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Abstract
In this paper, we prove the existence of Hölder continuous solu-

tions for an arbitrary non-negative Borel measure µ if there exists a
Hölder continuous subsolution on a domain Ω of plurisubharmonic
type m in Cn.

1 Introduction

Let 0 < α ≤ 1. Through the paper by C0,α(A), A ⊂ Cn we denote the
set of real-valued functions which are α-Hölder continuous on A. Hence,
ϕ ∈ C0,α(A) if and only if there exists C > 0 such that for x, y ∈ A we have

|ϕ(x)− ϕ(y)| ≤ C‖x− y‖α,
where ‖.‖ denotes the usual Euclidean norm in Cn. Let Ω be a bounded
domain in Cn and ψ ∈ C0,α(∂Ω). Assume that µ is a non-negative Borel
measure on Ω. The Dirichlet problem with Hölder continuous solutions to
the complex Monge-Ampère equation on Ω is the following

MA(Ω, µ, ψ) :


u ∈ PSH(Ω) ∩ C0,γ(Ω), 0 < γ ≤ 1;

(ddcu)n = µ

lim
z→x

u(z) = ψ(x), for x ∈ ∂Ω.

(1.1)
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where PSH(Ω) is the set of plurisubharmonic (psh) functions in Ω and
d = ∂ + ∂, dc = ( i

4
)(∂ − ∂). Then ddc = ( i

2
)∂∂ and (ddcu)n stands for the

complex Monge-Ampère operator of u.
In the case µ = fdV2n where f is a function defined on Ω and dV2n de-
notes the Lebesgue measure on Cn ∼= R2n the regularity of the equation
(1.1) was studied extensively by many authors. In [3], Bedford and Taylor

proved that if ψ ∈ C0,2α(∂Ω), f
1
n ∈ C0,α(Ω) then the equation (1.1) has a

unique solution u = u(Ω, f, ψ) and u(Ω, f, ψ) ∈ C0,α(Ω). Higher regularity
of solutions of (1.1) has been investigated by Caffarelli, Kohn, Nirenberg
and Spruck in [5]. In [5] under assuming smoothness of the data ψ, f and
nondegeneracy of the density f > 0, they showed that u(Ω, f, ψ) ∈ C∞(Ω).

Krylov in [16] proved that if ψ ∈ C3,1(∂Ω) and f ≥ 0, f
1
n ∈ C1,1(Ω) then

u(Ω, f, ψ) ∈ C1,1(Ω). When Ω is a bounded strictly pseudoconvex domain in
Cn, in [9], Guedj, Ko lodziej and Zeriahi investigated the Hölder continuity
of solutions of (1.1). They in [9] proved that if ψ ∈ C1,1(∂Ω), 0 ≤ f ∈ Lp(Ω),
for some p > 1, is bounded near the boundary then u = u(Ω, f, ψ) is the α-
Hölder continuity with 0 < α < 2

nq+1
, 1
p

+ 1
q

= 1. Next, Charabati extended
the above result of Guedj, Ko lodziej and Zeriahi to bounded strongly hy-
perconvex Lipschitz domains in Cn (see [7]). Recently, one are interested
in a new direction of study for Hölder continuous solutions of the equation
(1.1). Namely, let µ be a non-negative Borel measure on a bounded pseu-
doconvex domain Ω in Cn and ψ is a Hölder continuous function on ∂Ω.
Assume that there exists ϕ ∈ PSH(Ω)∩C0,α(Ω) such that µ ≤ (ddcϕ)n. Is
there a 0 < γ ≤ 1 and a real-valued function u such that

MA(Ω, µ, ψ) :


u ∈ PSH(Ω) ∩ C0,γ(Ω), 0 < γ ≤ 1;

(ddcu)n = µ

lim
z→x

u(z) = ψ(x), for x ∈ ∂Ω,

(1.2)

(Question 17 in [10]). This problem makes readers to connect to the earlier
result proved by Ko lodziej in [13] (also see Problem C in [14]). This is if
Ω is a strictly pseudoconvex domain in Cn and ψ ∈ C(∂Ω). Let µ be a
non-negative Borel measure on Ω. If there exists a subsolution for µ in the
sense that there exists v ∈ PSH(Ω) ∩ L∞(Ω), µ ≤ (ddcv)n, lim

z→x
v(z) =

ψ(x) for all x ∈ ∂Ω then we can find u ∈ PSH(Ω) ∩ L∞(Ω), lim
z→x

u(z) =

ψ(x), x ∈ ∂Ω and (ddcu)n = µ on Ω. The equation (1.2) was solved recently
by Ngoc Cuong Nguyen in [18]. In [18], under the assumption that Ω is a
strictly pseudoconvex domain in Cn, ψ = 0 on ∂Ω and

∫
Ω

(ddcϕ)n < +∞,

Ngoc Cuong Nguyen showed that there exists 0 < γ ≤ 1 and u ∈ C0,γ(Ω)
such that u satisfies the equation (1.2). Recently, in the most new preprint
(see [19]), Ngoc Cuong Nguyen removed the hypothesis

∫
Ω

(ddcϕ)n < +∞.

However, in question 17 in [10], Zeriahi asked that to look for a Hölder
continuous solution of equation (1.2) under assumption that Ω is a bounded
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pseudoconvex domain in Cn. In this paper we try to replace the hypothesis
Ω is a strictly pseudoconvex domain by a more weak hypothesis. This is Ω
is a bounded domain of plurisubharmonic type m (see the precise definition
in Section 2 below). Then we get the following.

Theorem 1.1. Let Ω be a bounded domain of plurisubharmonic type m
and µ be a non-negative Borel measure on Ω. Assme that there exists ϕ ∈
E0(Ω) ∩ C0,α(Ω) with µ ≤ (ddcϕ)n.
Then
i) there exists a unique w ∈ E0(Ω) ∩ C0(Ω) such that (ddcw)n = µ on Ω.
ii) if the function ρ in the definition of this domain is in the class E0(Ω)
then there is a 0 < γ ≤ α such that the Dirichlet problem

MA(Ω, µ, γ, 0) :


u ∈ PSH(Ω) ∩ C0,γ(Ω),

(ddcu)n = µ,

u|∂Ω = 0.

(1.3)

is solvable on Ω.

Note that techniques we use in the proof of the paper come from results
in [18] and [11]. We also give an example in Section 2 which shows that
the function ρ in the definition of domains of plurisubharmonic type m
in [11], may be, is not in the class E0(Ω) introduced in [6]. Now we say
something about the organization of the paper. In Section 2 we recall some
elements of pluripotential theory and the classes E0(Ω) and E ′0(Ω) introduced
and invesigated by Cegrell in [6] and Ngoc Cuong Nguyen in [18] recently.
Section 3 is devoted to the proof of Theorem 1.1.

2 Preliminairies

First, some elements of pluripotential theory that will be used throughout
the paper can be found in [1], [2], [3], [4], [6], [7], [9], [11], [12], [14], [15],
[20].
2.1. First, we recall the definition of a domain of plurisubharmonic type m
in Cn introduced in [11] ( also see [20] and [2]).
Let m > 0 and let Ω be a pseudoconvex domain in Cn. Ω is said to be
of plurisubharmonic type m if there exists a bounded negative function
ρ ∈ C0, 2

m (Ω) such that {ρ < −ε} b Ω for all ε > 0 and ρ(z) − ‖z‖2 is
plurisubharmonic in Ω.
From the above definition we note that every smooth bounded strictly
pseudoconvex domain in Cn is of plurisubharmonic type 1. Moreover, ev-
ery domain of plurisubharmonic type m is a hyperconvex domain. Here
a domain Ω in Cn is called to be hyperconvex if there exists a plurisub-
harmonic function ϕ : Ω −→ (−∞, 0) such that for every c < 0 the set
Ωc = {z ∈ Ω : ϕ(z) < c} b Ω. However, from the above definition, in
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general, ρ is not a defining function for Ω. Moreover, under the hypotheses
for ρ, may be,

∫
Ω

(ddcρ)n = +∞. We consider the following example.

2.2. Example. Let B(0, 1) = {(z, w) ∈ C2 : |z|2 + |w|2 < 1} be the unit
ball in C2. Set

ρ(z, w) = −(1− |z|2 − |w|2)
1
2 .

Is is clear that −1 ≤ ρ(z, w) < 0 on B(0, 1), lim
(z,w)→∂B(0,1)

ρ(z, w) = 0,

ρ(z, w) ∈ C2(B(0, 1)) and is a radial symmetric function. By an elemen-
tary computation we note that the function ρ(z, w) is a Hölder continu-
ous function on B(0, 1) with exponent 0 < α ≤ 1

4
. Next, we prove that∫

B(0,1)

(ddcρ)2 = +∞. Indeed, set r =
√
|z|2 + |w|2. Then we can write

ρ(r) = −
√

(1− r2). By Proposition 2.3 in [17] we have

(ddcρ)2 =
1

8

(2− |z|2 − |w|2)

(1− |z|2 − |w|2)2
dV4,

where dV4 is the Lebesgue measure in C2 ∼= R4.
Then ∫

B(0,1)

(ddcρ)2 =
1

8

1∫
0

( ∫
∂B(0,r)

(2− r2)

(1− r2)2
dσ(x)

)
dr

=
1

8
σ(∂B(0, 1))

1∫
0

(2− r2)r3dr

(1− r2)2

=
1

16
σ(∂B(0, 1))

1∫
0

(2− t)tdt
(1− t)2

=
1

16
σ(∂B(0, 1))

1∫
0

(
−1 +

1

(1− t)2

)
dt = +∞,

where σ(∂B(0, 1)) denotes the Lebesgue measure of the sphere ∂B(0, 1). The
desired conclusion follows.
2.3. Remark. A similar result as the above example can be found in De-
mailly’s paper (see [8], p. 542).
2.4. In the note, by PSH(Ω) we denote the set of plurisubharmonic func-
tions on Ω while by PSH−(Ω) we denote the set of negative plurisubhar-
monic functions on Ω.
Now we recall some classes of plurisubharmonic functions which are due to
Cegrell (see [6]) and Ngoc Cuong Nguyen (see [18]). Let Ω be a bounded
hyperconvex domain in Cn. As in [6] we define the following subclass of
PSH−(Ω).

E0 = E0(Ω) = {ϕ ∈ PSH−(Ω) ∩ L∞(Ω) : lim
z→∂Ω

ϕ(z) = 0,

∫
Ω

(ddcϕ)n <∞}.
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The following subclass E ′0(Ω) of E0(Ω) introduced in [18],

E ′0(Ω) = {ϕ ∈ E0(Ω) :

∫
Ω

(ddcϕ)n ≤ 1}.

2.5. Through the paper we will use the following notation. We will write
”A . B” if there exists a constant C such that A ≤ CB. Moreover, we
write u ∈ C0,α(Ω) if u is α-Hölder continuous on Ω.

3 The proof of Theorem 1.1.

Now we prove i) of Theorem 1.1.
Indeed, under the hypotheses of Theorem 1.1 and by using Theorem 4.4 in
[1] there exists w ∈ E0(Ω), lim

z→∂Ω
w(z) = 0 with (ddcw)n = µ on Ω. Take a

sequence εj ↘ 0. Next, choose a sequence of strictly psedoconvex domains
Ωj, j ≥ 1 such that

Ωj b Uj = {w < −εj} b Ωj+1 b Uj+1 = {w < −εj+1} b Ω,

and Ω =
∞⋃
j=1

Ωj. Let ρj ∈ C2 in a neighbourhood of Ωj be a defining function

of Ωj, i.e a function such that

ρj < 0 on Ωj, ρj = 0 and dρj 6= 0 on ∂Ωj,

and Ωj = {ρj < 0}. By the hypothesis and using Lemma 2.7 in [18] we note
that µ is Hölder continuous on E ′0. On the other hand, for all K b Ωj ⊂ Ω
we have Cn(K,Ω) ≤ Cn(K,Ωj) for j ≥ 1. By Proposition 2.9 in [18] there
exist uniform constants α1 > 0, C > 0 such that for all K b Ωj we have

µ(K) ≤ Cexp
( −α1

[Cn(K,Ωj)]
1
n

)
. (3.1)

Theorem 5.9 in [15] implies that there exists a continuous solution uj of the
following Dirichlet problem

MA(Ω, µ, ρj) :


uj ∈ PSH(Ωj) ∩ C(Ωj);

(ddcuj)
n = µ

lim
z→x

uj(z) = ρj(x) = 0, ∀ x ∈ ∂Ω.

Then it follows that uj ∈ E0(Ωj)∩C(Ωj). From the definition of uj, by using
the comparison principle we get that uj−1 ≥ uj ≥ w on Ωj−1. On the other
hand, note that w + εj = 0 on ∂Uj and uj+1 ≤ 0 on Uj. We have

(ddcuj+1)n = (ddcw)n = (ddc(w + εj))
n. (3.2)
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Again using the comparison principle we obtain that

w ≤ uj+1 ≤ w + εj, (3.3)

on Uj. From (3.3) it follows that

1Uj |uj+1 − w| < εj.

Thus, we get that the sequence {uj} is uniformly convergent to w on com-
pact subsets K b Ω. Hence, w is in E0(Ω) ∩ C(Ω). If we set w = 0 on ∂Ω
then we get that w ∈ E0(Ω) ∩ C(Ω) with (ddcw)n = µ on Ω and the proof
of i) is complete.
ii). As in [9] , for δ > 0 by Ωδ we denote

Ωδ = {z ∈ Ω : dist(z, ∂Ω) > δ},

and set
wδ(z) = sup

‖ζ‖≤δ
w(z + ζ), for z ∈ Ωδ,

ŵδ(z) =
1

τ2nδ2n

∫
‖ζ−z‖≤δ

w(ζ)dV2n(ζ), z ∈ Ωδ,

where τ2n denotes the volume of the unit ball in Cn and dV2n is the Lebesgue
measure of Cn ∼= R2n. Since (ddcw)n ≤ (ddcϕ)n by the comparison principle
in [4] it follows that

ϕ ≤ w ≤ 0 on Ω. (3.4)

Repeating arguments as in [18] we infer that there exist constants c0 =
c0(ϕ), 1 > δ0 > 0 small such that for all 0 < δ < δ0, z ∈ ∂Ωδ we have

wδ(z) ≤ w(z) + c0δ
α, (3.5)

where α is the exponent of ϕ.
Now set

w̃ =

{
max{ŵδ − c0δ

α, w} on Ωδ,

w on Ω \ Ωδ.

Note that w̃ ∈ PSH(Ω) ∩ C(Ω), 0 ≥ w̃ ≥ w then w̃ ∈ E0(Ω). If put C1 =∫
Ω

(ddcw̃)n, C2 =
∫
Ω

(ddcw)n and C3 = max{C1, C2} then w̃
n√C3

, w
n√C3
∈ E ′0(Ω).

On the other hand, from the hypothesis and using Lemma 2.7 and 2.4 in [18]
it follows that the measure ν = (ddcw)n is α-Hölder continuous on E ′0(Ω).
Hence, Definition 2.3 in [18] implies that there exists 0 < α1 ≤ 1 such that∫

Ω

∣∣∣ w̃
n
√
C3

− w
n
√
C3

∣∣∣dν ≤ C‖ w̃
n
√
C3

− w
n
√
C3

‖α1
1 . (3.6)

From (3.6) we infer that∫
Ω

∣∣∣w̃ − w∣∣∣dν .
(∫

Ω

|w̃ − w|dV2n

)α1

. (3.7)

We need the following.
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Lemma 3.1. For 1 > δ > 0 small enough there exists C > 0 independent
of δ such that ∫

Ωδ

|ŵδ − w|dV2n ≤ Cδ.

Proof. Indeed, by Jensen’s formula and using polar coordinates as in [9] we
have

ŵδ(z)− w(z) =
1

σ2n−1δ2n

∫ δ

0

r2n−1dr

∫ r

0

t1−2n

(∫
|ζ−z|≤t

ddcw ∧ βn−1

)
dt,

for every z ∈ Ωδ, where σ2n−1 denotes the surface measure of the unit sphere.
Hence, we get∫

Ω2δ

|ŵδ − w|dV2n

≤ 1

σ2n−1δ2n

∫
Ω2δ

(∫ δ

0

r2n−1dr

∫ r

0

t1−2n

(∫
|ζ−z|≤t

ddcw ∧ βn−1

))
dtdV2n(z).

Applying Fubini’s theorem and by the hypothesis ddcρ ≥ β we infer that∫
Ω2δ

|ŵδ − w|dV2n . δ2

∫
Ωδ

ddcw ∧ βn−1 . δ2

∫
Ωδ

ddcw ∧ (ddcρ)n−1

. δ2

∫
Ω

ddcw ∧ (ddcρ)n−1 ≤ Cδ, (3.8)

where by the hypothesis ρ ∈ E0(Ω) and using the inequality∫
Ω

(ddcw) ∧ (ddcρ)n−1 ≤
(∫

Ω

(ddcw)n
) 1
n
(∫

Ω

(ddcρ)n
)n−1

n
< +∞,

in [6]. Hence the desired conclusion follows. The proof is complete.

We continue to prove ii). Note that the proof of Theorem 1.1 in [9] and,
hence, the proof of Proposition 2.10 in [18] are valid under the hypotheses
of Theorem 1.1. By applying Proposition 2.10 in [18] to ν = (ddcw)n and w̃
it follows that there exists 0 < α2 < 1 such that

sup
Ω

(
w̃ − w

)
≤ C

(∫
Ω

max{w̃ − w, 0}dν
)α2

≤ C
(∫

Ω

|w̃ − w|dν
)α2

. (3.9)

By (3.7) the righ-hand side of (3.9) is less than C
(∫

Ω

|w̃ − w|dV2n

)α1α2

.

Hence,

sup
Ω

(
w̃ − w

)
≤ C

(∫
Ω

|w̃ − w|dV2n

)α1α2

. (3.10)
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On the other hand, by the definition of w̃, on Ωδ we have the following:

0 ≤ w̃ − w = max
{
ŵ − w − c0δ

α, 0
}

≤ |ŵ − w|+ c0δ
α. (3.11)

Lemma 3.1 and (3.11) imply that∫
Ωδ

|w̃ − w|dV2n ≤
∫
Ωδ

|ŵ − w|dV2n + c0δ
α

∫
Ωδ

dV2n

≤
∫
Ωδ

|ŵ − w|dV2n + c0δ
α

∫
Ω

dV2n

≤
∫
Ωδ

|ŵ − w|dV2n + c0δ
α.V ol(Ω),

≤ Cδ + V ol(Ω)c0δ
α,

. δξ, (3.12)

where ξ = min{1, α}. Thus, from (3.10) we deduce the following.

sup
Ω

(
w̃ − w

)
≤ C

(∫
Ω

|w̃ − w|dV2n

)α1α2

,

= C
(∫

Ωδ

|w̃ − w|dV2n

)α1α2

≤ Cδξα1α2 . (3.13)

Using (3.13) and the definition of w̃ we infer that

sup
Ωδ

(ŵδ − w) ≤ sup
Ω

(w̃ − w) + c0δ
α

≤ Cδγ,

where γ = min{α, ξα1α2}. By Lemma 4.2 in [9] it follows that

sup
Ωδ

(wδ − w) ≤ Cδγ,

and the desired conclusion follows.
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