Chapter 1

Local setting for trace formulas

In this chapter we establish almost all needed local setting for Selberg trace formula and Kuznetsov trace formula for $G := GL_2(F)$ (where F is a local field) and their comparison.

Before go further, we need to fix some notation which we shall use in this chapter.

1.1 The p-adic case

In this section we work with a finite extension F of \mathbb{Q}_p where p is a certain odd prime number. The field F is then the field of fractions of a discrete valuation ring \mathcal{O} . Let \mathfrak{p} be the maximal ideal of \mathcal{O} and $k = \mathcal{O}/\mathfrak{p}$ the residue field. Thus k is finite and of characteristic p. We shall denote the cardinality of k by q.

We choose one for all an uniformizer ϖ of \mathfrak{p} , that is, an element such that $\varpi \mathcal{O} = \mathfrak{p}$. Every element $x \in F^{\times}$ can be written uniquely in the form

$$x = u\varpi^n$$

with $u \in \mathcal{O}^{\times}$ and $n \in \mathbb{Z}$. (Note that the integer n does not depend on the choice of ϖ .) The integer number n is called the valuation of x over F and is denoted by $v_F(x)$ (we shall drop the subindex F when the field is clear). The absolute value $|.|_F : F \to \mathbb{R}$ defined by

$$|x|_F = q^{-v_F(x)}, \ \forall x \in F^{\times}, \text{and } |0|_F = 0$$

gives a metric on F. In the metric space topology, F is a complete, locally compact, totally disconnected (that is no nonempty subsets are connected except singleton sets), Hausdorff topological field.

The matrix ring $M_2(F) \simeq F^4$ of 2×2 matrices with entries in F carries the product topology, relative to which it is a locally compact, totally disconnected, Hausdorff topological ring. Since $\det: M_2(F) \to F$ is a polynomial in the matrix entries, \det is a continuous map. It implies that $\mathrm{GL}_2(F) = \det^{-1}(F^\times)$ ($F^\times = F \setminus \{0\}$ is an open subset of F) is an open subset of $M_2(F)$. We give $G = \mathrm{GL}_2(F)$ the topology it inherits as an open subset of $M_2(F)$. The inversion of matrices is continuous, so G is a locally compact, totally disconnected, Hausdorff topological group. In the terminology of [5] such a group is called an ℓ -group. From now on, we shall add ℓ -group beside G to indicate that a statement is true not only for $\mathrm{GL}_2(F)$ but also for any ℓ -group. The subgroups

$$K_0 = \operatorname{GL}_2(\mathcal{O}) := \{ g \in M_2(\mathcal{O}) | | \det(g)|_F = 1 \}, \quad K_i = 1 + \varpi^i M_2(\mathcal{O}), \, \forall i \ge 1 \}$$

are compact open, and give a fundamental system of open neighborhood of the identity in G.

1.1.1 Smooth representations of $GL_2(F)$

A (continuous) **representation** (π, V) of an ℓ -group G consists of a topological \mathbb{C} -vector space V and a group homomorphism $\pi: G \to \mathrm{GL}(V)$ from G to the group of invertible linear operators on V such that for each $v \in V$, the map

$$G \to V : q \mapsto \pi(q)v$$

is continuous. The space V is called the representation space of G. We may refer to the representation as π (when V is clear from the context), or we may just say V (when the action π clear from the context). When V is equipped with the discrete topology, we obtain than a **smooth representation** of G. (Since the discrete topology on V is the finest topology on V, the smooth representation is continuous for any kind of topology on V.)

Lemma 1.1.1. Let (π, V) be a representation of an ℓ -group G. The following conditions are equivalents:

- 1. The representation (π, V) is smooth.
- 2. For each $v \in V$, the map $\varphi_v : G \to V : g \mapsto \pi(g)v$ is **smooth**, i.e locally constant.
- 3. For each $v \in V$, the set $\operatorname{Stab}_G(v) := \{g \in G | \pi(g)v = v\}$ is open in G.
- 4. For each $v \in V$, there exist an open compact subgroup K_v (depends on v) of G such that $\pi(K_v)v = v$.

Proof. • (1) \Leftrightarrow (2). Since V is equipped with the discrete topology, a function $\varphi_v : G \to V$ is smooth if and only if it is continuous.

- (2) \Rightarrow (3). Since φ_v is locally constant, there exits an open neighborhood U of 1 (the unit element of G) such that $\pi(u)v = \pi(1)v = v$ for all $u \in U$. It implies that $U \subset \operatorname{Stab}_G(v)$. Let $g \in \operatorname{Stab}_G(v)$, we have $\pi(gu)v = \pi(g)(\pi(u)v) = \pi(g)v = v$ for all $u \in U$. Hence gU is an open neighborhood of g and is contained in $\operatorname{Stab}_G(v)$. So the set $\operatorname{Stab}_G(v)$ is open.
- (3) \Rightarrow (4). Since $1 \in \operatorname{Stab}_G(v)$, the set $\operatorname{Stab}_G(v)$ is an open neighborhood of 1 in G. Since G is an ℓ -group, there exist an open compact subgroup $K_v \subset \operatorname{Stab}_G(v)$. For example for $\operatorname{GL}_2(F)$, we choose i large enough such that $K_v := K_i = 1 + \varpi^i M_2(\mathcal{O}) \subset \operatorname{Stab}_G(v)$. We have $\pi(K_v)v = v$.
- (4) \Rightarrow (2). For all $g \in G$, gK_v is an open neighborhood of g. Set $g' = gu \in gK_v$, we have $\varphi_v(g') = \pi(gu)v = \pi(g)(\pi(u)v) = \pi(g)v = \varphi_v(g)$. Hence, φ_v is locally constant.

Given a smooth representation (π, V) of an ℓ -group G, a subspace W of V is said to be G-invariant if for every $w \in W$ and every $g \in G$ we have $\pi(g)w \in W$.

If (π, V) and (π', V') are two representations of an ℓ -group G then we denote by $\operatorname{Hom}_G(\pi, \pi')$ the space of all linear maps $f: V \to V'$ such that $f(\pi(g)v) = \pi'(g)f(v)$ for all $v \in V$ and all $g \in G$. We say that π and π' are **equivalent** (or **isomorphic**) if $\operatorname{Hom}_G(\pi, \pi')$ contains an invertible element. In that case, we write $\pi \simeq \pi'$.

For every representation V of an ℓ -group G, a vector $v \in V$ is a **smooth vector** if its stabilizer $\operatorname{Stab}_G(v)$ is open in G. We shall denote by V^{sm} the G-invariant subspace consisting of smooth vectors of V. By Lemma 1.1.1, V^{sm} is a smooth representation of G.

Let (π, V) be a representation of G. We denote by V^* the space of all linear forms on V. For every $v^* \in V^*$ and $g \in G$, we define $\pi^*(g)v^* \in V^*$ by

$$(\pi^*(g)v^*)(u) = v^*(\pi(g^{-1})u), \quad \forall u \in V.$$

Clearly, (π^*, V^*) is a representation of G. The dual representation V^* might not be smooth even if V is smooth. Let $\widetilde{\pi}$ be the G-invariant subspace $\widetilde{V} = V^{*,\mathrm{sm}}$ of π^* . The representation $(\widetilde{\pi}, \widetilde{V})$ is called the **contragredient** of (π, V) .

It doesn't like the representation theory of finite group; in general the representation $\tilde{\tilde{\pi}}$ is not equivalent to π . However, we shall soon see that this phenomena is true when we add some more condition to π .

A smooth representation (π, V) of an ℓ -group G is said to be **admissible** if for every compact open subgroup K of G, the subspace $V^K := \{v \in V | \pi(K)(v) = v\}$ is finite dimensional. In the case $G = \mathrm{GL}_2(F)$, because $V^{gKg^{-1}} = \pi(g)(V^K)$ and all the maximal compact subgroups of $\mathrm{GL}_2(F)$ are conjugate to K_0 , a smooth representation V is admissible if and only if V^K is finite dimensional for every open subgroup K of K_0 .

Proposition 1.1.2. If a representation (π, V) of an ℓ -group G is admissible, then the representation $(\widetilde{\pi}, \widetilde{V})$ is also admissible. Furthermore, we have $\widetilde{\widetilde{\pi}} \simeq \pi$.

Proof. Let K be a compact open subgroup of G. Since $\operatorname{Stab}_K(v) = \operatorname{Stab}_G(v) \cap K$ is open in K, we can consider V as a smooth representation of compact group K. Set

$$V(K) = \operatorname{Span}(\{\pi(g)(v) - v | g \in K, v \in V\}).$$

Observe that V(K) and V^K are two K-invariant subspace of V. We make the following claim:

Claim: " $V = V^K \oplus V(K)$."

Assuming the claim for the time being we prove the proposition as follows. Let $\widetilde{v} \in \widetilde{V}^K$. By definition of \widetilde{V}^K , we have

$$\widetilde{v}(\pi(g)u - u) = \widetilde{v}(\pi(g)(u)) - \widetilde{v}(u) = \widetilde{\pi}(g^{-1})(\widetilde{v})(u) - \widetilde{v}(u) = 0$$

for all $g \in K$ and $u \in V$. It implies that $\widetilde{v}_{|V(K)} = 0$. Thus $\widetilde{v} \in (V^K)^*$. By the admissibility of V, we have $\dim_{\mathbb{C}}((V^K)^*) = \dim_{\mathbb{C}}(V^K) < \infty$. Hence $\dim_{\mathbb{C}}(\widetilde{V}^K) < \infty$.

Now given $v^* \in (V^K)^*$, we extend \widetilde{v} to an element of V^* by letting \widetilde{v} equal to zero on V(K). We shall prove that $\widetilde{v} \in \widetilde{V}^K$.

• Let $u \in V$. We have then $u = u^K + w$ where $u^K \in V^K$ and $w \in V(K)$. For all $g \in K$ we have

$$\widetilde{\pi}(g)(\widetilde{v})(u) = \widetilde{v}(\pi(g^{-1})(u^K + w)) = \widetilde{v}(u^K + \pi(g^{-1})(w)) = \widetilde{v}(u^K) = \widetilde{v}(u).$$

Thus \widetilde{v} is invariant under the action of K.

• Assume that $g \in \operatorname{Stab}_{\pi^*}(\widetilde{v})$ (we use this notation to show that we are considering the action of G via π^*). Then gK is an open neighborhood of g which is contained in $\operatorname{Stab}_{\pi^*}(\widetilde{v})$. It implies that $\operatorname{Stab}_{\pi^*}(\widetilde{v})$ is open.

We have shown that $(\widetilde{V})^K = (V^K)^*$. It implies that

$$(\widetilde{\widetilde{V}})^K = ((\widetilde{V})^K)^* = ((V^K)^*)^* \simeq V^K.$$

For each $u \in V$, we consider the linear map $f_u : \widetilde{V} \to \mathbb{C}$, $\widetilde{v} \mapsto \widetilde{v}(u)$. We have $\operatorname{Stab}_{\pi}(u) \subset \operatorname{Stab}_{(\widetilde{\pi})^*}(f_u)$. Because $\operatorname{Stab}_{\pi}(u)$ is open in G (since (π, V) is a smooth representation), it contains an open compact subgroup H of G. Let $g \in \operatorname{Stab}_{(\widetilde{\pi})^*}(f_u)$. Since gH is an open neighbourhood of g which is contained in $\operatorname{Stab}_{(\widetilde{\pi})^*}(f_u)$, then $\operatorname{Stab}_{(\widetilde{\pi})^*}(f_u)$ is open in G. Therefore f_u is an element of $\widetilde{\widetilde{V}}$.

We consider the natural map $\varphi: V \to \widetilde{\widetilde{V}}, \quad v \mapsto f_v$. As above $\varphi_{|V^K}$ is an isomorphism between V^K and $(\widetilde{\widetilde{V}})^K$ for any open compact subgroup K of G.

- Let f be any element of $\widetilde{\widetilde{V}}$. Since $\operatorname{Stab}_{(\widetilde{\pi})^*}(f)$ is open in G, then there exists an open compact subgroup $H \subset \operatorname{Stab}_{(\widetilde{\pi})^*}(f)$. It implies that $f \in (\widetilde{\widetilde{V}})^H$. Since $\varphi_{|V^H}$ is an isomorphism between V^H and $\widetilde{\widetilde{V}}^H$, there exist then $v \in V^H \subset V$ such that $\varphi(v) = f$. Hence φ is an epimorphism.
- Assume that $\varphi(v) = \varphi(v')$. Because $\operatorname{Stab}_{\pi}(v)$ and $\operatorname{Stab}_{\pi}(v')$ are two open subgroups of G, the subgroup $\operatorname{Stab}_{\pi}(v) \cap \operatorname{Stab}_{\pi}(v')$ is also open in G. There exists then an open compact subgroup $H \subset \operatorname{Stab}_{\pi}(v) \cap \operatorname{Stab}_{\pi}(v')$. We have $v, v' \in V^H$. Since $\varphi_{|V^H}$ is an isomorphism between V^H and $\widetilde{\widetilde{V}}^H$, we have v = v'. Hence φ is injective.
- We have

$$\widetilde{\widetilde{\pi}}(g)(f_v)(\widetilde{u}) = f_v(\widetilde{\pi}(g^{-1})\widetilde{u}) = (\widetilde{\pi}(g^{-1})\widetilde{u})(v) = \widetilde{u}(\pi(g)v) = f_{\pi(g)v}(\widetilde{u}).$$

It implies that $\varphi \circ \pi = \widetilde{\widetilde{\pi}} \circ \varphi$.

In conclusion, φ is an isomorphism between two representations (π, V) and $(\widetilde{\widetilde{\pi}}, \widetilde{\widetilde{V}})$. In other word,

$$\pi \simeq \widetilde{\widetilde{\pi}}.$$

It suffices now to prove the claim. Let v be any vector of V. Because $\operatorname{Stab}_K(v)$ is open in K and K is compact and totally disconnected, the set $S := K/\operatorname{Stab}_K(v)$ is finite. We have

$$v = \frac{1}{\#S} \sum_{g \in S} \pi(g)v - \frac{1}{\#S} \sum_{g \in S} (\pi(g)v - v).$$

It easy to check that in the right hand side, the first factor is a vector of V^K and the second one is a vector of V(K). Hence $V = V^K + V(K)$.

Now we prove that $\sum_{g\in S} \pi(g)v = 0$ if $v\in V(K)$. By definition of V(K), it suffices to prove for $v = \pi(g_0)u - u$ for some $g_0 \in K$ and $u \in V$. In fact, we have:

$$\sum_{g \in S} \pi(g)v = \sum_{g \in S} \pi(g)(\pi(g_0)u - u) = \sum_{g \in S} \pi(g)v - \sum_{g \in S} \pi(gg_0)u = 0.$$

The last equation is a consequence of the fact that gg_0 runs through all the equivalent classes of $K/\operatorname{Stab}_K(v)$. Therefore, if $v \in V^K \cap V(K)$, we have then

$$v = \frac{1}{\#S} \sum_{g \in S} \pi(g)v = 0.$$

Thus
$$V^K \cap V(K) = 0$$
.

From the definition of a contragredient representation, it easy to check that the canonical non-degenerate bilinear form $\langle v, v^* \rangle = v^*(v)$ on $V \times \tilde{V}$ satisfies

$$\langle \pi(v), \widetilde{\pi}(v^*) \rangle = \langle v, v^* \rangle.$$

A very natural question is that do a non-degenerate bilinear form invariant under the action of G defines a contragredient representation? The answer is yes in the case when π is admissible. More precisely, we have the following proposition.

Proposition 1.1.3. Let (π, V) be an admissible representation. Assume that there exists an another admissible representation (π', V') and a non-degenerate bilinear form $\phi: V \times V' \to \mathbb{C}$ such that

$$\phi(\pi(g)(v), \pi'(g)(v')) = \phi(v, v').$$

Then $(\pi', V') \simeq (\widetilde{\pi}, \widetilde{V})$.

Proof. Denote $\varphi(v') = \phi(., v') \in V^*$ for all $v' \in V'$. We have

$$\widetilde{\pi}(g)(\varphi(v'))(v) = \phi(v')(\pi(g^{-1}v)) = \phi(\pi(g^{-1})v, v') = \phi(v, \pi'(g)v'). \quad (1.1.1)$$

Since ϕ is non-degenerate, then $\operatorname{Stab}_{\widetilde{\pi}}\varphi(v') = \operatorname{Stab}_{\pi'}(v')$. In other word, $\varphi(v')$ is a smooth vector in V^* .

We consider a homormorphism

$$V' \to \widetilde{V} \quad v' \mapsto \varphi(v').$$

We now prove that this homomorphism is G-isomorphic.

• The identity (1.1.1) implies that

$$\widetilde{\pi}(g)(\varphi(v')) = \varphi(\pi'(g)v') \quad \forall g \in G, v' \in V'.$$

- Since ϕ is non-degenerate, $\varphi(v') = 0$ if and only if v = 0. Hence φ is injective.
- Let $\xi \in \widetilde{V}$. Take K be a compact subgroup contained in $\operatorname{Stab}_{\widetilde{\pi}}(\xi)$. We have then $\xi \in \widetilde{V}^K$. By the admissibility of π , π' and non-degenerateness of ϕ , we have $\dim_{\mathbb{C}}(V^K) = \dim_{\mathbb{C}}((V')^K) < \infty$. Using the proof Proposition 1.1.2, we also have $\dim_{\mathbb{C}}(V^K) = \dim_{\mathbb{C}}(\widetilde{V}^K) < \infty$. Thus $\varphi_{|(V')^K}$ is an isomorphism. In other word, there exists $\xi' \in V'$ such that $\varphi(\xi') = \xi$.

A smooth representation (π, V) of an ℓ -group G is said to be **irreducible** if the only G-invariant subspaces of V are 0 and V itself.

Lemma 1.1.4 (Schur's lemma). Let (π, V) be an irreducible admissible representation of an ℓ -group G. Then we have $\dim_{\mathbb{C}}(\mathrm{Hom}_G(\pi, \pi)) = 1$.

Proof. Let $A \in \operatorname{Hom}_G(\pi,\pi)$. We take an arbitrary $v \in V$. Using Lemma 1.1.1, there exist an open compact subgroup K such that $v \in V^K$. By definition of A we have $\pi(g)(Au) = A(\pi(g)u) = Au$ for all $g \in K$ and all $u \in V^K$. Thus $A_{|V^K}$ is a linear homomorphism form V^K to itself. Moreover V^K is a finite dimensional space, since (π, V) is admissible. Thus, $A_{|V^K}$ is an automorphism of the finite dimensional space V^K . Let $\lambda \in \mathbb{C}$ be a proper value of A. Then there exist $v \neq 0$ such that $Av = \lambda .v$. Denote by $V' := \{v \in V | Av = \lambda .v\}$ the proper subspace w.r.t the proper value λ of V. It is easily seen that V' is a G-invariant subspace of V. By the irreducibility of V, we have V' = V. It follows that $A = \lambda \mathbf{1}_V$ (here $\mathbf{1}_V$ is the identity automorphism of V).

Corollary 1.1.5. Let $Z = \{g \in G | g'.g = g.g', \forall g' \in G\}$ be the center of G. If (π, V) is an irreducible admissible representation of an ℓ -group G, there exists then a **quasicharacter** (that is, a smooth one-dimensional representation) χ_{π} of Z such that $\pi(z) = \chi_{\pi}(z).\mathbf{1}_{V}$ for all $z \in Z$. (This χ_{π} is called the **central quasi-character** of π .)

Proof. Let z be any element of Z. We have

$$\pi(g)\pi(z) = \pi(gz) = \pi(zg) = \pi(z)\pi(g)$$

for all $g \in G$. It implies that $\pi(z) \in \text{Hom}_G(\pi, \pi)$. By the Schur's lemma, there exists $c_z \in \mathbb{C}$ such that $\pi(z) = c_z.\mathbf{1}_V$. We denote by

$$\chi_{\pi}: Z \to \mathbb{C}^{\times}, \quad z \mapsto c_z.$$

It is easy to check that χ_{π} is a group homormorphism and $\pi(z) = \chi_{\pi}(z).\mathbf{1}_{V}$. Finally, let v be a non-zero of V. By Lemma 1.1.1, there exists an open compact subgroup K of G such that $v \in V^{K}$. We have $v = \pi(z)v = \chi_{\pi}(z)v$ for all $z \in K \cap Z$. It implies that $\chi_{\pi}(z) = 1$ for all $z \in K \cap Z$. Thus for all $c \in \mathbb{C}$ the map $Z \to \mathbb{C} : z \mapsto \chi_{\pi}(z)c$ is locally constant. By loc. cit., χ_{π} is a smooth representation of Z.

Lemma 1.1.6. Let (π, V) be an admissible representation of an ℓ -group G and $(\widetilde{\pi}, \widetilde{V})$ its contragredient. Then (π, V) is irreducible if and only if $(\widetilde{\pi}, \widetilde{V})$ is irreducible.

Proof. Assume that $0 \neq U$ is a G-invariant subspace of V. Let W be a subspace of V such that $V = U \oplus W$ (W does not need to be G-invariant). Each element $\lambda \in U^*$ can be extended to an element of V by letting $\lambda(w) = 0$ for all $w \in W$. In this sense, we can view U^* as a G-invariant subspace of V^* . Then \widetilde{U} is a G-invariant subspace of \widetilde{V} . Moreover, by Proposition 1.1.2, $\widetilde{U} \neq 0$ (otherwise $0 = \widetilde{\widetilde{U}} \simeq U$). Thus \widetilde{U} is a non-zero G-invariant subspace of \widetilde{V} . The lemma is a direct consequence of this argument and loc. cit.. For example, to prove that (π, V) is irreducible if $(\widetilde{\pi}, \widetilde{V})$ is irreducible, we do as follows.

Assume that (π, V) is reducible. There exists then a non-zero proper G-invariant subspace U of V. By irreducibility of \widetilde{V} , we have $\widetilde{U} = \widetilde{V}$. Now, using loc. cit., we have $U \simeq \widetilde{\widetilde{U}} = \widetilde{\widetilde{V}} \simeq V$ (contradictory).

One of the main goal of this chapter is to classify irreducible admissible representations of G. The finite dimensional admissible irreducible smooth representations of G are not very interesting. Each is a one dimensional space on which the element of G acts by scalar. This is the content of Proposition 1.1.8. The proof of this proposition requires the following lemma.

Lemma 1.1.7. The matrices $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix}$ with $x, y \in F$ generate $SL_2(F)$

Proof. Every $\binom{a}{0} \binom{b}{d} \in SL_2(F)$ can be written in the following form

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} 1 & a^{-1}b \\ 0 & 1 \end{pmatrix}.$$

On other hand, if $c \neq 0$, we have

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & c^{-1}a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -c & 0 \\ 0 & -c^{-1} \end{pmatrix} \begin{pmatrix} 1 & c^{-1}d \\ 0 & 1 \end{pmatrix}.$$

Those identities imply that $SL_2(F)$ is generated by $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and the matrices $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix}$, $\begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix}$, with $x, y \in F$ and $z \in F^{\times}$.

Moreover, we have

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

and

$$\begin{pmatrix} z & 0 \\ 0 & z^{-1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ z^{-1} - 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ z - 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -z^{-1} \\ 0 & 1 \end{pmatrix}$$

for all $z \in F^{\times}$. The proof of the lemma is a direct consequence of the above two identities.

Proposition 1.1.8. A finite admissible irreducible of G is one dimensional. Moreover, it is of the form $g \to \chi(\det(g))$ for some quasi-character χ of F^{\times} .

Proof. Let (π, V) be a finite dimensional irreducible admissible representation of V. Let $\{v_1, v_2, \ldots, v_n\}$ be a basis of V. By Lemma 1.1.1, for each $i \in \{1, \ldots, n\}$ there exists an open compact subgroup $K_i \subset G$ that stabilises v_i . We denote by K the intersection of K_i . Then K is an open compact subgroup of G and fixes V. So the kernel $H := \ker(\pi)$ of the representation contains a compact open subgroup. In other word, H is a non-trivial open normal subgroup of G.

Now let $x \in F$ be arbitrary. We choose $b \in F$ such that $|bx|_F$ is sufficient small so that $\begin{pmatrix} 1 & bx \\ 0 & 1 \end{pmatrix} \in H$. Then

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} b & 0 \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & bx \\ 0 & 1 \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & 1 \end{pmatrix} \in H.$$

Similarly, we also can show that $\binom{1}{y}\binom{0}{1} \in H$ for all $y \in F$. It immediately follows from Lemma 1.1.7 that $\mathrm{SL}_2(F) \subset H$. Note that $gg_1g^{-1}g_1^{-1} \in \mathrm{SL}_2(F)$ for all $g, g_1 \in G$. Thus $\pi(g)\pi(g_1) = \pi(g_1)\pi(g)$ for all $g, g_1 \in G$. It implies that $\pi(g) \in \mathrm{Hom}_G(\pi, \pi)$. By the Schur's lemma, there exists $\delta_g \in \mathbb{C}^\times$ such that $\pi(g) = \delta_g.\mathbf{1}_V$.

We consider the subspace $V_1 := \mathbb{C}v_1$ generated by the vector v_1 of V. For any $g \in G$, $k \in \mathbb{C}$, we have $\pi(g)(kv_1) = k\delta_g v_1 \in V_1$. It implies that V_1 is a G-invariant subspace of V. By the irreducibility of V, we have $V = V_1$. We have shown that the dimension of V is one.

Now we consider $\pi: G \to \mathbb{C}^{\times}$ being a smooth representation of G. We define an application $\chi: F^{\times} \to \mathbb{C}^{\times}$ by

$$\chi(z) = \pi(\left(\begin{smallmatrix} z & 0 \\ 0 & 1 \end{smallmatrix}\right)).$$

It is clear that χ is a quasi-character of F^{\times} and

$$\pi(g) = \chi(\det(g)), \forall g \in G.$$

Corollary 1.1.9. Any quasi-character of G is of the form $\phi \circ \det$, for some quasi-character ϕ of F^{\times} .

1.1.2 Haar measures and the Hecke algebra

Let G be an ℓ -group. Let $C_c^{\infty}(G)$ be the space of functions $f: G \to \mathbb{C}$ which are locally constant and of compact support. The group G acts on $C_c^{\infty}(G)$ by left and right translation by the formulas

$$\ell_x f(y) = f(x^{-1}y)$$
, and $r_x f(y) = f(yx)$.

Local constancy and compactness of support of function in $C_c^{\infty}(G)$ imply that both of the G-representations $(C_c^{\infty}(G), \ell), (C_c^{\infty}(G), r)$ are smooth.

Definition 1.1.10. A left invariant distribution on G is a linear form ξ : $C_c^{\infty}(G) \to \mathbb{C}$ such that $\xi(\ell_x f) = \xi(f)$ for all $x \in G$ and $f \in C_c^{\infty}(G)$.

A left Haar distribution on G is a non-zero left invariant distribution ξ such that $\xi(f) \geq 0$ whenever $f \geq 0$.

We can also define a right invariant distribution (resp. right Haar distribution) similarly, using right translation r instead of left translation ℓ .

Proposition 1.1.11. There exists a left Haar distribution $I: C_c^{\infty}(G) \to \mathbb{C}$. Moreover, the space of left invariant distributions on G is one dimensional \mathbb{C} -vector space.

Proof. Let K be a compact open subgroup of G, we denote by $C_c^{\infty}(G)^K$ the space of functions in $C_c^{\infty}(G)$ that are right invariant under K. The $(C_c^{\infty}(G)^K, \ell)$ is then a smooth representation of G.

Lemma 1.1.12. Viewing \mathbb{C} as the trivial G-representation, we have

$$\dim_{\mathbb{C}}(\operatorname{Hom}_{G}(C_{c}^{\infty}(G/K),\mathbb{C}))=1.$$

There exists a non-zero element $I_K \in \operatorname{Hom}_G(C_c^{\infty}(G/K), \mathbb{C})$ such that $I_K(f) \geq 0$ whenever $f \geq 0$. If 1_K is the characteristic function of K, then $I_K(1_K) > 0$.

Proof. The space $C_c^{\infty}(G/K)$ has a basis 1_{xK} consisting of characteristic function of right cosets xK. A linear form $\xi: C_c^{\infty}(G/K) \to \mathbb{C}$ is G-invariant if and only if $\xi(1_{xK}) = \xi(1_K)$ for all $x \in G$. In other words, the map $\operatorname{Hom}_G(C_c^{\infty}(G/K), \mathbb{C}) \to \mathbb{C}$ given by $\xi \mapsto \xi(1_K)$ is an isomorphism. In particular $\operatorname{Hom}_G(C_c^{\infty}(G/K), \mathbb{C})$ is one dimensional.

The linear form $I_K: 1_{xK} \mapsto 1$ has the required properties.

We choose a descending sequence $\{K_i\}_{i\geq 1}$ of normal compact open subgroup K_i of G such that $\bigcap_i K_i = 1$ (due to van Dantzig's lemma, there always exists this kind of sequence - in the case when $G = \mathrm{GL}_2(F)$ we can choose $K_i = 1 + \varpi^i M_2(\mathcal{O})$ for all $i \geq 1$). We have then:

$$C_c^{\infty}(G) = \bigcup_{i \ge 1} C_c^{\infty}(G/K_i).$$

For each $i \geq 1$, there is a unique left G-invariant linear form $I_i : C_c^{\infty}(G/K_i) \to \mathbb{C}$ which maps the characteristic function of K_i to $(\#(K_1/K_i))^{-1}$. Since the restriction of I_{i+1} on $C_c^{\infty}(G/K_i)$ is I_i , the form $I : C_c^{\infty}(G) \to \mathbb{C}$ defined by $I(f) = I_i(f)$ whenever $f \in C_c^{\infty}(G/K_i)$ is well-defined. The statements of Proposition are immediate.

Proposition 1.1.13. content...

Let H be a closed subgroup of G with module δ_H . Let $\theta: H \to \mathbb{C}^{\times}$ be a character of H. We consider the space $C_c^{\infty}(H\backslash G, \theta) = c - \operatorname{Ind}_H^G \theta$, i.e the space of functions $f: G \to \mathbb{C}$ which are G-smooth under right translation, compactly supported modulo H, and satisfy

$$f(hg) = \theta(h)f(g), \quad h \in H, g \in G.$$

Proposition 1.1.14. Let $\delta_{H\backslash G}(h) = \delta_H(h)^{-1}\delta_G(h)$, $h \in H$. There exist a non-zero linear functional $I_{H\backslash G}: C_c^{\infty}(H\backslash G, \delta_{H\backslash G}) \to \mathbb{C}$ having the following two properties:

- (1) $I_{H\backslash G}(r_q(f)) = I_{H\backslash G}(f)$, for all $f \in C_c^{\infty}(H\backslash G, \delta_{H\backslash G})$ and all $g \in G$.
- (2) If $g \in G$, K is a compact open subgroup of G, and $f \in C_c^{\infty}(H \setminus G, \delta_{H \setminus G})^K$ is supported on the double coset HgK, then $I_{H \setminus G}$ is a positive multiple of f(g).

Proof. Let μ_G , μ_H be left Haar measures on G, H respectively. For each $f \in C_c^{\infty}(G)$, we define $\tilde{f}: G \to \mathbb{C}$ by

$$\tilde{f}(g) := \int_{H} \delta_{G}(h)^{-1} f(hg) d\mu_{H}(h).$$

By definition, we have

$$\tilde{f}(h_1g) = \int_H \delta_G(h)^{-1} f(hh_1g) d\mu_H(h)
= \delta_{H\backslash G}(h_1) \int_H \delta_G(hh_1)^{-1} f(hh_1g) \delta_H(h_1) d\mu_H(h)
= \delta_{H\backslash G}(h_1) \int_H \delta_G(hh_1)^{-1} f(hh_1g) d\mu_H(hh_1)
= \delta_{H\backslash G}(h_1) \tilde{f}(g)$$

for all $h_1 \in H$. Since the support of f is compact, the support of \tilde{f} is compact modulo H. If K is a compact open subgroup of G such that f(gk) = f(g) for all $g \in G$ and $k \in K$, then $\tilde{f}(gk) = \tilde{f}(g)$ for all $g \in G$ and $k \in K$. Hence $\tilde{f} \in C_c^{\infty}(H \setminus G, \theta)$. Moreover, we have

$$r_{g_1}(\tilde{f})(g) = \tilde{f}(gg_1) = \int_H \delta_G(h)^{-1} f(hgg_1) d\mu_H(h)$$

= $\widetilde{r_{g_1}(f)}(g)$.

It implies that the map $(C_c^{\infty}(G), r) \to (C_c^{\infty}(H \backslash G, \delta_{H \backslash G}), r)$ which sends f to \tilde{f} is a G-homomorphism.

This homomorphism satisfies

$$\widetilde{\ell_{h_1}(f)}(g) = \int_H \delta_G(h)^{-1} f(h_1^{-1}hg) d\mu_H(h)
= \delta_G(h_1)^{-1} \tilde{f}(g)$$

for $h_1 \in H$ and $f \in C_c^{\infty}(G)$. We now prove that it is surjective.

Let $\varphi \in C_c^{\infty}(H\backslash G, \theta)$. Then there exists a compact open subgroup K of G such that $\varphi \in C_c^{\infty}(H\backslash G, \theta)^K$ (the subspace of $C_c^{\infty}(H\backslash G, \theta)$ which is invariant under the action of K). Since φ has compact support modulo H, there exist $g_1, \ldots, g_n \in G/K$ such that $\varphi(g) = 0$ if $g \notin \bigsqcup_{i=1}^n Hg_iK$. We define a function $f: G \to \mathbb{C}$ as follows

$$f(g_i k) = \operatorname{vol}(H \cap g_i K g_i^{-1}) \varphi(g_i)$$

and f(g) = 0 for $g \notin \bigsqcup_{i=1}^n g_i K$. By definition, $f \in C_c^{\infty}(G)$ and

$$\tilde{f}(h_1 g_i k) = \theta(h_1) \tilde{f}(g_i k) = \theta(h_1) \int_H (\theta \delta_H) (h)^{-1} f(h g_i k) d\mu_H(h)
= \theta(h_1) \int_{H \cap g_i K g_i^{-1}} (\theta \delta_H) (h)^{-1} \operatorname{vol}(H \cap g_i K g_i^{-1}) \varphi(g_i) d\mu_H(h).$$

1.1.3 Parabolic induction and Jacquet module

One of the way to construct representations of G is to induce representations from smaller subgroups. In this section, we induce the representations of B which are trivial on its nilpotent subgroup N. Non-trivial characters on N (Whittaker functionals) are also interesting. They will be studied in Section 1.1.6.

Definition 1.1.15. Let (σ, W) be a smooth representation of T. We consider the space $\operatorname{Ind}_B^G W$ of smooth functions $f: G \to W$ which satisfy

$$f\left(\begin{pmatrix} a_1 & x \\ 0 & a_2 \end{pmatrix} g\right) = \left| \frac{a_1}{a_2} \right|^{1/2} \sigma\left(\begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} g\right) f(g).$$

We define a homomorphism $\operatorname{Ind}_B^G \sigma: G \to \operatorname{Aut}_{\mathbb{C}} (\operatorname{Ind}_B^G W)$ by

$$\operatorname{Ind}_B^G \sigma(g) f : x \mapsto f(xg), \quad x, g \in G.$$

The pair $(\operatorname{Ind}_B^G \sigma, \operatorname{Ind}_B^G W)$ provides a smooth representation of G. It is called the *(normalized) parabolic induction* of σ .

- Remark 1.1.16. (1) Due to Iwasawa decomposition $G = BK_0$, the subspace $c \operatorname{Ind}_B^G \sigma$ of smooth functions $f \in \operatorname{Ind}_B^G \sigma$ which are compactly supported modulo B (this means that the image of the support of f in $B \setminus G$ is compact) is the whole space $\operatorname{Ind}_B^G \sigma$. In other word, $\operatorname{Ind}_B^G \sigma$ is also the compact induction of σ .
 - (2) Let $\chi = \chi_1 \otimes \chi_2$ be a quasi-character of T. The representation $\operatorname{Ind}_B^G \chi$ is called the *principal series representation* of G.

Lemma 1.1.17. The principal series $\operatorname{Ind}_{B}^{G}\chi$ is admissible.

Proof. Let K be a compact open subgroup of G. We may assume that $K \subset K_0$ (since all the maximal compact subgroups of G are conjugate to K_0). Since $G = BK_0$ (Iwasawa decomposition) and K_0/K is finite, the set of double cosets $B \setminus G/K$ is also finite. By definition, a function $f \in \operatorname{Ind}_B^G \chi$ is defined uniquely by its image over the set of double cosets $B \setminus G/K$. Hence,

$$\dim_{\mathbb{C}}((\operatorname{Ind}_{B}^{G}\chi)^{K})<\infty.$$

The character $\delta_B^{1/2}$: $\operatorname{diag}(a_1, a_2) \mapsto \left| \frac{a_1}{a_2} \right|^{1/2}$ was introduced so that $\operatorname{Ind}_B^G \chi$ preserves unitarity.

Proposition 1.1.18. If χ is unitary then $\operatorname{Ind}_B^G \chi$ has a natural G-invariant Hermitian inner product, defined by $||f||^2 = \int_{K_0} |f(k)|^2 dk$.

Definition 1.1.19. Let (V,π) be a smooth representation of G. Let

$$V(N) := \operatorname{Span}(\{\pi(n)v - v | n \in N, v \in V\}).$$

This V(N) is an N-invariant subspace of V. Let $V_N = V/V(N)$ the largest quotient of V on which N acts trivially. Because N is invariant under T, the V_N inherits a representation π_N of B/N = T (can be also viewed as a representation of B which is trivial on N), which is smooth. The (normalized) Jacquet module $\operatorname{Jac}_B^G \pi$ or $\operatorname{Jac}_B^G(V)$ is the representation $(\pi_N \otimes \delta_B^{-1/2}, V_N)$ of B.

Theorem 1.1.20 (Frobenius reciprocity). For any smooth representation (π, V) (resp. (σ, W)) of G (resp. T) we have a natural isomorphism

$$\operatorname{Hom}_G(\pi,\operatorname{Ind}_B^G\sigma)\simeq \operatorname{Hom}_T(\operatorname{Jac}_B^G\pi,\sigma).$$

Corollary 1.1.21. Let (π, V) be an irreducible smooth representation of G. If $\operatorname{Jac}_B^G(V) \neq 0$ (equivalently, $V_N \neq 0$) then V is embeds in a principal series representation of G (i.e in a $\operatorname{Ind}_B^G \chi$ for some quasi-character χ of T).

Let w_0 be the longest Weyl element of G, i.e

$$w_0 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

For each smooth representation σ of T, we define the representation σ^{w_0} : $t \mapsto \sigma(w_0 t w_0^{-1})$, and view it as a representation of B which is trivial on N.

Lemma 1.1.22 (Restriction-Induction Lemma). Let (σ, W) be a smooth representation of T. There is an exact sequence of representations of T:

$$0 \to \delta_B^{-1/2} \otimes \sigma^{w_0} \to \operatorname{Jac}_B^G \operatorname{Ind}_B^G \sigma \xrightarrow{\alpha_\sigma} \delta_B^{1/2} \otimes \sigma \to 0,$$

where α_{σ} is the canonical T-map $\operatorname{Jac}_{B}^{G}(\operatorname{Ind}_{B}^{G}(W)) \to W$ defined by $f \mapsto f(1)$.

Theorem 1.1.23 (Irreducibility Criterion). Let $\chi = \chi_1 \otimes \chi_2$ be a quasicharacter of T.

- (1) The representation $\operatorname{Ind}_B^G \chi$ is irreducible unless $\chi_1 \chi_2^{-1} = |.|^{\pm 1}$.
- (2) If $\chi_1 \chi_2^{-1} = |.|$ then $\operatorname{Ind}_B^G \chi$ contains an irreducible admissible G-subspace of codimension 1.

(3) If $\chi_1 \chi_2^{-1} = |.|^{-1}$ then $\operatorname{Ind}_B^G \chi$ contains a 1-dimensional G-subspace whose quotient is irreducible.

Theorem 1.1.24 (Classification theorem). Let π be an irreducible admissible representation of G. Then π is equivalent to one of the following disjoint types:

- (1) the irreducible induced representations $\operatorname{Ind}_{B}^{G}\chi$, where $\chi \neq \phi \otimes \delta_{B}^{\pm 1/2}$ for any quasi-character ϕ of F^{\times} ;
- (2) the special representations $\chi \otimes \operatorname{St}_G$, where χ ranges over the quasicharacters of F^{\times} ;
- (3) the cuspidal representations;
- (4) the 1-dimensional representations $\chi \circ \det$, where χ ranges over the quasicharacters of F^{\times} .

Moreover

- (a) in (1), we have $\operatorname{Ind}_{R}^{G}\chi \simeq \operatorname{Ind}_{R}^{G}\psi$ if and only if $\psi = \chi$ or χ^{ω} ;
- (b) in (2), we have $\chi \otimes \operatorname{St}_G \simeq \chi' \otimes \operatorname{St}_G$ if and only if $\chi = \chi'$;
- (c) in (4), we have we have $\chi \circ \det \simeq \chi' \circ \det$ if and only if $\chi = \chi'$.

1.1.4 Cuspidal representations

Let E/F be a separable quadratic extension of local field F. We fix a non-trivial additive character $\psi = \psi_F : F \to \mathbb{C}^{\times}$. Then $\psi_E = \psi_F \circ \operatorname{tr}_{E/F}$ is a non-trivial additive character of E. Let $C_c^{\infty}(E)$ be the space of complex valued smooth functions of compact support on E. Given $f \in C_c^{\infty}(E)$, define the Fourier transform $\hat{f} \in C_c^{\infty}(E)$ by

$$\hat{f}(y) = \int_{E} f(x)\psi_{E}(xy)dx,$$

where dx is the self-dual measure with respect to ψ_E on E (i.e dx is the normalized Haar measure so that $\hat{f}(x) = f(-x)$). Since dx is self-dual, we have then the Fourier inversion formula

$$f(x) = \int_{E} \hat{f}(y)\widetilde{\psi_{E}(xy)}dy.$$

Lemma 1.1.25 (Weil constant). There exist a constant $\gamma(\psi_F, E)$ such that for every function $\phi \in C_c^{\infty}(E)$

$$\int_{E} (\phi * f)(x)\psi_{E}(xy)dx = \gamma(\psi_{F}, E)f^{-1}(\iota(y))\hat{f}(y).$$

1.1.5 Kloosterman integrals and Shalika germs

In this section, we shall prove the existence of Shalika germs for **orbital** (Kloosterman) integrals which are appeared in the geometric side of Kuznetsov trace formula for GL_2 . The main reference for this subsection is [10, 12]. (In these loc. cit. Jacquet and Ye proved the existence of Shalika germs for a more general orbital integrals which are appeared in the geometric side of Kuznetsov trace formula for GL_r).

For a convenience, we recall the definition of the orbital integral. Let G be the group GL_2 viewed as an algebraic group over F. We often write G for G(F). We denote by $C_c^\infty(G)$ the space of complex valued, locally constant functions of compact support on G. Let Z be the center of G. Let W be the Weyl group of G. Let T be the subgroup of diagonal matrices of G and N the subgroup of upper-triangular matrices with unit diagonal. We fix a nontrivial additive quasi-character ψ of F and define a character $\theta: N \to \mathbb{C}^\times$ by the formula

$$\theta(u) = \psi(n_{1,2}),$$

where $n = \begin{pmatrix} 1 & n_{1,2} \\ 0 & 1 \end{pmatrix}$.

The Kloosterman integrals of a function $f \in C_c^{\infty}(G)$ which we want to study are the functions:

$$I(g,f) = \int f(^t n_1 g n_2) \theta(n_1 n_2) dn_1 dn_2.$$

Here g is a relevant element, i.e g satisfies a condition that $\theta(n_1n_2) = 1$ if ${}^tn_1gn_2 = g$. The integral is taken over the quotient of $N(F) \times N(F)$ by the subgroup N^g of elements (n_1, n_2) of $N(F) \times N(F)$ satisfying ${}^tn_1gn_2 = g$.

Lemma 1.1.26. Let $N \times N$ operate on G by $(n_1, n_2).g = {}^t n_1 g n_2$. Then any relevant orbit of $N \times N$ contains a unique representative of the form wt with

$$w \in R(G) := \left\{ e := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, w_0 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$$
 and

$$t \in T_w := \begin{cases} T & \text{if } w = e, \\ Z & \text{if } w = w_0. \end{cases}$$

Suppose that $w \in R(G)$. Let M_w be the standard Levi subgroup such that w is the longest element of $M_w \cap W$. Let $P_w = M_w U_w$ be the standard parabolic subgroup which has Levi factor M_w . Set $V_w = N \cap M_w$. For every $t \in T_w$, (by an elementary matrix calculation) we have

$$N^{wt} = N^w = \{(n_1, n_2) \in V_w^2 | n_2 = w^t n_1^{-1} w\}.$$

Lemma 1.1.27. Any point of the orbit of wt under the action of $N(F) \times N(F)$ can be uniquely written in the following form

$$\mu(u_1, v, u_2) = u_1 w \mathbf{t} v u_2$$

with $u_i \in U_w$ and $v \in V_w$.

Proof. Since $N \subset P_w$, by using the Levi decomposition for elements of N, we can rewrite any element of the orbit of wt under the action of $N(F) \times N(F)$ as below:

$$\begin{array}{rcl}
^{t}n_{1}w\mathbf{t}n_{2} & = & ^{t}u_{1}{}^{t}v_{1}wtv_{2}u_{2} \\
 & = & ^{t}u_{1}[^{t}v_{1}wt(w^{t}v_{1}^{-1}w)][(w^{t}v_{1}w)v_{2}]u_{2} \\
 & = & ^{t}u_{1}w\mathbf{t}vu_{2}.
\end{array}$$

Here $u_i \in U_w$, $v_i \in V_w$, $v \in V_w$ such that $v_1u_1 = n_1$, $v_2u_2 = n_2$ and $v = (w^tv_1w)v_2$. The last identity follows $({}^tv_1, w^tv_1^{-1}w) \in N^w$.

Suppose that ${}^tu_1wtvu_2 = {}^tu_1'w\mathbf{t}v'u_2'$ with $u_i, u_i' \in U_w$ and $v, v' \in V_w$. We have then

$${}^{t}(u_{1}^{-1}u_{1}')wt(v'u_{2}'u_{2}^{-1}v^{-1}) = wt.$$

Hence, $v'u_2'u_2^{-1}v^{-1} \in V_w$ and $t(u_1^{-1}u_1') \in V_w$. It implies that $\{u_2'u_2^{-1}, u_1^{-1}u_1'\} \subset U_w \cap V_w = \{e\}$. Thus $u_i = u_i'$ for all $i \in \{1, 2\}$. As a consequence, we have v = v'.

Since the orbits of $N(F) \times N(F)$ are closed, the map μ is an isomorphism of $U_w(F) \times V_w(F) \times U_w(F)$ onto the orbit of wt. Recall that we let dx be the self-dual Haar measure on F with respect to the fixed non-trivial additive character ψ . If α is a root let X_{α} be the corresponding root vector in the Lie algebra of N (entry at α is 1, the other entries are 0). If U is a subgroup of N generated by a set of roots S (i.e $U = \{u = 1 + \sum_{\alpha \in S} x_{\alpha} X_{\alpha}\}$) we set $du = \bigotimes_{\alpha \in S} dx_{\alpha}$. We take for invariant measure on the orbit of wt the product measure $du_1 dv du_2$. Thus

$$I(wt, f) = \int_{U_w(F) \times V_w(F) \times U_w(F)} f(^t u_1 wt vu_2) \theta(u_1 u_2) \theta(v) du_1 dv du_2.$$
 (1.1.2)

Since the orbit is closed, for $f \in C_c^{\infty}(G)$, the integral on the right hand side has compact support. Thus the integral converges and define a smooth function on $T_w(F)$ which send $t \in T_w(F)$ to I(wt, f).

We denote by $T_w^{w_0} := \{t \in T_{w_0} | \det(w_0 t) = \det(w)\}$ for each $w \in R(G)$. For instance, the set $T_e^{w_0}$ is the set of matrices of the form

$$\begin{pmatrix} z & 0 \\ 0 & -z^{-1} \end{pmatrix}.$$

Theorem 1.1.28. There is a locally constant function $K_e^{w_0}$ on $T_e^{w_0}$ satisfying the following properties. For each function $f \in C_c^{\infty}(G)$, there is a function $\omega \in C_c^{\infty}(T_e)$ such that

$$I(et, f) = \omega(t) + \sum_{(b,c)} K_e^{w_0}(b) I(w_0 c, f).$$

The sum is taken over the finite set

$$\{(b,c) \in T_e^{w_0} \times T_{w_0} | bc = t\}.$$

Proof. Let $G_1 = \{g \in G | \det(g) = \det(w_0)\}$. We have $w_0 T_{w_0} \cap G_1 = w_0 T_{w_0}^{w_0}$, a finite set. If $w_0 t$ where $t \in T_{w_0}$ is in G_1 , then the scalar matrix $t = \operatorname{diag}(z, z)$ verifies $z^2 = 1$. We can choose $f_0 \in C_c^{\infty}(G)$ such that $I(w_0, f_0) = 1$ and $I(w_0 \operatorname{diag}(z, z), f_0) = 0$ if $z \neq 1$ and z is a square-root of 1 in F. (For example, we can choose $f_0 = \phi_m$ with m large enough as in Lemma 1.1.29 below.)

We define a function $K_e^{w_0}$ on $T_e^{w_0}$ by

$$K_e^{w_0}(t) = I(et, f_0).$$

We define a function f_1 on G by the formula

$$f_1(g) = \sum_{(g_1,c)} f_0(g_1)I(w_0c, f),$$

where the sum is over the finite set

$$S_g := \{ (g_1, c) \in G_1 \times T_{w_0} | g_1 c = g \}.$$

It is a smooth function on G.

For $t \in T_e$, we consider all possible decompositions

$$^{t}n_{1}etn_{2}=g_{1}c,$$

with $g_1 \in G_1$ and $c \in T_{w_0}$. Since c is in the centre of G, we can write

$$g_1 = {}^t n_1 etc^{-1} n_2 = {}^t n_1 ebn_2$$

where $b = tc^{-1} \in T_e^{w_0}$ (since $g_1 \in G_1$). Thus

$$f_1(^t n_1 e t n_2) = \sum_{(b,c)} f_0(^t n_1 e b n_2) I(w_0 c, f)$$

where the sum is over the finite set

$$\{(b,c) \in T_e^{w_0} \times T_{w_0} | bc = t\}.$$

Since c is in the centre of G, we have $N^{et} = N^{eb}$. After integrating two side of above identity over the quotient of $N(F) \times N(F)$ by the subgroup N^{et} , we obtain then

$$I(et, f_1) = \sum_{(b,c)} I(eb, f_0) I(w_0 c, f) = \sum_{(b,c)} K_e^{w_0}(b) I(w_0 c, f).$$

We define a function ω on T_e by the formula

$$\omega(t) = I(et, f) - I(et, f_1) = I(et, f - f_1).$$

It is a smooth function on T_e and we have

$$I(et, f) = \omega(t) + \sum_{(b,c)} K_e^{w_0}(b) I(w_0 c, f).$$

Lemma 1.1.29. Let $t = \operatorname{diag}(z, z)$ with $z^2 = 1$ and ϕ_m a product of the characteristic function of the congruence group K_m and the scalar $\operatorname{vol}(\mathfrak{p}^m)^{-1}$. For m large enough, we have then

$$I(w_0 t, \phi_m) = \begin{cases} 1, & \text{if } z = 1, \\ 0, & \text{otherwise.} \end{cases}$$

Proof. Firstly, we calculate the integral $I(w_0, \phi)$. This integral has the form (cf. the formula (1.1.2))

$$I(w_0, \phi) = \int_F \phi\left(w_0\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}\right) \psi(x) dx$$

Now we take ϕ be a product of the characteristic function of w_0K_m and the scalar $\operatorname{vol}(\mathfrak{p}^m)^{-1}$, this integral is equal to

$$\operatorname{vol}(\mathfrak{p}^m)^{-1} \int_{\mathfrak{p}^m} \psi(x) dx.$$

For m large enough (for example m is larger than the level of ψ), we have $\psi(x) = 1$. It implies that

$$\int_{\mathfrak{p}^m} \psi(x) dx = \operatorname{vol}(\mathfrak{p}^m).$$

In consequence, the first assertion is proved.

Choosing m large enough such that $z \notin K_m$ for all z which satisfy $z^2 = 1$ and $z \neq 1$. We have then ${}^t n_1 w_0 t n_2 \notin w_0 K_m$ for all $(n_1, n_2) \in N_r(F) \times N_r(F)$. The second assertion follows.

Proposition 1.1.30. The germ $K_e^{w_0}$ is given, for |z| small enough, by

$$K \begin{pmatrix} z & 0 \\ 0 & -z^{-1} \end{pmatrix} = \left| \frac{1}{2z} \right|^{1/2} \psi \left(\frac{2}{z} \right) \gamma \left(\frac{2}{z}, \psi \right).$$

Proof. Let $f=\phi_m$ as in Lemma 1.1.29. The relation defining germ $K_e^{w_0}$ reads

$$I(t,\phi_m) = \omega_{\phi(m)}(t) + \sum_{(b,c)} K_e^{w_0}(b)I(w_0c,\phi_m). \tag{1.1.3}$$

Since ω_{ϕ_m} is of compact support, for |z| small enough we have

$$\omega_{\phi_m} \begin{pmatrix} z & 0 \\ 0 & -z^{-1} \end{pmatrix} = 0.$$

Substituting $t = \begin{pmatrix} z & 0 \\ 0 & -z^{-1} \end{pmatrix}$ with |z| small enough to (1.1.3) and using Lemma 1.1.29, we have then

$$K_e^{w_0} \begin{pmatrix} z & 0 \\ 0 & -z^{-1} \end{pmatrix} = I \begin{pmatrix} z & 0 \\ 0 & -z^{-1} \end{pmatrix}, \phi_m$$

$$= \int_{F \times F} \phi_m \begin{pmatrix} z & zx_1 \\ zx_2 & -z^{-1} + x_1x_2z \end{pmatrix} \psi(x_1 + x_2) dx_1 dx_2.$$

After changing x_1 to x_1/z and x_2 to x_2/z , the germ $K_e^{w_0}(\operatorname{diag}(z,-z^{-1}))$ is equal to

$$|z|^{-2} \int_{F \times F} \phi_m \begin{pmatrix} z & x_1 \\ x_2 & -z^{-1} + z^{-1} x_1 x_2 \end{pmatrix} \psi \left(\frac{x_1 + x_2}{z} \right) dx_1 dx_2.$$

The integral is 0 unless $z \in \mathfrak{p}^m$. We can choose |z| small enough such that $z \in \mathfrak{p}^m$. We see that then the integral is equal to

$$|z|^{-2}\operatorname{vol}(\mathfrak{p}^m)^{-1}\int\psi\left(\frac{x_1+x_2}{z}\right)dx_1dx_2$$

integrated over the domain defined by:

$$x_i \equiv 1 \mod \mathfrak{p}^m \text{ for } i = 1, 2,$$

$$x_1 x_2 \equiv 1 \mod z \mathfrak{p}^m$$
.

We change variables and set

$$x_2 = tx_1^{-1},$$

where now the domain of integration is defined by:

$$x_1 \equiv 1 \mod \mathfrak{p}^m, t \equiv 1 \mod z\mathfrak{p}^m.$$

(Since $z \in \mathfrak{p}^m$, the two conditions on x_1 and t guarantee that $t/x_1 \equiv 1 \mod \mathfrak{p}^m$.) After integrating over t the integral becomes

$$|z|^{-1} \int_{x_1 \equiv 1 \mod \mathfrak{p}^m} \psi\left(\frac{\phi}{z}\right) dx_1,$$

where the phase function ϕ is given by:

$$\phi = x_1 + \frac{1}{x_1}.$$

We set $x_1 = 1 + v$ with $v \in \mathfrak{p}^m$. The phase function takes the form

$$\phi = 1 + v + \frac{1}{1+v}.$$

The Taylor expansion of this function at the origin has the form

$$2 + v^2 + \text{higher degree terms}.$$

By the principle of the stationary phase there is a compact neighborhood Ω of 0 in F such that, for |z| small enough, the integral is equal to

$$|z|^{-1} \int_{\Omega} \psi\left(\frac{2+v^2}{z}\right) dv = \left|\frac{1}{2z}\right|^{1/2} \psi\left(\frac{2}{z}\right) \gamma\left(\frac{2}{z},\psi\right).$$

1.1.6 Kirillov models and Whittaker models

We fix a non-trivial character ψ of the additive group F. Let (π, V) is a representation of G(F). Let $N = \{n = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} | x \in F\}$, ψ defines a character ψ_N of N by

$$\psi_N(n) = \psi \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = \psi(x).$$

Definition 1.1.31. • A Kirillov model for (π, V) is a sub- \mathbb{C} -vector space $\mathcal{K}(\pi, \psi)$ of the space of \mathbb{C} -valued on F^{\times} , and an action $\pi_{\mathfrak{k}}$ of G(F) on $\mathcal{K}(\pi, \psi)$ with the property that

$$\pi_{\mathfrak{k}} \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} (f)(x) = \psi(bx)f(ax) \quad \forall a, x \in F^{\times}, b \in F, f \in \mathcal{K}(\pi, \psi),$$

such that the representation V and $\mathcal{K}(\pi, \psi)$ are isomorphic.

• A Whittaker model for (π, V) is a sub- \mathbb{C} -vector space $\mathcal{W}(\pi, \psi)$ of the space of locally constant \mathbb{C} -valued functions on G satisfying

$$f\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}g\right) = \psi(x)f(g), \quad \forall g \in G, x \in F,$$

and an action of G(F) on $\mathcal{W}(\pi, \psi)$ defined by a right translation, i.e. (g.f)(g') = f(g'g) such that the representation V and $\mathcal{W}(\pi, \psi)$ are isomorphic.

Theorem 1.1.32 ([9, Theorem 1, p. 1.3]). If (π, V) is an irreducible admissible infinite-dimesional representation of G(F) then (π, V) has a unique Kirillov model $\mathcal{K}(\pi, \psi)$. Furthermore, every $\kappa \in \mathcal{K}(\pi, \psi)$ is a locally constant function on F^{\times} and vanishes outside some compact subset of F. The space $C_c^{\infty}(F^{\times})$ of locally constant functions on F^{\times} with compact support is a subspace of finite codimension of $\mathcal{K}(\pi, \psi)$.

Proof. Assume that (π, V) has a Kirillov model $\mathcal{K}(\pi, \psi)$. Then the subspace \mathcal{K}_0 of $\mathcal{K}(\pi, \psi)$ consisting of f such that f(1) = 0 has codimension 1.

Corollary 1.1.33. If (π, V) is an irreducible admissible infinite-dimesional representation of G(F) then (π, V) has a unique Whittaker model.

Proof. Let $\mathcal{K}(\pi, \psi)$ be a Kirillov model for (π, V) . For every $\kappa \in \mathcal{K}(\pi, \psi)$, we consider the function

$$W_{\kappa}(g) = \pi_{\mathfrak{k}}(g)(\kappa)(e).$$

The vector space generated by $\{W_{\kappa}|\kappa \in \mathcal{K}(\pi,\psi)\}$ is a Whittaker model for (π, V) .

Let $W(\pi, \psi)$ be a Whittaker model for (π, V) . The vector space generated by $\{\kappa_W(x) = W(\operatorname{diag}(x, 1)) | W \in W(\pi, \psi)\}$ is a Kirillov model for (π, V) .

Using the existence and uniqueness of the Kirillov model for irreducible admissible infinite-dimensional representation (cf. Theorem 1.1.32), we obtain then a proof for this corollary.

Definition 1.1.34. Let (π, V) be a representation of G. A ψ Whittaker functional on (π, V) is non-zero linear form $L: V \to \mathbb{C}$ such that

$$L(\pi(n)v) = \psi(n)L(v)$$

for all $n \in N$ and $v \in V$.

We have a relation between Whittaker functional and Whittaker model as follows: given a Whittaker model $\mathcal{W}(\pi, \psi)$ define L by $L(v) = W_v(e)$ where e is the neutral element of G, W_v is the image of v via the G-isomorphism $V \to \mathcal{W}(\pi, \psi)$, and given a Whittaker functional L define $\mathcal{W}(\pi, \psi)$ as the space of $W_v : G \to \mathbb{C}$ defined by $g \mapsto L(\pi(g)v)$ when v runs through V. In other word, we have that to give a Whittaker functional (up to scalar multiples) is to give a Whittaker model and vice-versa.

Let $w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $n(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$. Now let π be an irreducible admissible infinite-dimensional representation of G(F) and $\mathcal{K}(\pi,\psi)$ its corresponding Kirillov model. Since $\mathcal{K}(\pi,\psi)$ is irreducible, it is generated by $\pi_{\mathfrak{k}}(g)C_c^{\infty}(F^{\times})$. Moreover, $C_c^{\infty}(F^{\times})$ is stable under the action of Borel subgroup of G, and $\pi_{\mathfrak{k}}(n(t)w)\kappa - \pi_{\mathfrak{k}}(w)\kappa$ belongs to $C_c^{\infty}(F^{\times})$ for every $\kappa \in \mathcal{K}(\pi,\psi)$ and every $t \in F$. Using Bruhat's decomposition, we obtain then

$$\mathcal{K}(\pi, \psi) = C_c^{\infty}(F^{\times}) + \pi_{\mathfrak{k}}(w)C_c^{\infty}(F^{\times}).$$

Theorem 1.1.35 ([9, Theorem 2, p. 1.18]). Let (π, V) be an infinite-dimensional irreducible admissible of G(F). Then the contragredient $\widetilde{\pi}$ of π is equivalent to $\chi_{\pi}^{-1} \otimes \pi$, where χ_{π} is the central character of π , and the Kirillov space $\mathcal{K}(\widetilde{\pi}, \psi^{-1})$ is the set of function $x \mapsto \chi_{\pi}(x)^{-1}\kappa(x)$ with $\kappa \in \mathcal{K}(\pi, \psi)$. Furthermore the invariant duality between $\mathcal{K}(\pi, \psi)$ and $\mathcal{K}(\widetilde{\pi}, \psi^{-1})$ is given by the bilinear form $\langle \kappa, \eta \rangle$ such that

$$\langle \kappa, \eta \rangle = \int \kappa_1(x) \eta(-x) d^{\times} x + \int \kappa_2(x) \widetilde{\pi}_{\mathfrak{k}}(w) \eta(-x) d^{\times} x$$

if $\kappa = \kappa_1 + \pi_{\mathfrak{k}}(w)\kappa_2$ with $\kappa_1, \kappa_2 \in C_c^{\infty}(F^{\times})$ and $\eta \in \mathcal{K}(\widetilde{\pi}, \psi^{-1})$.

1.1.7 Bessel distributions and Bessel functions

Let (π, V) be an infinite-dimensional irreducible admissible representation of G. Due to Corollary 1.1.33, there exists an unique (up to scalar multiples) ψ Whittaker functional $L: V \to \mathbb{C}$. Let \widetilde{L} be a ψ^{-1} Whittaker functional on the representation contragredient $(\widetilde{\pi}, \widetilde{V})$ to (π, V) . It follows from Theorem 1.1.35, we normalize \widetilde{L} so that if $v \in V$ and $\widetilde{v} \in \widetilde{V}$ are such that either

 $x\mapsto L(\pi\left(\mathrm{diag}(x,1)\right)v)$ or $x\mapsto \widetilde{L}(\widetilde{\pi}\left(\mathrm{diag}(x,1)\right)\widetilde{v})$ has compact support in F^{\times} then

$$\widetilde{v}(v) = \langle v, \widetilde{v} \rangle = \int_{F^{\times}} L(\pi \left(\operatorname{diag}(x, 1) \right) v) \widetilde{L}(\widetilde{\pi} \left(\operatorname{diag}(x, 1) \right) \widetilde{v}) d^{\times} x.$$

(Note that $L(\pi(\operatorname{diag}(x,1)) v) \in \mathcal{K}(\pi,\psi)$ and $\widetilde{L}(\widetilde{\pi}(\operatorname{diag}(x,1)) \widetilde{v}) \in \mathcal{K}(\widetilde{\pi},\psi^{-1})$). For $f \in C_c^{\infty}(G)$ we define the linear functional $\rho(f)\widetilde{L}: \widetilde{V} \to \mathbb{C}$ by

$$(\rho(f)\widetilde{L})(\widetilde{v}) = \int_{G} f(g)\widetilde{L}(\widetilde{\pi}(g^{-1})\widetilde{v})dg, \quad \widetilde{v} \in \widetilde{V}.$$
 (1.1.4)

It clear that $\rho(f)\widetilde{L} \in \widetilde{\widetilde{V}}$ (i.e a smooth linear functional). Using the canonical isomorphism $\widetilde{\widetilde{\pi}} \simeq \pi$ (cf. Proposition 1.1.2), we can identify $\rho(f)\widetilde{L}$ with a vector $v_{f,\widetilde{L}} \in V$.

Definition 1.1.36 (Bessel distribution). Let (π, V) be an infinite-dimensional irreducible admissible representation of G. The (Gelfand-Kazhdan) Bessel distribution of π is the distribution $J_{\pi}: C_c^{\infty}(G) \to \mathbb{C}$ defined by

$$J_{\pi}(f) = L(v_{f,\widetilde{L}}).$$

Our main theorem in this section is the following:

Theorem 1.1.37. There exists a locally integrable function j_{π} on G such that

$$J_{\pi}(f) = \int_{G} j_{\pi}(g) f(g) dg, \quad f \in C_{c}^{\infty}(G).$$

The strategy to prove this Theorem is that:

- We firstly define the function j_{π} via the uniqueness of Whittaker model for π on the open Bruhat cell. (We follow the work of Soudry in [17]). This function is the *Bessel function* of π .
- We then prove that j_{π} is a locally integrable function and $J_{\pi}(f) = \tilde{J}_{\pi}(f) := \int_{G} j_{\pi}(g) f(g) dg$ for all $f \in C_{c}^{\infty}(G)$. (We follow the work of Baruch in [1]).

Let N_m be the subgroup of N defined by

$$N_m := \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} | |x| \le q^m \right\}.$$

Let $W(\pi, \psi)$ be the Whittaker model of (π, V) . Let $W \in W(\pi, \psi)$. We define $W_m : G \to \mathbb{C}$ by

$$W_m(g) := \int_{N_m} W(gn)\psi^{-1}(n)dn.$$
 (1.1.5)

Since W smooth and N_m compact, this function is well defined. We can easily verify that

$$W_m(ng) = \psi(n)W_m(g), \quad \forall n \in N, g \in G.$$

Lemma 1.1.38. We have $W_m(\operatorname{diag}(y,1)) \in C_c^{\infty}(F^{\times}) \subset \mathcal{K}(\pi,\psi)$.

Proof. It easy to see that W_m is a smooth function. We have

$$W\left(\begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}\right) = W\left(\begin{pmatrix} 1 & xy \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix}\right) = \psi(xy)W\begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix}.$$

It implies that

$$W_m(\operatorname{diag}(y,1)) = W(\operatorname{diag}(y,1)) \cdot \int_{\pi^{-m}\mathcal{O}} \psi(xy) dx.$$

Since

$$\int_{\varpi^{-m}\mathcal{O}} \psi(xy) dx = \begin{cases} q^m & \text{if } |y| \le q^{-m-c}, \\ 0 & \text{otherwise,} \end{cases}$$

where c is the conductor of ψ , W_m has a compact support.

As a consequence of Lemma 1.1.38, we have $W_m \in \mathcal{W}(\pi, \psi)$.

Lemma 1.1.39. If $g \in Bw_0B$ then there exists $m_0 = m_{0,g}$ such that $W_m(g) = W_{m_0}(g)$ for all $m \ge m_0$.

Proof. We note that for any $W \in \mathcal{W}(\pi, \psi)$, $W(\operatorname{diag}(y, 1)) \in \mathcal{K}(\pi, \psi) = C_c^{\infty}(F^{\times}) + \pi_{\mathfrak{k}}(w)C_c^{\infty}(F^{\times})$. Assume first that $W(\operatorname{diag}(y, 1)) \in C_c^{\infty}(F^{\times})$, then for a fixed $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Bw_0B$ (i.e $c \neq 0$), the function $W\left(g\begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix}\right)$ has a compact support in z. Indeed, let |z| be so large that

$$\pi \begin{pmatrix} 1 & 0 \\ -(z + \frac{d}{c})^{-1} & 1 \end{pmatrix} W = W$$

then

$$W\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix}\right) = W\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -(z + \frac{d}{c})^{-1} & 1 \end{pmatrix}\right)$$

$$= W\left(\frac{\det(g)}{cz+d} & az+b \\ 0 & cz+d \end{pmatrix}$$

$$= \chi_{\pi}(cz+d)\psi\left(\frac{az+b}{cz+d}\right)W\left(\frac{\det(g)}{(cz+d)^2} & 0 \\ 0 & 1 \end{pmatrix}.$$

By our assumption, there exist m_0 (depending on g) such that

$$W\begin{pmatrix} \frac{\det(g)}{(cz+d)^2} & 0\\ 0 & 1 \end{pmatrix} = 0$$

if $|z| \geq q^{m_0}$. It implies that $W_m(g) = W_{m_0}(g)$ for all $m \geq m_0$.

Now let W be any function in $W(\pi, \psi)$. Fix an integer $m_1 > 0$. Let $m \ge m_1$, and $g \in Bw_0B$, we have

$$W_m(g) = \int_{N_m} W_{m_1}(gn)\psi^{-1}(n)dn.$$

Using Lemma 1.1.38 and above argument, we obtain then a proof for this Lemma. \Box

For $g \in Bw_0B$, we define $L_g(W) = \lim_{m\to\infty} W_m(g)$. Due to Lemma 1.1.39, this limit converges. For each $v \in V$, assume that W_v is the image of v via the isomorphism $V \to \mathcal{W}(\pi, \psi)$. We abuse the notation of L_g to define a function from V to \mathbb{C} : $L_g(v) := L_g(W_v)$. It is easily to check that L_g is a Whittaker functional on (π, V) . From the uniqueness of Whittaker functional, there exists a function $j_{\pi} : Bw_0B \to \mathbb{C}$ independent of v, such that

$$L_g(v) = j_\pi(g)W_v(e), \quad g \in Bw_0B, \ v \in V.$$

Lemma 1.1.40. Assume that $g = n_1 z \operatorname{diag}(x, 1) w_0 n_2 \in Bw_0 B$ with $n_1, n_2 \in N$, $z \in Z(G)$ and $x \in F^{\times}$. We have then

$$j_{\pi}(g) = \psi(n_1)\psi(n_2)\chi_{\pi}(z)j_{\pi}(\mathrm{diag}(x,1)w_0).$$

Proof. By definition, we have

$$\begin{split} L_g(v) &= \lim_{m \to \infty} \int_{N_m} W_v(gn) \psi^{-1}(n) dn \\ &= \lim_{m \to \infty} \int_{N_m} W_v(n_1 z \mathrm{diag}(x, 1) w_0 n_2 n) \psi^{-1}(n) dn \\ &= \lim_{m \to \infty} \int_{N_m} \psi(n_2) W_v(n_1 z \mathrm{diag}(x, 1) w_0 n_2 n) \psi^{-1}(n_2 n) dn \\ &= \lim_{m \to \infty} \int_{N_m} \psi(n_2) W_v(n_1 z \mathrm{diag}(x, 1) w_0 n) \psi^{-1}(n) dn \quad \text{(changing variable)} \\ &= \lim_{m \to \infty} \int_{N_m} \psi(n_2) \psi(n_1) W_v(\mathrm{diag}(x, 1) w_0 nz) \psi^{-1}(n) dn \\ &= \lim_{m \to \infty} \int_{N_m} \psi(n_2) \psi(n_1) W_{\pi(z)(v)}(\mathrm{diag}(x, 1) w_0 n) \psi^{-1}(n) dn \\ &= \lim_{m \to \infty} \int_{N_m} \psi(n_2) \psi(n_1) W_{\chi_{\pi(z),v}}(\mathrm{diag}(x, 1) w_0 n) \psi^{-1}(n) dn \\ &= \lim_{m \to \infty} \int_{N_m} \psi(n_1) \psi(n_2) \chi_{\pi}(z) W_v(\mathrm{diag}(x, 1) w_0 n) \psi^{-1}(n) dn \\ &= \psi(n_1) \psi(n_2) \chi_{\pi}(z) L_{\mathrm{diag}(x, 1) w_0}(v) \\ &= \psi(n_1) \psi(n_2) \chi_{\pi}(z) j_{\pi}(\mathrm{diag}(x, 1) w_0) W_v(e). \end{split}$$

The last identity implies that $j_{\pi}(g) = \psi(n_1)\psi(n_2)\chi_{\pi}(z)j_{\pi}(\operatorname{diag}(x,1)w_0)$.

Lemma 1.1.41. For |x| large enough, we have then

$$j_{\pi} (\operatorname{diag}(x, 1)w_0) = \int_{F^{\times}} I(\operatorname{diag}(z, xz), 1_{w_0 K_0}) \chi_{\pi}(z)^{-1} d^{\times} z.$$

(Recall that I(wt, f) is the orbital integral defined in Section 1.1.5.)

Proof. Let n_0 be an arbitrary non-negative integer. Take $W = W_0$ in $\mathcal{W}(\pi, \psi)$ such that the function $W_0(\operatorname{diag}(x, 1))$ is the characteristic function of $1 + \varpi^{n_0}\mathcal{O}$.

Since W_0 is smooth, there exists m such that if $|z| \geq q^m$ then

$$\pi \begin{pmatrix} 1 & 0 \\ -z^{-1} & 1 \end{pmatrix} (W_0) = W_0,$$

and then

$$W_{0}\left(\begin{pmatrix} 0 & x \\ 1 & 0 \end{pmatrix}\begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix}\right) = W_{0}\left(\begin{pmatrix} 0 & x \\ 1 & 0 \end{pmatrix}\begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & 0 \\ -z^{-1} & 1 \end{pmatrix}\right)$$

$$= W_{0}\left(\frac{-x}{z} & x \\ 0 & y \end{pmatrix} = W_{0}\left(z\begin{pmatrix} 1 & \frac{x}{z} \\ 0 & 1 \end{pmatrix}\begin{pmatrix} \frac{-x}{z^{2}} & 0 \\ 0 & 1 \end{pmatrix}\right)$$

$$= \chi_{\pi}(z)\psi\left(\frac{x}{z}\right)W_{0}\left(\frac{-x}{z^{2}} & 0 \\ 0 & 1 \end{pmatrix}.$$

It implies that

$$L_{\operatorname{diag}(x,1)w_{0}}(W_{0}) = \int_{|z| \leq q^{m}} W_{0} \left(\operatorname{diag}(x,1)w_{0}\begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix}\right) \psi^{-1}(z)dz + \int_{|z| > q^{m}} \chi_{\pi}(z)\psi\left(\frac{x}{z} - z\right) W_{0}\begin{pmatrix} \frac{-x}{z^{2}} & 0 \\ 0 & 1 \end{pmatrix} dz$$

Let C_{π,n_0} be such that

$$W_0\left(\operatorname{diag}(x,1)w_0\begin{pmatrix}1&z\\0&1\end{pmatrix}\right)=0$$

for all $|z| \leq q^m$ and all $|x| \geq C_{\pi,n_0}$ and using $W_0(e) = 1$ we obtain

$$j_{\pi}(\operatorname{diag}(x,1)w_{0}) = L_{\operatorname{diag}(x,1)w_{0}}(W_{0}) = \int_{xz^{-2}+1\in\varpi^{n_{0}}\mathcal{O}} \chi_{\pi}(z)\psi\left(\frac{x}{z}-z\right)dz$$
(1.1.6)

for all $|x| \geq C_{\pi,n_0}$.

On the other hand,

$$I(\operatorname{diag}(z, zx), 1_{w_0 K_{n_0}}) = \int 1_{w_0 K_{n_0}} \begin{pmatrix} z & zx_2 \\ zx_1 & zx_1x_2 + xz \end{pmatrix} \psi(x_1 + x_2) dx_1 dx_2.$$

This is 0 unless $z \in \varpi^{n_0} \mathcal{O} = \mathfrak{p}^{n_0}$. We change x_1 to x_1/z and x_2 to x_2/z . We obtain then

$$I(\operatorname{diag}(z, xz), 1_{w_0 K_{n_0}}) = |z|^{-2} \int \psi\left(\frac{x_1 + x_2}{z}\right) dx_1 dx_2,$$

integrated over the domain defined by:

$$x_i \equiv 1 \mod \mathfrak{p}^{n_0}$$
 for $i = 1, 2$,
 $x_1 x_2 \equiv -xz^2 \mod z \mathfrak{p}^{n_0}$.

This domain is empty unless $-xz^2 \equiv 1 \mod \mathfrak{p}^{n_0}$. We change variables and set

$$x_2 = tx_1^{-1},$$

where now the domain of integration is defined by:

$$x_1 \equiv 1 \mod \mathfrak{p}^{n_0}, t \equiv -xz^2 \mod z\mathfrak{p}^{n_0}.$$

Choose n_0 large enough such that $\psi(u) = 1$ for all $u \in \mathfrak{p}^{n_0}$, after integrating over t the integral becomes

$$|z|^{-2} \operatorname{vol}(\mathfrak{p}^{n_0}) \int_{x_1 \equiv 1 \mod \mathfrak{p}^{n_0}} \psi\left(\frac{\phi}{z}\right) dx_1,$$

where the phase function ϕ is given by:

$$\phi = x_1 + \frac{-xz^2}{x_1}.$$

We set $x_1 = 1 + v$ with $v \in \mathfrak{p}^{n_0}$. The phase function takes the form

$$\phi = 1 + v + \frac{-xz^2}{1+v}.$$

The Taylor expansion of this function at the origin has the form

$$(1 - xz^2) + (1 + xz^2)v - (xz^2)v^2 + \text{higher degree terms}.$$

By the principle of the stationary phase there is a compact neighborhood Ω of 0 in F such that, for |z| small enough, the integral is equal to

$$|z|^{-1} \int_{\Omega} \psi\left(\frac{2+v^2}{z}\right) dv = \left|\frac{1}{2z}\right|^{1/2} \psi\left(\frac{2}{z}\right) \gamma\left(\frac{2}{z},\psi\right).$$

We note that for $|x| > q^{\frac{n_0}{2}}$, the condition $-xz^2 \equiv 1 \mod \mathfrak{p}^{n_0}$ implies that $z \in \mathfrak{p}^{n_0}$. Hence

$$\int_{F^{\times}} I(\operatorname{diag}(z, xz), 1_{w_0 K_0}) \chi_{\pi}(z)^{-1} = \int_{xz^2 + 1 \in \mathfrak{p}^{n_0}}$$
(1.1.7)

Lemma 1.1.42. Let $W \in \mathcal{W}(\pi, \psi)$ be such that the function $W(\operatorname{diag}(x, 1))$ belongs to $C_c^{\infty}(F^{\times})$. Then

$$W(g) = \int_{F^{\times}} j_{\pi}(g.\operatorname{diag}(x^{-1}, 1))W(\operatorname{diag}(x, 1))d^{\times}x$$

for all $g \in Bw_0B$.

Proof. We put

$$\phi_{W,g}(z) = W\left(g\begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix}\right)$$

then

$$\widehat{\phi_{W,g}}(1) = \int_F \phi_{W,g}(z)\psi^{-1}(z)dz = L_g(W) = j_{\pi}(g)W(e).$$

We have

$$\begin{split} \widehat{\phi_{W,g}}(y) &= \int_{F} \phi_{W}(z)\psi^{-1}(yz)dz \\ &= \int_{F} |y|^{-1}\phi_{W,g}(y^{-1}z)\psi^{-1}(z)dz \quad \text{(changing variable)} \\ &= \int_{F} |y|^{-1}W \left(g \begin{pmatrix} 1 & y^{-1}z \\ 0 & 1 \end{pmatrix}\right) \psi^{-1}(z)dz \\ &= \int_{F} |y|^{-1}W \left(g \begin{pmatrix} y^{-1} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix}\right) \psi^{-1}(z)dz \\ &= |y|^{-1} \int_{F} \phi_{\pi\begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix}(W), g\begin{pmatrix} y^{-1} & 0 \\ 0 & 1 \end{pmatrix}}(z)\psi^{-1}(z)dz \\ &= |y|^{-1} \overline{\phi_{\pi\begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix}}(W), g\begin{pmatrix} y^{-1} & 0 \\ 0 & 1 \end{pmatrix}}(1) \\ &= |y|^{-1} j_{\pi}(g. \operatorname{diag}(y^{-1}, 1)) \mathcal{H} \begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix}(W)(e) \\ &= |y|^{-1} j_{\pi}(g. \operatorname{diag}(y^{-1}, 1)) W(\operatorname{diag}(y, 1)) \end{split}$$

and hence

$$\begin{split} W(g) &= \phi_{W,g}(0) = \widehat{\phi_{W,g}}(0) = \int_F \widehat{\phi_{W,g}}(y) dy \\ &= \int_F |y|^{-1} j_\pi(g.\mathrm{diag}(y^{-1},1)) W(\mathrm{diag}(y,1)) dy \\ &= \int_{F^\times} j_\pi(g.\mathrm{diag}(y^{-1},1)) W(\mathrm{diag}(y,1)) d^\times y. \end{split}$$

Lemma 1.1.43. Let $\widetilde{W} \in \mathcal{W}(\widetilde{\pi}, \psi^{-1})$ be such that the function $\widetilde{W}(\operatorname{diag}(x, 1))$ belongs to $C_c^{\infty}(F^{\times})$. Then

$$\widetilde{W}(g^{-1}) = \int_{F^{\times}} j_{\pi} \left(\operatorname{diag}(x, 1) g \right) \widetilde{W}(\operatorname{diag}(x, 1)) d^{\times} x$$

for all $g \in Bw_0B$.

Proof. We define W by

$$W(g) = \widetilde{W}(w_0 g^* w_0)$$

where $g^* = (g^t)^{-1}$. Since $\widetilde{W} \in \mathcal{W}(\widetilde{\pi}, \psi^{-1})$, W is a locally constant \mathbb{C} -valued function on G and

$$W\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} g\right) = \widetilde{W}\left(w_0 \left(g^t \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}\right)^{-1} w_0\right)$$
$$= \widetilde{W}\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}^{-1} w_0 (g^t)^{-1} w_0\right)$$
$$= \psi(x)\widetilde{W}(w_0(g^t)^{-1} w_0) = \psi(x)W(g).$$

Moreover,

$$W(\operatorname{diag}(x,1)) = \widetilde{W}(w_0 \operatorname{diag}(x,1)^* w_0) = \widetilde{W}(\operatorname{diag}(1,x^{-1}))$$

$$= \widetilde{W}(x \operatorname{diag}(1,x^{-1})) = \chi_{\widetilde{\pi}}(x^{-1}) \widetilde{W}(\operatorname{diag}(x,1))$$

$$= \chi_{\pi}(x) \widetilde{W}(\operatorname{diag}(x,1))$$

belongs to $C_c^{\infty}(F^{\times}) \subset \mathcal{K}(\pi, \psi)$. (Due to Theorem 1.1.35, we have $\chi_{\widetilde{\pi}}(x) = \chi_{\pi}(x)^{-1}$.) Hence W satisfies the condition of Lemma 1.1.42. By using Lemma 1.1.42 for W and $g = \operatorname{diag}(y, 1)w_0$, we have then

$$\widetilde{W}(g^{-1}) = \widetilde{W}(w_0 \operatorname{diag}(y, 1)^{-1}) = W(w_0(g^{-1})^* w_0) = W(\operatorname{diag}(y, 1) w_0)$$

$$= \int_{F^{\times}} j_{\pi}(\operatorname{diag}(y, 1) w_0 \operatorname{diag}(x^{-1}, 1)) W(\operatorname{diag}(x, 1)) d^{\times} x$$

$$= \int_{F^{\times}} j_{\pi}(\operatorname{diag}(y, 1) w_0 \operatorname{diag}(x^{-1}, 1)) \chi_{\pi}(x) \widetilde{W}(\operatorname{diag}(x, 1)) d^{\times} x$$

$$= \int_{F^{\times}} j_{\pi}(x \operatorname{diag}(y, 1) w_0 \operatorname{diag}(x^{-1}, 1)) \widetilde{W}(\operatorname{diag}(x, 1)) d^{\times} x$$

$$= \int_{F^{\times}} j_{\pi}(\operatorname{diag}(x, 1) \operatorname{diag}(y, 1) w_0) \widetilde{W}(\operatorname{diag}(x, 1)) d^{\times} x \qquad (1.1.8)$$

Now for $g = n_1 z \operatorname{diag}(y, 1) w_0 n_2$ we have

$$\widetilde{W}(g^{-1}) = \widetilde{W}(n_2^{-1}z^{-1}w_0\operatorname{diag}(y,1)^{-1}n_1^{-1}) = \psi^{-1}(n_2^{-1})\chi_{\widetilde{\pi}}(z^{-1})\widetilde{\pi}(n_1^{-1})\widetilde{W}(w_0\operatorname{diag}(y,1)^{-1}) =$$

Corollary 1.1.44 (cf. [1, Corollary 4.2]). There exist constants $C = C_{\pi}$ and $D = D_{\pi}$ such that for |x| > C,

$$|j_{\pi}(\operatorname{diag}(x,1)w_0)| \le D|\chi_{\pi}(x)|^{1/2}|x|^{1/4}.$$

Proof. We denote by ζ a square root of $\frac{-1}{x}$. Another square root of $\frac{-1}{x}$ is then $-\zeta$. Using germ expansion (cf. Theorem 1.1.28), for any $f \in C_c^{\infty}(G)$ and $z \in F^{\times}$ we obtain then

$$I(\operatorname{diag}(z, xz), f) = \omega_f(\operatorname{diag}(z, xz)) + K_e^{w_0} \begin{pmatrix} \zeta & 0 \\ 0 & -\zeta^{-1} \end{pmatrix} I \begin{pmatrix} \frac{z}{\zeta} w_0, f \end{pmatrix} + K_e^{w_0} \begin{pmatrix} -\zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix} I \begin{pmatrix} \frac{-z}{\zeta} w_0, f \end{pmatrix}. \quad (1.1.9)$$

Proposition 1.1.45 (cf. [1, Proposition 4.3]). Let $f \in C_c^{\infty}(G)$.

- (a) There exists a positive constant $M = M_f$ such that for |x| < M we have $\int |f(n_1 w_0 \operatorname{diag}(x, 1) z n_2) \chi_{\pi}(z)| d^{\times} z = 0.$
- (b) There exist positive constants $C = C_f$ and $D = D_f$ such that for |x| > C we have

$$\int |f(n_1 w_0 \operatorname{diag}(x, 1) z n_2) \chi_{\pi}(z)| d^{\times} z \le D|\chi_{\pi}(x)|^{1/2} |x|^{1/2}.$$

Proof. We let

$$\tilde{f}(g) := \int_{NZ} |f(nzg)\chi_{\pi}(z)| dnd^{\times}z.$$

Since f is smooth and compactly supportted, \tilde{f} is well-defined. Moreover, \tilde{f} is smooth on the right (i.e there exists a compact open subgroup K of G such that $\tilde{f}(gk) = \tilde{f}(g)$ for all $g \in G$), compactly supported modulo NZ

(a)

Theorem 1.1.46. The function j_{π} is locally integrable.

Proof of Theorem 1.1.37. We define the distribution on $C_c^{\infty}(G)$ to be

$$\tilde{J}_{\pi}(f) := \int_{G} j_{\pi}(g) f(g), \quad f \in C_{c}^{\infty}(G).$$

By Theorem 1.1.46, \tilde{J}_{π} is well defined. We shall prove that $\tilde{J}_{\pi} = J_{\pi}$.

Let $f \in C_c^{\infty}(G)$. Since $(C_c^{\infty}(G), \ell)$ smooth, there exist an integer m such that $\ell_{\binom{x \ 0}{0}} f = f$ for all $x \in K_m$. Let $\widetilde{v} \in \widetilde{V}$ be such that

$$\widetilde{L}(\widetilde{\pi}(\operatorname{diag}(x,1))\widetilde{v}) = q^m 1_{K_m}(x) \in C_c^{\infty}(F^{\times})$$

for all $x \in F^{\times}$. We have

$$\widetilde{J}_{\pi}(f) = \int_{F^{\times}} \widetilde{J}_{\pi}(\ell_{\begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}} f) \widetilde{L}(\widetilde{\pi}(\operatorname{diag}(x, 1))\widetilde{v}) d^{\times} x
= \int_{F^{\times}} \left(\int_{G} j_{\pi}(g) f\left(\operatorname{diag}(x^{-1}, 1)g\right) dg \right) \widetilde{L}(\widetilde{\pi}(\operatorname{diag}(x, 1))\widetilde{v}) d^{\times} x
= \int_{F^{\times}} \left(\int_{G} j_{\pi}\left(\operatorname{diag}(x, 1)g\right) f\left(g\right) dg \right) \widetilde{L}(\widetilde{\pi}(\operatorname{diag}(x, 1))\widetilde{v}) d^{\times} x
= \int_{G} f(g) \left(\int_{F^{\times}} j_{\pi}\left(\operatorname{diag}(x, 1)g\right) \widetilde{L}(\widetilde{\pi}(\operatorname{diag}(x, 1))\widetilde{v}) d^{\times} x \right) dg
= \int_{G} f(g) \widetilde{L}(\widetilde{\pi}(g^{-1})\widetilde{v}) dg \quad (\text{cf. Lemma 1.1.43(1)})
= (\rho(f)\widetilde{L})(\widetilde{v}) \quad (\text{cf. (1.1.4)}).$$
(1.1.10)

In other hand, we have:

$$J_{\pi}(f) = \int_{F^{\times}} J_{\pi}(\ell_{\begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}} f) \widetilde{L}(\widetilde{\pi}(\operatorname{diag}(x, 1)) \widetilde{v}) d^{\times} x$$

$$= \int_{F^{\times}} L(\pi(\operatorname{diag}(x, 1)) v_{f, \widetilde{L}}) \widetilde{L}(\widetilde{\pi}(\operatorname{diag}(x, 1)) \widetilde{v}) d^{\times} x \quad \text{(by definition of } J_{\pi})$$

$$= \langle v_{f, \widetilde{L}}, \widetilde{v} \rangle \quad \text{(By the normalization of } \widetilde{L})$$

$$= (\rho(f) \widetilde{L})(\widetilde{v}). \tag{1.1.11}$$

Combining (1.1.10) and (1.1.9), we obtain then

$$J_{\pi}(f) = \tilde{J}_{\pi}(f).$$

The rest of this section is devoted to calculate the Bessel function j_{π} .

Bessel functions for the principal series of G. (We will follow the work of Baruch and Mao in [2].) Now let π be the infinite dimensional irreducible component of $\operatorname{Ind}_B^G \chi$ where $\chi = \chi_1 \otimes \chi_2$ and χ_1, χ_2 are two multiplicative quasi-characters on F^{\times} .

For a smooth representation (π, V) of N, we denote by $V_{\psi}(N)$ the subspace generated by all vectors in V of the form

$$\pi(n)(v) - \psi(n)v$$

where $n \in N$ and $v \in V$. We set $V_{\psi,N} := V/V_{\psi}(N)$. This space can be viewed as Jacquet space of the twisted N-representation $\psi^{-1} \otimes V$. The group N acts on $V_{\psi,N}$ by $\psi : \pi(n)(v) = \psi(n)v$.

Lemma 1.1.47. We have

$$V_{\psi}(N) = \left\{ v \in V | \int_{N_m} \pi(n)(v)\psi^{-1}(n)dn = 0 \text{ for some } m \right\}.$$

Proof. Let e_m be $\operatorname{vol}(N_m)^{-1}$ times the characteristic function of N_m . By definition we have

$$\int_{N_m} \pi(n)(v)\psi^{-1}(n)dn = \int_N e_m(n)\pi(n)(v)\psi^{-1}(n)dn.$$

Let $v \in V$, $n \in N$. There exist some $m \in \mathbb{Z}$ such that $n \in N_m$. Because N_m is a group and $n \in N_m$, we have $e_m(n'n^{-1}) = e_m(n')$ for all $n' \in N$, so

$$\int_{N_m} \pi(n_1)(\pi(n)(v))\psi^{-1}(n_1)dn_1 = \int_N e_m(n_1)\pi(n_1)(\pi(n)(v))\psi^{-1}(n_1)dn_1
= \int_N e_m(n_2n^{-1})\pi(n_2)(v)\psi^{-1}(n_2n^{-1})dn_2
= \psi(n)\int_{N_m} \pi(n_2)(v)\psi^{-1}(n_2)dn_2.$$

This implies $\int_{N_m} \pi(n_1)(\pi(n)(v) - \psi(n)v)\psi^{-1}(n_1)dn_1 = 0$. Thus

$$V_{\psi}(N) \subset \left\{ v \in V | \int_{N_m} \pi(n)(v) \psi^{-1}(n) dn = 0 \text{ for some } m \right\}.$$

Suppose $v \in V$ and $\int_{N_m} \pi(n)(v)\psi^{-1}(n)dn = 0$ for some m. Let $N_{m,v} = \{n \in N_m | \pi(n)v = v\} \cap \ker(\psi)$. Then $N_{m,v}$ is an open subgroup of the compact group N_m . Thus $N_m/N_{m,v}$ is finite and

$$\int_{N_m} \pi(n)(v)\psi^{-1}(n)dn = |N_m/N_{m,v}|^{-1} \sum_{k \in N_m/N_{m,v}} \pi(k)(v)\psi^{-1}(k).$$

This implies

$$v = v - \int_{N_m} \pi(n)(v)\psi^{-1}(n)dn$$

= $-|N_m/N_{m,v}|^{-1} \sum_{k \in N_m/N_{m,v}} \psi^{-1}(k)(\pi(k)(v) - \psi(k)v).$

Proposition 1.1.48. The functor $V \to V_{\psi,N}$ (viewing as a functor in the category of N-modules) is exact.

Corollary 1.1.49. Let $f \in \operatorname{Ind}_{B}^{G} \chi$. We can then always write f as

$$f = f' + f'',$$

where f' is in $V_{\psi}(N)$ and f'' has support in Bw_0N .

Proof. Let V be subspace of $\operatorname{Ind}_B^G \chi$ contains all the functions have support in Bw_0N . We have then the following exact sequence (of N-modules):

$$0 \to V \to \operatorname{Ind}_B^G \chi \to \mathbb{C} \to 0.$$

Note that $\mathbb{C}_{\psi,N} = 0$. Using Proposition 1.1.48, we obtain then $V_{\psi,N} \simeq (\operatorname{Ind}_B^G \chi)_{\psi,N}$.

Corollary 1.1.50. Let $f \in \operatorname{Ind}_{B}^{G} \chi$. Then the integral

$$L_m := \int_{N_m} f(w_0 n) \psi^{-1}(n) dn$$

converges when m tends to ∞ . Moreover $L = \lim_{m\to\infty} L_m$ is a Whittaker functional on $\operatorname{Ind}_B^G \chi$.

Proof. Denotes

$$I_m := \int_{N_-} f(w_0 n) \psi^{-1}(n) dn.$$

We shall prove that there exists m_0 such that $I_m = I_{m_0}$ for all $m \ge m_0$. Using Corollary 1.1.49, the function f can be written as

$$f = f' + f''$$

where $f' \in (\operatorname{Ind}_B^G \chi)_{\psi}(N)$ and f'' has support in Bw_0N . Due to Proposition 1.1.48, there exist $m_1 \in \mathbb{Z}$ such that

$$\int_{N_m} f'(w_0 n) \psi^{-1}(n) dn = 0$$

for all $m \geq m_1$.

Furthermore, the function $n \mapsto f''(w_0 n)$ has a compact support in N. Indeed, let |z| be so large that

$$f''\begin{pmatrix} 1 & 0\\ \frac{1}{z} & 1 \end{pmatrix} = f''\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} = 0$$

then

$$f''\left(w_0\begin{pmatrix}1&z\\0&1\end{pmatrix}\right) = f''\left(\begin{pmatrix}\frac{-1}{z}&1\\0&z\end{pmatrix}\begin{pmatrix}1&0\\\frac{1}{z}&1\end{pmatrix}\right)$$
$$= \chi_1\left(\frac{-1}{z}\right)\chi_2(z)\left|\frac{-1}{z^2}\right|^{\frac{1}{2}}f''\left(\frac{1}{z}&0\right) = 0.$$

It implies that there exists $m_2 \in \mathbb{Z}$ such that

$$\int_{N_{\infty}} f''(w_0 n) \psi^{-1}(n) dn = \int_{N_{\infty}} f''(w_0 n) \psi^{-1}(n) dn$$

for all $m \geq m_2$.

Take $m_0 = \max\{m_1, m_2\}$, we obtain then our claim.

The second assertion of this corollary is obvious.

We can now describe the Whittaker model associated to $\operatorname{Ind}_B^G \chi$. Let $f(g) \in \operatorname{Ind}_B^G \chi$. We define

$$W_f(g) = L(r_g(f)) = \lim_{m \to \infty} \int_{N_m} f(w_0 n g) \psi^{-1}(n) dn.$$

Since

$$w_0 \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \operatorname{diag}(a, 1) w_0 = \begin{pmatrix} -\frac{a}{z} & 1 \\ 0 & z \end{pmatrix} w_0 \begin{pmatrix} 1 & \frac{a}{z} \\ 0 & 1 \end{pmatrix},$$

we have

$$W_{f_m}(\operatorname{diag}(a,1)w_0) = \lim_{n \to \infty} \int_{\left|\frac{a}{z}\right| \le q^m}^{|z| \le q^n} \chi_1\left(-\frac{a}{z}\right) \chi_2(z) \left|\frac{a}{z^2}\right|^{\frac{1}{2}} \psi\left(\frac{a}{z} - z\right) dz.$$

Theorem 1.1.51. Let π be the infinite dimensional irreducible component of $\operatorname{Ind}_B^G \chi$. We have

$$j_{\pi}(g) = \psi(n_1 n_2) \chi_1(z) \chi_2(z) \int_{-\infty}^{+,-\infty} \chi_1\left(\frac{-a}{x}\right) \chi_2(x) \left|\frac{a}{x^2}\right|^{\frac{1}{2}} \psi\left(\frac{a}{x} - x\right) dx$$

if $g = n_1 z \operatorname{diag}(a, 1) w_0 n_2$ with $n_1, n_2 \in N$, $z \in Z(G)$ and $j_{\pi}(g) = 0$ otherwise. Here

$$\int_{-\infty}^{+,-} \phi(x)dx = \lim_{m \to \infty} \int_{a^{-m} < |x| \le a^m} \phi(x)dx,$$

if the limit exists.

Bessel functions for cuspidal representations of G. (We will follow the work of Baruch and Snitz in [4]). We have known that (for p is odd) all cuspidal representations are given by the construction of Jacquet and Langlands (cf. Section 1.1.4). For a convenience, we recall their construction. Let E be a quadratic extension of the p-adic field F. Let β be a quasicharacter of E^{\times} which does not factor through the norm, i.e there does not exist a quasi-character α of F^{\times} such that $\beta(z) = \alpha(N(z))$ for all $z \in E^{\times}$. Let τ be the non-trivial quadratic character defined on $F^{\times}/N(E^{\times})$ and extended to F^{\times} . Let $C_c^{\infty}(E)$ be the Schwartz space of locally constant and compactly supported functions on E. Let $S_{\beta}(E)$ be the subspace of functions $f \in C_c^{\infty}(E)$ such that

$$f(xz) = \beta(z^{-1})f(x) \tag{1.1.12}$$

for all $z \in E^1 := \{z \in E | N(z) = 1\}$. Let G_+ be the subgroup of matrices in G whose determinant is a norm. Let $a \in F$ be a norm. Then there exists $z_a \in E$ such that $N(z_a) = a$. The group G_+ acts on $S_{\beta}(E)$ as follows:

$$(n(x)f)(y) := \psi(xy^{2})f(y),$$

$$(\operatorname{diag}(a,1)f)(y) := |z_{a}|_{E}^{1/2}\beta(z_{a})f(yz_{a}),$$

$$(\operatorname{diag}(b,b^{-1})f)(y) := \tau(b)|b|_{E}^{1/2}f(by),$$

$$(1.1.13)$$

and

$$(wf)(y) := \gamma(\psi, E)\hat{f}(\overline{y})$$

where $\gamma(\psi, E)$ is the Weil constant defined in Lemma 1.1.25. We denote by r_{β} the cuspidal representation attached to β of G via the construction of Jacquet and Langlands. Then r_{β} is the representation of G induced from the above representation of G_{+} . In other word, the space of r_{β} is given by

$$V_{r_{\beta}} := \{ \mathfrak{f} : G \to S_{\beta}(E) | \mathfrak{f}(hx) = h\mathfrak{f}(x), h \in G_{+} \},$$

and G acts by right translation: $(r_{\beta}(g)\mathfrak{f})(x) = \mathfrak{f}(xg)$.

Before stating our formula for Bessel functions for cuspidal representations of G, we need to fix some Haar measures. Let dr be a self dual measure on F with respect to ψ . We let $d^*r = dr/|r|_F$ be a multiplicative Haar measure on F^* . Let dz be an additive Haar measure on E. Let $\{\epsilon_1, \ldots, \epsilon_\ell\}$ be a set of representatives of $F^*/(F^*)^2$. Then, E^* is the disjoint union of E_{ϵ_i} $(i=1,\ldots,\ell)$, where

$$E_{\epsilon_i} := \{ z \in E | \exists r_z \in K^{\times}, N(z) = r_z^2 \epsilon_i \}.$$

Note that E_{ϵ_i} is empty if ϵ_i is not a norm, and r_z is defined up to a sign. If E_{ϵ_i} is non-empty, we define a measure on E_{ϵ_i} to be the restriction of dz to

the open sets E_{ϵ_i} . Assume that ϵ_i is a norm and choose $z_{\epsilon_i} \in E$ such that $N(z_{\epsilon_i}) = \epsilon_i$. Then every element $z \in E_{\epsilon_i}$ can be written in the form (unique up to the sign of r_z and α) $z = z_{\epsilon_i} r_z \alpha$ with $\alpha \in E^1$. We define then a Haar measure $d\alpha$ on E^1 such that

$$dz = |z_{\epsilon_i}|_E |r_z|_E^{1/2} dr d\alpha.$$

It is easy to check that this measure does not depend on ϵ_i .

For $x \in K$, we define $E^x := \{z \in E | N(z) = x\}$. It is easy to see that E^x is empty when x is not a norm. If E^x is non-empty, then $E^x = zE^1$, where z is any element satisfying N(z) = x. We define a measure $d_x \alpha$ on E^x by $d_x \alpha = |z|_E^{1/2} d\alpha$. It is clear that this measure does not depend on the choice of z.

Theorem 1.1.52. Let β be a quasi-character of E^{\times} which does not factor through the norm form E to F. Let r_{β} be the cuspidal representation of $GL_2(F)$ attached to β . We have

$$j_{r_{\beta}}(g) = \psi(n_1 n_2) \beta(z) \gamma(\psi, E) \int_{E^a} \beta(\alpha) \psi(\operatorname{tr}(\alpha)) d_a \alpha$$

if $g = n_1 z \operatorname{diag}(a, 1) w n_2$ with $n_1, n_2 \in N$, $z \in Z(G)$, a is a norm and $j_{\pi}(g) = 0$ otherwise.

Proof. We consider a Whittaker functional $L: V_{r_{\beta}} \to \mathbb{C}$ defined by $L(\mathfrak{f}) := \mathfrak{f}(I)(1)$, where I is unit matrix of G and 1 is the unit element of E. The corresponding Whittaker function is then $W_{\mathfrak{f}}(g) := L(r_{\beta}(g)\mathfrak{f})$. Using the standard way, we obtain then the Kirillov functions

$$\phi_{\mathfrak{f}}(b) := W_{\mathfrak{f}}(\operatorname{diag}(b,1)) = L(r_{\beta}(\operatorname{diag}(b,1))\mathfrak{f}). \tag{1.1.14}$$

It follows from the definition that the mapping $\mathfrak{f} \to \phi_{\mathfrak{f}}$ is one to one and the space of all such function $\phi_{\mathfrak{f}}$ is $C_c^{\infty}(F^{\times})$. Due to Lemma 1.1.42, the Bessel function $j_{r_{\beta}}$ can be calculated by calculating $\phi_{r_{\beta}(w)\mathfrak{f}}(b) = L(r_{\beta}(\operatorname{diag}(b,1)w)\mathfrak{f})$.

Since $\{\epsilon_1, \ldots, \epsilon_\ell\}$ is a set of representatives of $F^{\times}/(F^{\times})^2$, there exist $r_b \in F^{\times}$ and $j \in \{1, \ldots, \ell\}$ such that $b = r_b^2 \epsilon_j$. We can write then

$$\operatorname{diag}(b,1)w = \operatorname{diag}(r_b^2,1)\operatorname{diag}(\epsilon_j,\epsilon_j)w\operatorname{diag}(\epsilon_j^{-1},1),$$

and $\phi_{r_{\beta}(w)f}(b)$ becomes

$$L(r_{\beta}(\operatorname{diag}(r_b^2, 1)\operatorname{diag}(\epsilon_j, \epsilon_j)w\operatorname{diag}(\epsilon_j^{-1}, 1))\mathfrak{f}).$$

Now r_b^2 is the norm of the element $r_b \in F$ viewed as a vector in E, and the scalar matrix $\operatorname{diag}(\epsilon_j, \epsilon_j)$ acts by the central character. So we get (cf. (1.1.12))

$$\phi_{r_{\beta}(w)\mathfrak{f}}(b) = |r_{b}|_{E}^{1/2}\beta(r_{b})\beta(\epsilon_{j})\mathfrak{f}(w\mathrm{diag}(\epsilon_{j}^{-1},1))(r_{b})$$

$$= |r_{b}|_{E}^{1/2}\beta(r_{b}\epsilon_{j})\gamma(\psi,E)\widehat{\mathfrak{f}(\mathrm{diag}(\epsilon_{j}^{-1},1))}(r_{b})$$

$$= |r_{b}|_{E}^{1/2}\beta(r_{b}\epsilon_{j})\gamma(\psi,E)\int_{E}\mathfrak{f}(\mathrm{diag}(\epsilon_{j}^{-1},1))(y)\psi(\mathrm{tr}(r_{b}y))dy.$$

Recall that E is the disjoint union of E_{ϵ_i} $(i = 1, ..., \ell)$. Therefore, the integral over E breaks up into a sum of integrals over the sets E_{ϵ_i} , i.e,

$$\phi_{r_{\beta}(w)\mathfrak{f}}(b) = \sum_{i=1}^{\ell} I_{\epsilon_i}(b,\mathfrak{f})$$
(1.1.15)

where

$$I_{\epsilon_i}(b,\mathfrak{f}) := r_b|_E^{1/2}\beta(r_b\epsilon_j)\gamma(\psi,E) \int_{E_{\epsilon_i}} \mathfrak{f}(\operatorname{diag}(\epsilon_j^{-1},1))(y)\psi(\operatorname{tr}(r_by))dy.$$

If $E_{\epsilon_i} =$ (is equivalent to that ϵ_i is not a norm), we set $I_{\epsilon_i}(b, \mathfrak{f}) = 0$. Recall that if E_{ϵ_i} is non-empty, then every element $y \in E_{\epsilon_i}$ can be written in the form $y = z_{\epsilon_i} r_y \alpha$ with $\alpha \in E^1$, $r_y \in F^{\times}$ and $z_{\epsilon_i} \in E$ such that $N(z_{\epsilon_i}) = \epsilon_i$. So, I_{ϵ_i} can be written as a double integral

$$|r_b|_E^{1/2}\beta(r_b\epsilon_j)\gamma\int_{E^\times}\int_{E^1}\mathfrak{f}(\operatorname{diag}(\epsilon_j^{-1},1))(z_{\epsilon_i}r_y\alpha)\psi(\operatorname{tr}(r_bz_{\epsilon_i}r_y\alpha))d\alpha|z_{\epsilon_i}r_y|_Ed^\times r_y.$$

Using relation (1.1.11), I_{ϵ_i} is then

$$|r_b|_E^{1/2}\beta(r_b\epsilon_j)\gamma\int_{E^\times}\mathfrak{f}(\operatorname{diag}(\epsilon_j^{-1},1))(z_{\epsilon_i}r_y)|z_{\epsilon_i}r_y|_E\int_{E^1}\beta(\alpha^{-1})\psi(\operatorname{tr}(r_bz_{\epsilon_i}r_y\alpha))d\alpha d^\times r_y.$$

Now using equations (1.1.13) and (1.1.12), we have

$$\phi_{\mathfrak{f}}(r_y^2 \epsilon_i \epsilon_j^{-1}) = L(r_{\beta}(\operatorname{diag}(r_y^2 \epsilon_i \epsilon_j^{-1}))\mathfrak{f}) = |r_y z_{\epsilon_i}|_E^{1/2} \beta(r_y z_{\epsilon_i}) \mathfrak{f}(\operatorname{diag}(\epsilon_j^{-1}, 1))(r_y z_{\epsilon_i}),$$

SO

$$\begin{split} I_{\epsilon_i}(b,\mathfrak{f}) &= |r_b|_E^{1/2} \beta(r_b \epsilon_j) \gamma \int_{F^\times} \phi_{\mathfrak{f}}(r_y^2 \epsilon_i \epsilon_j^{-1}) |z_{\epsilon_i} r_y|_E^{1/2} \beta(z_{\epsilon_i} r_y)^{-1} \times \\ & \int_{E^1} \beta(\alpha^{-1}) \psi(\operatorname{tr}(r_b z_{\epsilon_i} r_y \alpha)) d\alpha d^\times r_y. \end{split}$$

We define

$$J_{\epsilon_i}(b, \epsilon_i \epsilon_j^{-1} r_y^2) = \gamma |r_b z_{\epsilon_i} r_y|_E^{1/2} \beta(r_b \epsilon_j z_{\epsilon_i}^{-1} r_y^{-1}) \int_{E^1} \beta(\alpha^{-1}) \psi(\operatorname{tr}(r_b z_{\epsilon_i} r_y \alpha)) d\alpha$$
(1.1.16)

if ϵ_i is a norm and $J(b, \epsilon_i \epsilon_j^{-1} r_y^2) = 0$ otherwise. We have then

$$I_{\epsilon_i}(b,\mathfrak{f}) = \int_{F^{\times}} \phi_{\mathfrak{f}}(r_y^2 \epsilon_i \epsilon_j^{-1}) J(b, \epsilon_i \epsilon_j^{-1} r_y^2) d^{\times} r_y.$$

We change the variable of integration to $x = r_y^2 \epsilon_i \epsilon_j^{-1}$ and integrate over the set $\epsilon_i \epsilon_j^{-1}(F^{\times})^2$, and we get

$$I_{\epsilon_i}(b, \mathfrak{f}) = \int_{\epsilon_i \epsilon_i^{-1}(F^{\times})^2} J_{\epsilon_i}(b, x) \phi_{\mathfrak{f}}(x) d^{\times} x.$$
 (1.1.17)

For any $x \in F^{\times}$, there exists uniquely $i \in \{1, ..., \ell\}$ such that the square class of bx is ϵ_i . Recall that $b = \epsilon_j r_b^2$. So there exist uniquely (up to a sign) $r_y \in K^{\times}$ such that $x = \epsilon_i \epsilon_j^{-1} r_y^2$. We define

$$J(b,x) = J_{\epsilon_i}(b,\epsilon_i\epsilon_j^{-1}r_y^2).$$

Combining equations (1.1.14), (1.1.16) and definition of J(b, x), we get

$$\phi_{r_{\beta}(w)\mathfrak{f}}(b) = \int_{F^{\times}} J(b, x)\phi_{\mathfrak{f}}(x)d^{\times}x. \tag{1.1.18}$$

Let $z = r_b r_y z_{\epsilon_i} \alpha$. As α varies over E^1 , z varies over E^{bx} . Recall that

$$dz = |r_b r_y z_{\epsilon_i}|_E^{1/2} d\alpha,$$

so we can write J as (cf. equation (1.1.15))

$$J(b,x) = \gamma \beta(b) \int_{E^{bx}} \beta(z^{-1}) \psi(\text{tr}(z)) dz = \gamma \beta(x^{-1}) \int_{E^{bx}} \beta(bxz^{-1}) \psi(\text{tr}(z)) dz$$

Since $N(z) = z\overline{z} = bx$, we have $bxz^{-1} = z\overline{z}z^{-1} = \overline{z}$. Moreover $\operatorname{tr}(\overline{z}) = \operatorname{tr}(z)$, so

$$J(b,x) = \gamma \beta(x^{-1}) \int_{E^{bx}} \beta(z) \psi(\operatorname{tr}(z)) dz.$$

Combine above equation with (1.1.17), we obtain then

$$\phi_{r_{\beta}(w)\mathfrak{f}}(b) = \int_{F^{\times}} \phi_{\mathfrak{f}}(x)\beta(x^{-1}) \left[\gamma \int_{E^{bx}} \beta(z)\psi(\operatorname{tr}(z))dz \right] d^{\times}x.$$

It implies that $j_{r_{\beta}}(w) = \Box$

41

1.1.8 Orbital integrals

We denote by $G_{\rm rs}$ the set of semi-simple regular elements of G, i.e the set of matrix has a separable characteristic polynomial. Let T' be a maximal torus of G, we shall denote by $T'_{G-{\rm reg}} = T' - Z$ the subset of regular elements. (T' can be a centralizer of an *elliptic* element which has an irreducible (in F[X]) characteristic polynomial or the "standard" split torus T.)

For $g \in G$ we denote $D(g) = 4 - \det(g)^{-1} \operatorname{tr}(g)^2$.

Proposition 1.1.53 (Orbital integrals). Let $\gamma \in G$ and $f \in C_c^{\infty}(G)$. Then $\int_{G_{\gamma}\backslash G} f(g^{-1}\gamma g)d\dot{g}$ where G_{γ} is the centralizer of $\gamma \in G$ converges absolutely. The integral

$$O_{\gamma}(f) := \int_{G_{\gamma} \backslash G} f(g^{-1} \gamma g) d\dot{g}$$

is called **orbital integral** of f at γ .

Proof. If γ is central, then $G_{\gamma} = G$. So the statement is trivial.

Now we look at the case when γ is a *hyperbolic* (or *split*) semi-simple regular element (which is conjugated to $\operatorname{diag}(x,y) \in T$ for $x \neq y$). We can assume that $\gamma \in T$, so that $G_{\gamma} = T$. Using Iwasawa decomposition $G = T \times N \times K_0$ we have

$$O_{\gamma}(f) = \int_{N \times K_0} f(k^{-1}n^{-1}\gamma nk) dn dk.$$

Denote $\gamma = \text{diag}(x,y)$ and $n = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}$. Then $n^{-1}\gamma n = \gamma \begin{pmatrix} 1 & (1-y/x)u \\ 0 & 1 \end{pmatrix}$ and we have

$$O_{\gamma}(f) = |1 - y/x|^{-1} \int_{K_0 \times N} f(k^{-1} \gamma nk) dk dn$$
$$= |D(\gamma)|^{-1/2} \delta_B^{1/2}(\gamma) \int_{K_0 \times N} f(k^{-1} \gamma nk) dk dn. \qquad (1.1.19)$$

Since $f \in C_c^{\infty}(G)$, there exists $K \subset K_0$ an open compact subgroup of G such that f is bi-K-invariant.

Theorem 1.1.54 (Germ expansion). Let γ be an elliptic element in G which is sufficiently close to e. Write E for the splitting field of the quadratic torus T'-determined uniquely up to conjugation in G by γ . Then

$$O_{\gamma}(f) = -\frac{2}{q-1} \text{vol}(K_0) O_e(f) + \kappa_{T'} c(T') |D(\gamma)|^{-1/2} O_{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}}(f),$$

where $\kappa_{T'} = \begin{cases} 2 & \text{if } E/F \text{ is ramified} \\ \frac{q+1}{q} & \text{if } E/F \text{ is unramified,} \end{cases}$ and c(T') = c(E) is the square root of the absolute value of a generator of the discriminant of the splitting field E over F.

Proof. First we need to describe γ A local field F has the form $\mathbb{F}_q((\varpi))$, power series in the variable ϖ over the field \mathbb{F}_q where q is a power of an odd prime number p. Its ring of integers $\mathcal{O} = \mathbb{F}_q[[\varpi]]$, has the maximal ideal $\varpi \mathcal{O}$, and group of units $\mathcal{O}^{\times} = \mathcal{O} - \varpi \mathcal{O}$.

The ramified quadratic separable extension of F are E = F(r) where r is a root of x^2

Corollary 1.1.55. Let C be a compact subset of G/Z. Then there is c = c(C) > 0 such that

$$O_{\gamma}(1_C) \le c|D(\gamma)|^{-1/2}c(E)$$

for every $\gamma \in G_{rs}^{ell}$ where 1_C is the characteristic function of C in G/Z and $E = F(\gamma)$.

Proof. Using Germ expansion (cf. Theorem 1.1.54) for $f = 1_C$ and taking

$$c = 2 \left| O_{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}}(1_C) \right|$$

we obtain then the Corollary.

Theorem 1.1.56 (Change of variable formula). Let $\phi: X \to Y$ be a morphism between p-adic manifolds of constant dimensions such that the differential of ϕ is everywhere invertible (in particular, $\dim(X) = \dim(Y)$). Assume that the fibers of ϕ have bounded cardinality, and denote $c_{\phi}: Y \to \mathbb{Z}_{\geq 0}$, $y \mapsto \#(\phi^{-1}(\{y\}))$. Then for any differential form ω on Y and any function $f: Y \to \mathbb{C}$ that is integrable with respect to $|\omega|$, we have

$$\int_X f \circ \phi |\phi^* \omega| = \int_Y f c_\phi |\omega|.$$

1.1.9 Harish-Chandra characters

Theorem 1.1.57. Let (π, V) be an irreducible representation of G. Then there is a unique smooth function $\Theta_{\pi}: G_{rs} \to \mathbb{C}$ such that Θ_{π} is locally integrable on G, and for any $f \in \mathcal{H}(G)$ we have

$$\operatorname{tr}\pi(f) = \int_{G} f(g)\Theta_{\pi}(g)dg.$$

Definition 1.1.58. Let (π, V) be a smooth representation of G. Assume that χ_{π} is its central quasi-character. We say that π is **square-integrable** (or part of the **discrete series**) if χ_{π} is unitary and for any $v \in V$ and $\tilde{v} \in \tilde{V}$,

$$\int_{G/Z} |\langle \pi(g)v, \widetilde{v} \rangle|^2 dg < +\infty.$$

We say that π is **essentially square-integrable** if there exists $s \in \mathbb{R}_+$ such that $|\det|^s \otimes \pi$ is square-integrable.

Lemma 1.1.59. Any irreducible square-integrable representation is unitarizable, i.e admits a G-invariant hermitian inner product. Moreover the G-invariant hermitian inner product is unique up to \mathbb{R}_+ .

Proof. Let (π, V) be an irreducible square-integrable representation of G with central character χ_{π} . We denote by $L^{2}(G, \chi_{\pi})$ the space of measurable functions $G \to \mathbb{C}$ such that $f(zg) = \chi_{\pi}(z)f(g)$ for all $z \in Z$, $g \in G$ and $\int_{G/Z} |f(g)|^{2} dg < +\infty$. This space has a canonical Hermitian form

$$H_0(f, f') = \int_{G/Z} f(g) \overline{f'}(g) dg.$$

For each $\widetilde{v} \in \widetilde{V} - \{0\}$, the function $g \mapsto \langle \pi(g)v, \widetilde{v} \rangle$ is belong to $L^2(G, \chi_{\pi})$ and the map $v \mapsto (g \mapsto \langle \pi(g)v, \widetilde{v} \rangle)$ gives a G-equivariant embedding of V into $L^2(G, \chi_{\pi})$. Thus V admits a G-invariant hermitian inner product.

Let H(.,.) be any G-invariant hermitian inner form on V. We denote by \overline{V} the \mathbb{C} -vector space V but with the product $\mathbb{C} \times V \to V : (c, v) \mapsto \overline{c}v$. Then H(.,.) is a G-invariant non-degenerate bilinear form on $V \times \overline{V}$. Using Proposition 1.1.3, H(.,.) can be see as a G-isomorphism $\varphi_H : \overline{V} \to \widetilde{V}$. More precisely,

$$H(v_1, v_2) = \langle v_1, \varphi_H(v_2) \rangle.$$

Since \overline{V} is irreducible, by Schur's lemma, the G-invariant hermitian inner product is unique up to a scalar. Due to positive-definiteness of inner product, this scalar should be in \mathbb{R}_+ .

Proposition 1.1.60 (Formal degree). Let (π, V) be an irreducible essentially square-integrable representation of G. Then for any $u, v \in V$ and $\widetilde{u}, \widetilde{v} \in \widetilde{V}$ the integral

$$\int_{G/Z} \langle \pi(g)u, \widetilde{u} \rangle \langle v, \widetilde{\pi}(g) \widetilde{v} \rangle$$

converges absolutely and there exists a unique $d_{\pi} \in \mathbb{R}_{+}$, called the **formal** degree of π such that

$$\int_{G/Z} \langle \pi(g)u, \widetilde{u} \rangle \langle v, \widetilde{\pi}(g) \rangle = \frac{1}{d_{\pi}} \langle u, \widetilde{v} \rangle \langle v, \widetilde{u} \rangle.$$

Proof. Assume that χ_{π} is the central quasi-character of π . Since $\widetilde{\pi}$ is equivalent to $\chi_{\pi}^{-1} \otimes \pi$ (cf. Theorem 1.1.32), the absolute convergence of

$$\int_{G/Z} \langle \pi(g)u, \widetilde{u} \rangle \langle v, \widetilde{\pi}(g)\widetilde{v} \rangle dg$$

is equivalent to the absolute convergence of

$$\int_{G/Z} \langle \pi(g)u, \widetilde{u} \rangle \langle \pi(g)v, \widetilde{v} \rangle \chi_{\pi}^{-1}(\det(g)) dg.$$

Moreover, since (π, V) is essentially square-integrable we have

$$\int_{G/Z} |\langle \pi(g)u, \widetilde{u} \rangle \langle \pi(g)v, \widetilde{v} \rangle \chi_{\pi}^{-1}(\det(g))| dg \leq \frac{1}{2} \int_{G/Z} |\langle \pi(g)u, \widetilde{u} \rangle|^2 + \langle \pi(g)v, \widetilde{v} \rangle|^2 dg$$

$$< +\infty.$$

Now we fix $\widetilde{u} \in \widetilde{V}$ and $v \in V$, then the integral

$$\int_{G/Z} \langle \pi(g)u, \widetilde{u} \rangle \langle v, \widetilde{\pi}(g)\widetilde{v} \rangle dg$$

is a G-invariant non-degenerate bilinear form on $V \times \widetilde{V}$. Since \widetilde{V} is irreducible (cf. 1.1.6), using Proposition 1.1.3 and Schur's lemma, it is a complex number times the canonical non-degenerate bilinear form on $V \times \widetilde{V}$. In other word, there exist a function $c_{\pi}: V \times \widetilde{V} \to \mathbb{C}$ such that

$$\int_{G/Z} \langle \pi(g)u, \widetilde{u} \rangle \langle v, \widetilde{\pi}(g)\widetilde{v} \rangle dg = c_{\pi}(v, \widetilde{u}) \langle u, \widetilde{v} \rangle \quad \forall (u, \widetilde{v}) \in V \times \widetilde{V}.$$

Fix $u \in V$ and $\widetilde{v} \in \widetilde{V}$. The integral

$$\int_{G/Z} \langle \pi(g)u, \widetilde{u} \rangle \langle v, \widetilde{\pi}(g) \widetilde{v} \rangle dg$$

is also a G-invariant non-degenerate bilinear form on $V \times \widetilde{V}$. It implies that $c_{\pi}(v, \widetilde{u})$ is a G-invariant non-degenerate bilinear form on $V \times \widetilde{V}$. Using Proposition 1.1.3 and Schur's lemma again, there exist $c_{\pi} \in \mathbb{C}$ such that

$$c_{\pi}(v, \widetilde{u}) = c_{\pi}\langle v, \widetilde{u}\rangle.$$

45

Hence

$$\int_{G/Z} \langle \pi(g)u, \widetilde{u} \rangle \langle v, \widetilde{\pi}(g)\widetilde{v} \rangle dg = c_{\pi} \langle u, \widetilde{v} \rangle \langle v, \widetilde{u} \rangle.$$
 (1.1.20)

It remains to show that $c_{\pi} \in \mathbb{R}_{+}$. Up to twisting by a character, we can assume that π is square-integrable. Pick any G-invariant hermitian inner product H(.,.) on V, which is equivalent to an isomorphism $\varphi_{H}: \overline{V} \to \widetilde{V}$ (cf. proof of Lemma 1.1.59). Taking $\widetilde{u} = \varphi_{H}(v)$ and $\widetilde{v} = \varphi_{H}(u)$ for arbitrary $u, v \in V - \{0\}$, the LHS of (1.1.19) is equal to

$$\int_{G/Z} H(\pi(g)u, v) H(v, \pi(g)u) dg = \int_{G/Z} |H(\pi(g)u, v)|^2 dg$$

which is non-negative and not identically vanishing, and the RHS of (1.1.19) is equal to $c_{\pi}H(u,u)H(v,v)$, therefore $c_{\pi} \in \mathbb{R}_{+}$.

Theorem 1.1.61 (Weyl integration formula). Fix a set \mathcal{T} of representatives of conjugacy classes of tori in G(F). Let f be a measurable function on G. Then

$$\int_{G} f(g)dg = \sum_{T' \in \mathcal{T}} \frac{1}{2} \int_{T'_{G-reg}} |D(t)| O_{t}(f)dt$$

if one side is absolutely convergent.

Proposition 1.1.62. Let $\chi: T \to \mathbb{C}^{\times}$ be a quasicharacter of T, and consider $\pi = \operatorname{Ind}_{B}^{G}\chi$. Then Theorem 1.1.57 holds for π , and Θ_{π} is the unique G-invariant function on G_{rs} which vanishes identically on G_{rs}^{ell} and such that for any $t \in T_{G-reg}$ we have

$$\Theta_{\pi}(t) = |D(t)|^{-1/2} (\chi(t) + \chi^{w}(t)).$$

Proof. Due to the definition of $\operatorname{Ind}_B^G \chi$ and the Iwasawa decomposition, $\operatorname{Ind}_B^G \chi$ may be regarded as a space of function in $\phi \in C^{\infty}(K_0)$ which satisfies

$$\phi(bk) = \delta_B^{1/2}(b)\chi(b)\phi(k) = \chi(b)\phi(k)$$

for all $b \in B \cap K_0$ and $k \in K_0$. To evaluate $\operatorname{tr}\pi(f)$ we observe that if ϕ be a such function, $f \in \mathcal{H}(G)$ and $k_1 \in K_0$, and using Iwasawa decomposition we have then

$$\pi(f)(\phi)(k_1) = \int_G f(g)\phi(k_1g)dg = \int_G \phi(g)f(k_1^{-1}g)dg$$

$$= \int_{K_0 \times B} \phi(bk_2)f(k_1^{-1}bk_2)dk_2db$$

$$= \int_{K_0} \phi(k_2) \int_B \chi(b)\delta_B^{1/2}(b)f(k_1^{-1}bk_2)dbdk_2$$

$$= \int_{K_0} \phi(k_2)\psi(k_1, k_2)dk_2$$

where $\psi(k_1, k_2) = \int_B \mu(b) \delta_B^{1/2}(b) f(k_1^{-1}bk_2) db$ is a smooth function on $K_0 \times K_0$. We denote by $I(\psi)$ the integral operator on $C^{\infty}(K_0)$ defined by

$$\phi \mapsto I(\psi)(\phi)(.) = \int_{K_0} \phi(k)\psi(.,k)dk.$$

Then $\pi(f)$ coincides with $I(\psi)$ on $\operatorname{Ind}_B^G \chi$. Moreover, we can easily check that $I(\psi)(\phi)$ belongs to $\operatorname{Ind}_B^G \chi$ for all $\phi \in C^{\infty}(K_0)$. (In fact, for $k_1, k_2 \in K_0$ and $b_1 \in B \cap K_0$ we have

$$\psi(b_1k_1, k_2) = \int_B \chi(b)\delta_B^{1/2}(b)f(k_1^{-1}b_1^{-1}bk_2)db
= \int_B \chi(b_1(b_1^{-1}b))\delta_B^{1/2}(b_1(b_1^{-1}b))f(k_1^{-1}(b_1^{-1}b)k_2)d(b_1^{-1}b)
= \chi(b_1)\psi(k_1, k_2).)$$

Hence

$$\operatorname{tr}\pi(f) = \operatorname{tr}I(\psi) = \int_{K_0} \psi(k,k)dk$$

and so

$$\operatorname{tr}\pi(f) = \int_{K_0} \int_{B} \chi(b) \delta_B^{1/2}(b) f(k^{-1}bk) db dk$$

$$= \int_{K_0} \int_{T \times N} \chi(t) \delta_B^{1/2}(t) f(k^{-1}tnk) dt dn dk$$

$$= \int_{T} \chi(t) |D(t)|^{1/2} O_t(f) dt \quad \text{(c.f. (1.1.18))}. \tag{1.1.21}$$

In other hand, using Weyl integration formula (c.f Theorem 1.1.61) and the definition of Θ_{π} , we have then

$$\int_{G} f(g)\Theta_{\pi}(g)dg = \frac{1}{2} \int_{T_{G-reg}} |D(t)|\Theta_{\pi}(t)O_{t}(f)dt
= \frac{1}{2} \int_{T_{G-reg}} |D(t)|^{1/2} (\chi(t) + \chi^{w}(t))O_{t}(f)dt
= \frac{1}{2} \left[\int_{T} |D(t)|^{1/2} \chi(t)O_{t}(f)dt
+ \int_{T} |D(w_{0}^{-1}tw_{0})|^{1/2} \chi(w_{0}^{-1}tw_{0})O_{w_{0}^{-1}tw_{0}}(f)d(w_{0}^{-1}tw_{0}) \right]
= \int_{T} \chi(t)|D(t)|^{1/2}O_{t}(f)dt.$$
(1.1.22)

$1.1. \ \ THE\ p\text{-}ADIC\ CASE$

47

Combining (1.1.20) and (1.1.21), we obtain then

$$\operatorname{tr}\pi(f) = \int_G f(g)\Theta_{\pi}(g)dg$$

with Θ_{π} is defined as in the Proposition.

Bibliography

- [1] E. M. Baruch, On Bessel distribution for GL₂ over p-adic field, Journal of number theory 67, 190-202 (1997).
- [2] E. M. Baruch, Z. Mao, Bessel identities in the Waldspurger Correspondence over p-adic field, American Journal of Mathematics, vol. 125, No.2 (2003), 225-288.
- [3] E. M. Baruch, Z. Mao, Bessel identities in the Waldspurger Correspondence over the real numbers, Israel journal of Mathematics 145 (2005), 1-81.
- [4] E. M. Baruch, K. Snitz, A note on Bessel functions for supercuspidal representations of GL(2) over a p-adic field, Algebra Colloquium 18 (spec 1) (2011) 733-738.
- [5] I. N. Bernstein, A. V. Zelevinsky, Representation theory of GL(n, F) where F is a non-Archimedean local field, Russian Math. Survey, 31:3 (1976), 1-68.
- [6] C. J. Bushnell, G. Henniart, *The local Langlands conjecture for* GL(2), Grundlehren der mathematischen Wissenschaften 335, Springer, 2006.
- [7] H. Jacquet, Kloosterman integrals for $GL(2, \mathbb{R})$, Pure and applied mathematics quarterly, volume 1 (2005), 257-289.
- [8] I. M. Gelfand, D. Kazhdan, Representations of the group GL(n, K) where K is a local field, Lie Groups and Their Representations, Halsted, Newyork, (1975), 95-118.
- [9] R. Godement, *Notes on Jacquet-Langlands Theory*, The Institute for Advanced Study (1970).
- [10] H. Jacquet, Germs for Kloosterman integrals, a review, Contemporary Mathematics, vol. 664, (2016), 173-185.

50 BIBLIOGRAPHY

[11] H. Jacquet, R. P.Langlands, Automorphic forms on GL(2), LNM 114, Springer, 1970.

- [12] H. Jacquet, Y. Ye, Distinguished representations and quadratics base change for GL(3), Proc. AMS, vol 348, no. 3, (1996), 913-939.
- [13] A. Knightly, C. Li, *Traces of Hecke operator*, Math. Sur. and Mono., vol 133, AMS (2006).
- [14] R. P. Langlands, *Base change for* GL(2), Annals of Mathematics Study 96 (1980).
- [15] B. C. Ngo, Harmonic analysis and representation theory of p-adic reductive groups, updated on 19th May 2016.
- [16] A. J. Silberger, PGL₂ over the p-adics: its representations, spherical functions, and Fourrier analysis, LNM 166, Springer, 1970.
- [17] D. Soudry, The L and γ factors for generic representations of $GSp(4, k) \times GL(2, k)$ over a local non-archimedean field k, Duke Math. Journal 51, no. 2, (1984), 355-394.