

(
1 0
0 1

)
= 0
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then

f ′′
(
w0

(
1 z
0 1

))
= f ′′

((−1
z

1
0 z

)(
1 0
1
z

1

))
= χ1

(
−1

z

)
χ2(z)

∣∣∣∣−1

z2

∣∣∣∣ 12 f ′′
(
1 0
1
z

1

)
= 0.

It implies that there exists m2 ∈ Z such that∫
Nm

f ′′(w0n)ψ
−1(n)dn =

∫
Nm

f ′′(w0n)ψ
−1(n)dn

for all m ≥ m2.
Take m0 = max{m1,m2}, we obtain then our claim.
The second assertion of this corollary is obvious.

We can now describe the Whittaker model associated to IndGBχ. Let
f(g) ∈ IndGBχ. We define

Wf (g) = L(rg(f)) = lim
m→∞

∫
Nm

f(w0ng)ψ
−1(n)dn.

Since

w0

(
1 z
0 1

)
diag(a, 1)w0 =

(
−a
z

1
0 z

)
w0

(
1 a

z

0 1

)
,

we have

Wfm(diag(a, 1)w0) = lim
n→∞

∫ |z|≤qn

|az |≤qm
χ1

(
−a
z

)
χ2(z)

∣∣∣ a
z2

∣∣∣ 12 ψ (a
z
− z
)
dz.

Theorem 1.1.51. Let π be the infinite dimensional irreducible component
of IndGBχ. We have

jπ(g) = ψ(n1n2)χ1(z)χ2(z)

∫ +,−
χ1

(
−a
x

)
χ2(x)

∣∣∣ a
x2

∣∣∣ 12 ψ (a
x
− x
)
dx

if g = n1zdiag(a, 1)w0n2 with n1, n2 ∈ N , z ∈ Z(G) and jπ(g) = 0 otherwise.
Here ∫ +,−

ϕ(x)dx = lim
m→∞

∫
q−m≤|x|≤qm

ϕ(x)dx,

if the limit exists.
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Bessel functions for cuspidal representations of G. (We will follow
the work of Baruch and Snitz in [4]). We have known that (for p is odd)
all cuspidal representations are given by the construction of Jacquet and
Langlands (cf. Section 1.1.4). For a convenience, we recall their construction.
Let E be a quadratic extension of the p-adic field F . Let β be a quasi-
character of E× which does not factor through the norm, i.e there does not
exist a quasi-character α of F× such that β(z) = α(N(z)) for all z ∈ E×. Let
τ be the non-trivial quadratic character defined on F×/N(E×) and extended
to F×. Let C∞

c (E) be the Schwartz space of locally constant and compactly
supported functions on E. Let Sβ(E) be the subspace of functions f ∈
C∞
c (E) such that

f(xz) = β(z−1)f(x) (1.1.12)

for all z ∈ E1 := {z ∈ E|N(z) = 1}. Let G+ be the subgroup of matrices
in G whose determinant is a norm. Let a ∈ F be a norm. Then there exists
za ∈ E such that N(za) = a. The group G+ acts on Sβ(E) as follows:

(n(x)f)(y) := ψ(xy2)f(y),

(diag(a, 1)f)(y) := |za|1/2E β(za)f(yza), (1.1.13)

(diag(b, b−1)f)(y) := τ(b)|b|1/2E f(by),

and
(wf)(y) := γ(ψ,E)f̂(y)

where γ(ψ,E) is the Weil constant defined in Lemma 1.1.25. We denote by
rβ the cuspidal representation attached to β of G via the construction of
Jacquet and Langlands. Then rβ is the representation of G induced from the
above representation of G+. In other word, the space of rβ is given by

Vrβ := {f : G→ Sβ(E)|f(hx) = hf(x), h ∈ G+},

and G acts by right translation: (rβ(g)f)(x) = f(xg).
Before stating our formula for Bessel functions for cuspidal representa-

tions of G, we need to fix some Haar measures. Let dr be a self dual measure
on F with respect to ψ. We let d×r = dr/|r|F be a multiplicative Haar
measure on F×. Let dz be an additive Haar measure on E. Let {ϵ1, . . . , ϵℓ}
be a set of representatives of F×/(F×)2. Then, E× is the disjoint union of
Eϵi (i = 1, . . . , ℓ), where

Eϵi := {z ∈ E|∃rz ∈ K×, N(z) = r2zϵi}.

Note that Eϵi is empty if ϵi is not a norm, and rz is defined up to a sign. If
Eϵi is non-empty, we define a measure on Eϵi to be the restriction of dz to
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the open sets Eϵi . Assume that ϵi is a norm and choose zϵi ∈ E such that
N(zϵi) = ϵi. Then every element z ∈ Eϵi can be written in the form (unique
up to the sign of rz and α) z = zϵirzα with α ∈ E1. We define then a Haar
measure dα on E1 such that

dz = |zϵi |E|rz|
1/2
E drdα.

It is easy to check that this measure does not depend on ϵi.
For x ∈ K, we define Ex := {z ∈ E|N(z) = x}. It is easy to see that Ex

is empty when x is not a norm. If Ex is non-empty, then Ex = zE1, where
z is any element satisfying N(z) = x. We define a measure dxα on Ex by

dxα = |z|1/2E dα. It is clear that this measure does not depend on the choice
of z.

Theorem 1.1.52. Let β be a quasi-character of E× which does not factor
through the norm form E to F . Let rβ be the cuspidal representation of
GL2(F ) attached to β. We have

jrβ(g) = ψ(n1n2)β(z)γ(ψ,E)

∫
Ea

β(α)ψ(tr(α))daα

if g = n1zdiag(a, 1)wn2 with n1, n2 ∈ N , z ∈ Z(G), a is a norm and jπ(g) =
0 otherwise.

Proof. We consider a Whittaker functional L : Vrβ → C defined by L(f) :=
f(I)(1), where I is unit matrix of G and 1 is the unit element of E. The
corresponding Whittaker function is then Wf(g) := L(rβ(g)f). Using the
standard way, we obtain then the Kirillov functions

ϕf(b) := Wf(diag(b, 1)) = L(rβ(diag(b, 1))f). (1.1.14)

It follows from the definition that the mapping f → ϕf is one to one and the
space of all such function ϕf is C

∞
c (F×). Due to Lemma 1.1.42, the Bessel

function jrβ can be calculated by calculating ϕrβ(w)f(b) = L(rβ(diag(b, 1)w)f).
Since {ϵ1, . . . , ϵℓ} is a set of representatives of F×/(F×)2, there exist rb ∈

F× and j ∈ {1, . . . , ℓ} such that b = r2b ϵj. We can write then

diag(b, 1)w = diag(r2b , 1)diag(ϵj, ϵj)wdiag(ϵ
−1
j , 1),

and ϕrβ(w)f(b) becomes

L(rβ(diag(r
2
b , 1)diag(ϵj, ϵj)wdiag(ϵ

−1
j , 1))f).
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Now r2b is the norm of the element rb ∈ F viewed as a vector in E, and
the scalar matrix diag(ϵj, ϵj) acts by the central character. So we get (cf.
(1.1.12))

ϕrβ(w)f(b) = |rb|1/2E β(rb)β(ϵj)f(wdiag(ϵ
−1
j , 1))(rb)

= |rb|1/2E β(rbϵj)γ(ψ,E)f(diag(ϵ
−1
j , 1))
∧

(rb)

= |rb|1/2E β(rbϵj)γ(ψ,E)

∫
E

f(diag(ϵ−1
j , 1))(y)ψ(tr(rby))dy.

Recall that E is the disjoint union of Eϵi (i = 1, . . . , ℓ). Therefore, the
integral over E breaks up into a sum of integrals over the sets Eϵi , i.e,

ϕrβ(w)f(b) =
ℓ∑
i=1

Iϵi(b, f) (1.1.15)

where

Iϵi(b, f) := rb|1/2E β(rbϵj)γ(ψ,E)

∫
Eϵi

f(diag(ϵ−1
j , 1))(y)ψ(tr(rby))dy.

If Eϵi = (is equivalent to that ϵi is not a norm), we set Iϵi(b, f) = 0. Recall
that if Eϵi is non-empty, then every element y ∈ Eϵi can be written in the
form y = zϵiryα with α ∈ E1, ry ∈ F× and zϵi ∈ E such that N(zϵi) = ϵi.
So, Iϵi can be written as a double integral

|rb|1/2E β(rbϵj)γ

∫
F×

∫
E1

f(diag(ϵ−1
j , 1))(zϵiryα)ψ(tr(rbzϵiryα))dα|zϵiry|Ed×ry.

Using relation (1.1.11), Iϵi is then

|rb|
1/2
E β(rbϵj)γ

∫
F×

f(diag(ϵ−1
j , 1))(zϵiry)|zϵiry|E

∫
E1

β(α−1)ψ(tr(rbzϵiryα))dαd
×ry.

Now using equations (1.1.13) and (1.1.12), we have

ϕf(r
2
yϵiϵ

−1
j ) = L(rβ(diag(r

2
yϵiϵ

−1
j ))f) = |ryzϵi |

1/2
E β(ryzϵi)f(diag(ϵ

−1
j , 1))(ryzϵi),

so

Iϵi(b, f) = |rb|1/2E β(rbϵj)γ

∫
F×

ϕf(r
2
yϵiϵ

−1
j )|zϵiry|

1/2
E β(zϵiry)

−1×∫
E1

β(α−1)ψ(tr(rbzϵiryα))dαd
×ry.
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We define

Jϵi(b, ϵiϵ
−1
j r2y) = γ|rbzϵiry|

1/2
E β(rbϵjz

−1
ϵi
r−1
y )

∫
E1

β(α−1)ψ(tr(rbzϵiryα))dα

(1.1.16)
if ϵi is a norm and J(b, ϵiϵ

−1
j r2y) = 0 otherwise. We have then

Iϵi(b, f) =

∫
F×

ϕf(r
2
yϵiϵ

−1
j )J(b, ϵiϵ

−1
j r2y)d

×ry.

We change the variable of integration to x = r2yϵiϵ
−1
j and integrate over the

set ϵiϵ
−1
j (F×)2, and we get

Iϵi(b, f) =

∫
ϵiϵ

−1
j (F×)2

Jϵi(b, x)ϕf(x)d
×x. (1.1.17)

For any x ∈ F×, there exists uniquely i ∈ {1, . . . , ℓ} such that the square
class of bx is ϵi. Recall that b = ϵjr

2
b . So there exist uniquely (up to a sign)

ry ∈ K× such that x = ϵiϵ
−1
j r2y. We define

J(b, x) = Jϵi(b, ϵiϵ
−1
j r2y).

Combining equations (1.1.14), (1.1.16) and definition of J(b, x), we get

ϕrβ(w)f(b) =

∫
F×

J(b, x)ϕf(x)d
×x. (1.1.18)

Let z = rbryzϵiα. As α varies over E1, z varies over Ebx. Recall that

dz = |rbryzϵi |
1/2
E dα,

so we can write J as (cf. equation (1.1.15))

J(b, x) = γβ(b)

∫
Ebx

β(z−1)ψ(tr(z))dz = γβ(x−1)

∫
Ebx

β(bxz−1)ψ(tr(z))dz

Since N(z) = zz = bx, we have bxz−1 = zzz−1 = z. Moreover tr(z) = tr(z),
so

J(b, x) = γβ(x−1)

∫
Ebx

β(z)ψ(tr(z))dz.

Combine above equation with (1.1.17), we obtain then

ϕrβ(w)f(b) =

∫
F×

ϕf(x)β(x
−1)

[
γ

∫
Ebx

β(z)ψ(tr(z))dz

]
d×x.

It implies that jrβ(w) =
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1.1.8 Orbital integrals

We denote by Grs the set of semi-simple regular elements of G, i.e the set of
matrix has a separable characteristic polynomial. Let T ′ be a maximal torus
of G , we shall denote by T ′

G−reg = T ′−Z the subset of regular elements. (T ′

can be a centralizer of an elliptic element which has an irreducible (in F [X])
characteristic polynomial or the “standard” split torus T .)

For g ∈ G we denote D(g) = 4− det(g)−1tr(g)2.

Proposition 1.1.53 (Orbital integrals). Let γ ∈ G and f ∈ C∞
c (G). Then∫

Gγ\G f(g
−1γg)dġ where Gγ is the centralizer of γ ∈ G converges absolutely.

The integral

Oγ(f) :=

∫
Gγ\G

f(g−1γg)dġ

is called orbital integral of f at γ.

Proof. If γ is central, then Gγ = G. So the statement is trivial.
Now we look at the case when γ is a hyperbolic (or split) semi-simple

regular element (which is conjugated to diag(x, y) ∈ T for x ̸= y). We
can assume that γ ∈ T , so that Gγ = T . Using Iwasawa decompostion
G = T ×N ×K0 we have

Oγ(f) =

∫
N×K0

f(k−1n−1γnk)dndk.

Denote γ = diag(x, y) and n = ( 1 u
0 1 ). Then n−1γn = γ

(
1 (1−y/x)u
0 1

)
and

we have

Oγ(f) = |1− y/x|−1

∫
K0×N

f(k−1γnk)dkdn

= |D(γ)|−1/2δ
1/2
B (γ)

∫
K0×N

f(k−1γnk)dkdn. (1.1.19)

Since f ∈ C∞
c (G), there exists K ⊂ K0 an open compact subgroup of G such

that f is bi-K-invariant.

Theorem 1.1.54 (Germ expansion). Let γ be an elliptic element in G which
is sufficiently close to e. Write E for the splitting field of the quadratic torus
T ′-determined uniquely up to conjugation in G by γ. Then

Oγ(f) = − 2

q − 1
vol(K0)Oe(f) + κT ′c(T ′)|D(γ)|−1/2O( 1 1

0 1 )
(f),



42 CHAPTER 1. LOCAL SETTING FOR TRACE FORMULAS

where κT ′ =

{
2 if E/F is ramified
q+1
q

if E/F is unramified,
and c(T ′) = c(E) is the square

root of the absolute value of a generator of the discriminant of the splitting
field E over F .

Proof. First we need to describe γ A local field F has the form Fq((ϖ)),
power series in the variable ϖ over the field Fq where q is a power of an odd
prime number p. Its ring of integers O = Fq[[ϖ]], has the maximal ideal ϖO,
and group of units O× = O −ϖO.

The ramified quadratic separable extension of F are E = F (r) where r
is a root of x2

Corollary 1.1.55. Let C be a compact subset of G/Z. Then there is c =
c(C) > 0 such that

Oγ(1C) ≤ c|D(γ)|−1/2c(E)

for every γ ∈ Gell
rs where 1C is the characteristic function of C in G/Z and

E = F (γ).

Proof. Using Germ expansion (cf. Theorem 1.1.54) for f = 1C and taking

c = 2
∣∣∣O( 1 1

0 1 )
(1C)

∣∣∣
we obtain then the Corollary.

Theorem 1.1.56 (Change of variable formula). Let ϕ : X → Y be a mor-
phism between p-adic manifolds of constant dimensions such that the differen-
tial of ϕ is everywhere invertible (in particular, dim(X) = dim(Y )). Assume
that the fibers of ϕ have bounded cardinality, and denote cϕ : Y → Z≥0,
y 7→ #(ϕ−1({y})). Then for any differential form ω on Y and any function
f : Y → C that is integrable with respect to |ω|, we have∫

X

f ◦ ϕ|ϕ∗ω| =
∫
Y

fcϕ|ω|.

1.1.9 Harish-Chandra characters

Theorem 1.1.57. Let (π, V ) be an irreducible representation of G. Then
there is a unique smooth function Θπ : Grs → C such that Θπ is locally
integrable on G, and for any f ∈ H(G) we have

trπ(f) =

∫
G

f(g)Θπ(g)dg.



1.1. THE p-ADIC CASE 43

Definition 1.1.58. Let (π, V ) be a smooth representation of G. Assume
that χπ is its central quasi-character. We say that π is square-integrable
(or part of the discrete series) if χπ is unitary and for any v ∈ V and ṽ ∈ Ṽ ,∫

G/Z

|⟨π(g)v, ṽ⟩|2dg < +∞.

We say that π is essentially square-integrable if there exists s ∈ R+

such that | det |s ⊗ π is square-integrable.

Lemma 1.1.59. Any irreducible square-integrable representation is unita-
rizable, i.e admits a G-invariant hermitian inner product. Moreover the G-
invariant hermitian inner product is unique up to R+.

Proof. Let (π, V ) be an irreducible square-integrable representation of G
with central character χπ. We denote by L2(G,χπ) the space of measur-
able functions G→ C such that f(zg) = χπ(z)f(g) for all z ∈ Z, g ∈ G and∫
G/Z

|f(g)|2dg < +∞. This space has a canonical Hermitian form

H0(f, f
′) =

∫
G/Z

f(g)f ′(g)dg.

For each ṽ ∈ Ṽ − {0}, the function g 7→ ⟨π(g)v, ṽ⟩ is belong to L2(G,χπ)
and the map v 7→ (g 7→ ⟨π(g)v, ṽ⟩) gives a G-equivariant embedding of V
into L2(G,χπ). Thus V admits a G-invariant hermitian inner product.

Let H(., .) be any G-invariant hermitian inner form on V . We denote by
V the C-vector space V but with the product C × V → V : (c, v) 7→ cv.
Then H(., .) is a G-invariant non-degenerate bilinear form on V × V . Using

Proposition 1.1.3, H(., .) can be see as a G-isomorphism φH : V → Ṽ . More
precisely,

H(v1, v2) = ⟨v1, φH(v2)⟩.

Since V is irreducible, by Schur’s lemma, the G-invariant hermitian inner
product is unique up to a scalar. Due to positive-definiteness of inner prod-
uct, this scalar should be in R+.

Proposition 1.1.60 (Formal degree). Let (π, V ) be an irreducible essentially

square-integrable representation of G. Then for any u, v ∈ V and ũ, ṽ ∈ Ṽ
the integral ∫

G/Z

⟨π(g)u, ũ⟩⟨v, π̃(g)ṽ⟩
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converges absolutely and there exists a unique dπ ∈ R+, called the formal
degree of π such that∫

G/Z

⟨π(g)u, ũ⟩⟨v, π̃(g)⟩ = 1

dπ
⟨u, ṽ⟩⟨v, ũ⟩.

Proof. Assume that χπ is the central quasi-character of π. Since π̃ is equiv-
alent to χ−1

π ⊗ π (cf. Theorem 1.1.32), the absolute convergence of∫
G/Z

⟨π(g)u, ũ⟩⟨v, π̃(g)ṽ⟩dg

is equivalent to the absolute convergence of∫
G/Z

⟨π(g)u, ũ⟩⟨π(g)v, ṽ⟩χ−1
π (det(g))dg.

Moreover, since (π, V ) is essentially square-integrable we have∫
G/Z

|⟨π(g)u, ũ⟩⟨π(g)v, ṽ⟩χ−1
π (det(g))|dg ≤ 1

2

∫
G/Z

|⟨π(g)u, ũ⟩|2 + ⟨π(g)v, ṽ⟩|2dg

< +∞.

Now we fix ũ ∈ Ṽ and v ∈ V , then the integral∫
G/Z

⟨π(g)u, ũ⟩⟨v, π̃(g)ṽ⟩dg

is a G-invariant non-degenerate bilinear form on V ×Ṽ . Since Ṽ is irreducible
(cf. 1.1.6), using Proposition 1.1.3 and Schur’s lemma, it is a complex number

times the canonical non-degenerate bilinear form on V × Ṽ . In other word,
there exist a function cπ : V × Ṽ → C such that∫

G/Z

⟨π(g)u, ũ⟩⟨v, π̃(g)ṽ⟩dg = cπ(v, ũ)⟨u, ṽ⟩ ∀(u, ṽ) ∈ V × Ṽ .

Fix u ∈ V and ṽ ∈ Ṽ . The integral∫
G/Z

⟨π(g)u, ũ⟩⟨v, π̃(g)ṽ⟩dg

is also a G-invariant non-degenerate bilinear form on V × Ṽ . It implies
that cπ(v, ũ) is a G-invariant non-degenerate bilinear form on V × Ṽ . Using
Proposition 1.1.3 and Schur’s lemma again, there exist cπ ∈ C such that

cπ(v, ũ) = cπ⟨v, ũ⟩.



1.1. THE p-ADIC CASE 45

Hence ∫
G/Z

⟨π(g)u, ũ⟩⟨v, π̃(g)ṽ⟩dg = cπ⟨u, ṽ⟩⟨v, ũ⟩. (1.1.20)

It remains to show that cπ ∈ R+. Up to twisting by a character, we can
assume that π is square-integrable. Pick any G-invariant hermitian inner
product H(., .) on V , which is equivalent to an isomorphism φH : V → Ṽ
(cf. proof of Lemma 1.1.59). Taking ũ = φH(v) and ṽ = φH(u) for arbitrary
u, v ∈ V − {0}, the LHS of (1.1.19) is equal to∫

G/Z

H(π(g)u, v)H(v, π(g)u)dg =

∫
G/Z

|H(π(g)u, v)|2dg

which is non-negative and not identically vanishing, and the RHS of (1.1.19)
is equal to cπH(u, u)H(v, v), therefore cπ ∈ R+.

Theorem 1.1.61 (Weyl integration formula). Fix a set T of representatives
of conjugacy classes of tori in G(F ). Let f be a measurable function on G.
Then ∫

G

f(g)dg =
∑
T ′∈T

1

2

∫
T ′
G−reg

|D(t)|Ot(f)dt

if one side is absolutely convergent.

Proposition 1.1.62. Let χ : T → C× be a quasicharacter of T , and consider
π = IndGBχ. Then Theorem 1.1.57 holds for π, and Θπ is the unique G-
invariant function on Grs which vanishes identically on Gell

rs and such that
for any t ∈ TG−reg we have

Θπ(t) = |D(t)|−1/2(χ(t) + χw(t)).

Proof. Due to the definition of IndGBχ and the Iwasawa decomposition, IndGBχ
may be regarded as a space of function in ϕ ∈ C∞(K0) which satisfies

ϕ(bk) = δ
1/2
B (b)χ(b)ϕ(k) = χ(b)ϕ(k)

for all b ∈ B ∩K0 and k ∈ K0. To evaluate trπ(f) we observe that if ϕ be a
such function, f ∈ H(G) and k1 ∈ K0, and using Iwasawa decomposition we
have then

π(f)(ϕ)(k1) =

∫
G

f(g)ϕ(k1g)dg =

∫
G

ϕ(g)f(k−1
1 g)dg

=

∫
K0×B

ϕ(bk2)f(k
−1
1 bk2)dk2db

=

∫
K0

ϕ(k2)

∫
B

χ(b)δ
1/2
B (b)f(k−1

1 bk2)dbdk2

=

∫
K0

ϕ(k2)ψ(k1, k2)dk2
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where ψ(k1, k2) =
∫
B
µ(b)δ

1/2
B (b)f(k−1

1 bk2)db is a smooth function onK0×K0.
We denote by I(ψ) the integral operator on C∞(K0) defined by

ϕ 7→ I(ψ)(ϕ)(.) =

∫
K0

ϕ(k)ψ(., k)dk.

Then π(f) coincides with I(ψ) on IndGBχ. Moreover, we can easily check that
I(ψ)(ϕ) belongs to IndGBχ for all ϕ ∈ C∞(K0). (In fact, for k1, k2 ∈ K0 and
b1 ∈ B ∩K0 we have

ψ(b1k1, k2) =

∫
B

χ(b)δ
1/2
B (b)f(k−1

1 b−1
1 bk2)db

=

∫
B

χ(b1(b
−1
1 b))δ

1/2
B (b1(b

−1
1 b))f(k−1

1 (b−1
1 b)k2)d(b

−1
1 b)

= χ(b1)ψ(k1, k2).)

Hence

trπ(f) = trI(ψ) =

∫
K0

ψ(k, k)dk

and so

trπ(f) =

∫
K0

∫
B

χ(b)δ
1/2
B (b)f(k−1bk)dbdk

=

∫
K0

∫
T×N

χ(t)δ
1/2
B (t)f(k−1tnk)dtdndk

=

∫
T

χ(t)|D(t)|1/2Ot(f)dt (c.f. (1.1.18)). (1.1.21)

In other hand, using Weyl integration formula (c.f Theorem 1.1.61) and the
definition of Θπ, we have then∫
G

f(g)Θπ(g)dg =
1

2

∫
TG−reg

|D(t)|Θπ(t)Ot(f)dt

=
1

2

∫
TG−reg

|D(t)|1/2(χ(t) + χw(t))Ot(f)dt

=
1

2

[∫
T

|D(t)|1/2χ(t)Ot(f)dt

+

∫
T

|D(w−1
0 tw0)|1/2χ(w−1

0 tw0)Ow−1
0 tw0

(f)d(w−1
0 tw0)

]
=

∫
T

χ(t)|D(t)|1/2Ot(f)dt. (1.1.22)
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Combining (1.1.20) and (1.1.21), we obtain then

trπ(f) =

∫
G

f(g)Θπ(g)dg

with Θπ is defined as in the Proposition.
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