
On the complete convergence for sequences of
random vectors in Hilbert spaces

Nguyen Van Huan

Abstract

Let {Xn, n > 1} be a sequence of coordinatewise negatively associated
random vectors taking values in a real separable Hilbert space with the k-
th partial sum Sk, k > 1. We provide conditions for the convergence of∑∞

n=1
1
n P(max16k6n ‖Sk‖ > εnα) and

∑∞
n=1

logn
n P(max16k6n ‖Sk‖ > εnα)

for all ε > 0. The converses of these results are also discussed.

1 Introduction

The concept of negative association for random variables was introduced by Alam

and Saxena [1] and carefully studied by Joag-Dev and Proschan [8].

Definition 1.1. A finite family {Yi, 1 6 i 6 n} of random variables is said to be

negatively associated (NA) if for any disjoint subsets A, B of {1, 2, ..., n} and any

real coordinatewise nondecreasing functions f on R|A|, g on R|B|,

Cov
(
f(Yi, i ∈ A), g(Yj, j ∈ B)

)
6 0

whenever the covariance exists, where |A| denotes the cardinality of A. An infinite

family of random variables is NA if every finite subfamily is NA.

The concept of negative association was extended to finite dimensional random

vectors and to Hilbert space valued random vectors (for details see Zhang [15], Ko

et al. [10]). Let H be a real separable Hilbert space with the norm ‖ · ‖ generated

by an inner product 〈·, ·〉, let {ej, j > 1} be an orthonormal basis in H, let X

be an H-valued random vector, and 〈X, ej〉 will be denoted by X(j). In [7], the
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authors introduced the concept of coordinatewise negative association for H-valued

random vectors which is more general than the concept of negative association of

Ko et al. [10].

Definition 1.2 ([7]). A sequence {Xn, n > 1} of H-valued random vectors is said

to be coordinatewise negatively associated (CNA) if for each j > 1, the sequence

{X(j)
n , n > 1} of random variables is NA.

Hsu and Robbins [6] introduced the concept of complete convergence and proved

that the sequence of arithmetic means of independent, identically distributed (i.i.d.)

random variables converges completely to the expected value of the variables,

provided their variance is finite. The necessity was proved by Erdös [4, 5]. The

result of Hsu-Robbins-Erdös is a fundamental theorem in probability theory and

was later generalized and extended during a process which led to the now classical

paper by Baum and Katz [3].

Theorem 1.3 ([3]). Let r, α be real numbers (r > 1;α > 1/2;αr > 1), and let

{Xn, n > 1} be a sequence of i.i.d. random variables with zero mean. Then the

following three statements are equivalent:

(a) E|X1|r <∞.

(b)
∞∑
n=1

nαr−2 P
(∣∣∣ n∑

k=1

Xk

∣∣∣ > εnα
)
<∞ for all ε > 0.

(c)
∞∑
n=1

nαr−2 P
(

sup
k>n

1

kα

∣∣∣ k∑
l=1

Xl

∣∣∣ > ε
)
<∞ for all ε > 0.

The Baum-Katz theorem has been extensively studied for many classes of depen-

dent random variables. For negatively associated random variables, we refer to Shao

[13], Kuczmaszewska [11] (for sequences), Baek et al. [2], Sung [14] (for triangular

arrays), Ko [9], Kuczmaszewska and Lagodowski [12] (for fields), and other authors.

In [7], the authors extended the Baum-Katz theorem to sequences of H-valued

CNA random vectors for the case r > 1/α. The aim of the present paper is to study

this problem for the case r = 1/α.

Throughout this paper, the symbol C will denote a generic positive constant

which is not necessarily the same one in each appearance. The logarithms are to the

base 2, for a ∈ R, log(max{2; a}) will be denoted by log+ a.

Let {X,Xn, n > 1} be a sequence of H-valued random vectors. We consider the

following inequalities

C1 P(|X(j)| > t) 6
1

n

n∑
k=1

P(|X(j)
k | > t) 6 C2 P(|X(j)| > t). (1.1)



Random vectors in Hilbert spaces 3

If there exists a positive constant C1 (C2) such that the left-hand side (right-hand

side) of (1.1) is satisfied for all j > 1, n > 1 and t > 0, then the sequence {Xn, n > 1}
is said to be coordinatewise weakly lower (upper) bounded by X. Note that (1.1) is,

of course, automatic with X = X1 and C1 = C2 = 1 if {Xn, n > 1} is a sequence of

identically distributed random vectors.

2 Preliminary lemmas

In this section, we give the following lemmas which will be used to prove our main

results.

Lemma 2.1 ([7], Lemma 1.7). Let {Xn, n > 1} be a sequence of H-valued CNA

random vectors with EXn = 0 and E‖Xn‖2 <∞, n > 1. Then, we have

E
(

max
16k6n

∥∥∥ k∑
l=1

Xl

∥∥∥2) 6 2
n∑
k=1

E‖Xk‖2 for all n > 1.

The proofs of the following two lemmas are quite simple and are therefore

omitted.

Lemma 2.2. Let α be a positive real number, and let X be an H-valued random

vector such that
∞∑
j=1

E|X(j)|1/α <∞. Then

∞∑
j=1

∞∑
n=1

1

nθα
E
(
|X(j)|θI(|X(j)| > nα)

)
<∞ if 0 6 θ < 1/α;

∞∑
j=1

∞∑
n=1

1

nθα
E
(
|X(j)|θI(|X(j)| 6 nα)

)
<∞ if θ > 1/α.

Lemma 2.3. Let α be a positive real number, and let X be an H-valued random

vector such that
∞∑
j=1

E(|X(j)|1/α log+ |X(j)|) <∞. Then

∞∑
j=1

∞∑
n=1

log n

nθα
E
(
|X(j)|θI(|X(j)| > nα)

)
<∞ if 0 6 θ < 1/α; (2.1)

∞∑
j=1

∞∑
n=1

log n

nθα
E
(
|X(j)|θI(|X(j)| 6 nα)

)
<∞ if θ > 1/α. (2.2)

Lemma 2.4. Let α be a positive real number, and let X be an H-valued random

vector such that
∑∞

j=1 E|X(j)|1/α <∞. Then

∞∑
j=1

E
(
|X(j)|1/α I(|X(j)|1/α > n)

)
→ 0 as n→∞. (2.3)
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Proof. Set ξ =
∑∞

j=1 |X(j)|1/α. Then we have

∞∑
j=1

E
(
|X(j)|1/α I(|X(j)|1/α > n)

)
6 E

(
ξ I(ξ > n)

)
, n > 1.

Since Eξ <∞, it follows that (2.3) holds.

Lemma 2.5 ([16], Lemma A.6). Suppose that the events A1, A2..., An satisfy

Var
( n∑
k=1

I(Ak)
)
6 θ

n∑
k=1

P(Ak) for some θ > 0.

Then (
1− P

( n⋃
k=1

Ak

))2 n∑
k=1

P(Ak) 6 θ P
( n⋃
k=1

Ak

)
.

3 Main results

With the preliminaries accounted for, the main results may now be established.

In the following theorem, we state Theorem 2.1 in [7] for the case r = 1/α. Note

that we cannot prove this result by using the method in the proof of Theorem 2.1

in [7].

Theorem 3.1. Let α be a real number (1/2 < α < 1), and let {Xn, n > 1} be a

sequence of H-valued CNA random vectors with zero means. Suppose that {Xn, n>1}
is coordinatewise weakly upper bounded by a random vector X. If

∞∑
j=1

E|X(j)|1/α <∞, (3.1)

then

∞∑
n=1

1

n
P
(

max
16k6n

∥∥∥ k∑
l=1

Xl

∥∥∥ > εnα
)
<∞ for all ε > 0. (3.2)

Proof. For n, k > 1, set

Y
(j)
nk = X

(j)
k I(|X(j)

k | 6 nα) + nαI(X
(j)
k > nα)− nαI(X

(j)
k < −nα);

Z
(j)
nk = X

(j)
k − Y

(j)
nk (j > 1); Ynk =

∞∑
j=1

Y
(j)
nk ej; Znk =

∞∑
j=1

Z
(j)
nk ej.

Then for every ε > 0,

∞∑
n=1

1

n
P
(

max
16k6n

∥∥∥ k∑
l=1

Xl

∥∥∥ > εnα
)
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6
∞∑
n=1

1

n
P
(

max
16k6n

∥∥∥ k∑
l=1

(Ynl − EYnl)
∥∥∥ > εnα/2

)
+
∞∑
n=1

1

n
P
(

max
16k6n

∥∥∥ k∑
l=1

(Znl − EZnl)
∥∥∥ > εnα/2

)
= I1 + I2.

Noting that for each n > 1, {Ynk, k > 1} is CNA. By the Markov inequality, Lemmas

2.1 and 2.2, we have

I1 6 C
∞∑
n=1

1

n2α+1
E
(

max
16k6n

∥∥∥ k∑
l=1

(Ynl − EYnl)
∥∥∥)2

6 C

∞∑
n=1

1

n2α+1

n∑
k=1

E‖Ynk − EYnk‖2

6 C
∞∑
j=1

∞∑
n=1

1

n2α+1

n∑
k=1

E(Y
(j)
nk )2

= C
∞∑
j=1

∞∑
n=1

1

n2α+1

n∑
k=1

n2α P(|X(j)
k | > nα)

+ C
∞∑
j=1

∞∑
n=1

1

n2α+1

n∑
k=1

E
(
(X

(j)
k )2I(|X(j)

k | 6 nα)
)

6 C
∞∑
j=1

∞∑
n=1

P(|X(j)| > nα)

+ C
∞∑
j=1

∞∑
n=1

1

n2α
E
(
(X(j))2I(|X(j)| 6 nα)

)
+ C

∞∑
j=1

∞∑
n=1

P(|X(j)| > nα) <∞.

Thus, it suffices to show that I2 < ∞. Indeed, using the Markov inequality and

Lemma 2.2 again, we get

I2 6 C
∞∑
n=1

1

nα+1
E
(

max
16k6n

∥∥∥ k∑
l=1

(Znl − EZnl)
∥∥∥)

6 C

∞∑
n=1

1

nα+1
E
( n∑
k=1

‖Znk − EZnk‖
)

6 C
∞∑
n=1

1

nα+1

n∑
k=1

E‖Znk‖

6 C

∞∑
j=1

∞∑
n=1

1

nα+1

n∑
k=1

E|X(j)
k I(|X(j)

k | > nα)− nαI(X
(j)
k > nα) + nαI(X

(j)
k < −nα)|
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6 C

∞∑
j=1

∞∑
n=1

1

nα+1

n∑
k=1

E|X(j)
k I(|X(j)

k | > nα)|+ C
∞∑
j=1

∞∑
n=1

1

n

n∑
k=1

P(|X(j)
k | > nα)

6 C
∞∑
j=1

∞∑
n=1

1

nα
E|X(j)I(|X(j)| > nα)|+ C

∞∑
j=1

∞∑
n=1

P(|X(j)| > nα) <∞.

The proof is completed.

Theorem 3.1 shows that the condition (3.1) implies (3.2). However, the reverse

is not true. We will now show, via an example, that under the assumptions of

Theorem 3.1, (3.2) does not imply (3.1). Note that the sufficient conditions for (3.1)

were provided in [7, Theorem 2.6].

Example 3.2. We consider the space `2 consisting of square summable real se-

quences x = {xk, k > 1} with norm ‖x‖ =
(∑∞

k=1 x
2
k

)1/2
. Let α be a real number

(1/2 < α < 1), and let {X,Xn, n > 1} be a sequence of `2-valued i.i.d. random

vectors with P
(
X(j) = ±j−α

)
= 1/2 for all j > 1. It is well known that the space `2

is of type 2. Then for every ε > 0,

∞∑
n=1

1

n
P
(

max
16k6n

∥∥∥ k∑
l=1

Xl

∥∥∥ > εnα
)

6 C
∞∑
n=1

1

n2α+1
E
(

max
16k6n

∥∥∥ k∑
l=1

Xl

∥∥∥)2
6 C

∞∑
n=1

1

n2α+1

n∑
k=1

E‖Xk‖2

= C
∞∑
n=1

1

n2α

( ∞∑
j=1

1

j2α

)
<∞,

so that (3.2) holds. But

∞∑
j=1

E|X(j)|1/α =
∞∑
j=1

1

j
=∞,

and therefore (3.1) fails.

In the following theorem, we provide a variant of Theorem 3.1.

Theorem 3.3. Let α be a real number (1/2 < α 6 1), and let {Xn, n > 1} be a

sequence of H-valued CNA random vectors with zero means. Suppose that {Xn, n>1}
is coordinatewise weakly upper bounded by a random vector X. If

∞∑
j=1

E
(
|X(j)|1/α log+ |X(j)|

)
<∞, (3.3)
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then

∞∑
n=1

log n

n
P
(

max
16k6n

∥∥∥ k∑
l=1

Xl

∥∥∥ > εnα
)
<∞ for all ε > 0. (3.4)

Proof. For n, k > 1, set

Y
(j)
nk = X

(j)
k I(|X(j)

k | 6 nα)+nαI(X
(j)
k > nα)− nαI(X

(j)
k < −nα) (j > 1);

Ynk =
∞∑
j=1

Y
(j)
nk ej.

Then for every ε > 0, we have

∞∑
n=1

log n

n
P
(

max
16k6n

∥∥∥ k∑
l=1

Xl

∥∥∥ > εnα
)

6
∞∑
n=1

log n

n

∞∑
j=1

n∑
k=1

P(|X(j)
k | > nα)

+
∞∑
n=1

log n

n
P
(

max
16k6n

∥∥∥ k∑
l=1

Ynl

∥∥∥ > εnα
)

6 C
∞∑
j=1

∞∑
n=1

log nP(|X(j)| > nα)

+
∞∑
n=1

log n

n
P
(

max
16k6n

∥∥∥ k∑
l=1

(Ynl − EYnl)
∥∥∥ > εnα/2

)
+
∞∑
n=1

log n

n
P
( 1

nα
max
16k6n

∥∥∥ k∑
l=1

EYnl
∥∥∥ > ε/2

)
= C + J1 + J2 (by Lemma 2.3).

For J1, by the Markov inequality, Lemma 2.1, Lemma 2.3 and the similar arguments

used in proving Theorem 3.1, we obtain

J1 6 C
∞∑
n=1

log n

n2α+1
E
(

max
16k6n

∥∥∥ k∑
l=1

(Ynl − EYnl)
∥∥∥)2

6 C

∞∑
n=1

log n

n2α+1

n∑
k=1

E‖Ynk − EYnk‖2

6 C

∞∑
j=1

∞∑
n=1

log n

n2α+1

n∑
k=1

E(Y
(j)
nk )2

6 C

∞∑
j=1

∞∑
n=1

log nP(|X(j)| > nα)
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+ C

∞∑
j=1

∞∑
n=1

log n

n2α
E
(
(X(j))2I(|X(j)| 6 nα)

)
<∞.

In order to prove J2 <∞, we will show that

J2n :=
1

nα
max
16k6n

∥∥∥ k∑
l=1

EYnl
∥∥∥→ 0 as n→∞.

Indeed,

J2n 6
1

nα
max
16k6n

∞∑
j=1

∣∣∣ k∑
l=1

E
(
X

(j)
l I(|X(j)

l | 6 nα) + nαI(X
(j)
l > nα)− nαI(X

(j)
l < −nα)

)∣∣∣
6

1

nα
max
16k6n

∞∑
j=1

∣∣∣ k∑
l=1

E
(
X

(j)
l I(|X(j)

l | 6 nα)
)∣∣∣+

1

nα

∞∑
j=1

n∑
k=1

nα P
(
|X(j)

k | > nα
)

6
1

nα

∞∑
j=1

n∑
k=1

E
(
|X(j)

k |I(|X(j)
k | > nα)

)
+ C

∞∑
j=1

nP
(
|X(j)| > nα

)
6

C

nα−1

∞∑
j=1

E
(
|X(j)|I(|X(j)| > nα)

)
+ C

∞∑
j=1

nP
(
|X(j)| > nα

)
6 C

∞∑
j=1

E
(
|X(j)|1/α I(|X(j)|1/α > n)

)
→ 0 as n→∞ (by Lemma 2.4).

Combining the above arguments, this completes the proof of Theorem 3.3.

Remark 3.4. Let α be a real number (1/2 < α 6 1). We consider the sequence

{X,Xn, n > 1} in Example 3.2. By using the same arguments as in Example 3.2,

we can show that (3.4) holds while (3.3) fails. Therefore, under the assumptions of

Theorem 3.3, (3.4) does not imply (3.3).

The following theorem provides sufficient conditions for (3.3) to hold.

Theorem 3.5. Let α be a positive real number, and let {Xn, n > 1} be a sequence

of H-valued CNA random vectors with zero means. Suppose that {Xn, n > 1} is

coordinatewise weakly lower bounded by a random vector X with

∞∑
j=1

E
(
|X(j)|1/α log+ |X(j)| I(|X(j)|1/α 6 2)

)
<∞. (3.5)

If

∞∑
j=1

∞∑
n=1

log n

n
P
(

max
16k6n

∣∣∣ k∑
l=1

X
(j)
l

∣∣∣ > εnα
)
<∞ for all ε > 0, (3.6)

then (3.3) holds.
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Proof. By (3.5), we have

∞∑
j=1

E
(
|X(j)|1/α log+ |X(j)|

)
= C +

∞∑
j=1

E
(
|X(j)|1/α log+ |X(j)| I(|X(j)|1/α > 2)

)
6 C +

∞∑
j=1

∞∑
k=2

(k + 1) log+(k + 1)α P(k < |X(j)|1/α 6 k + 1)

6 C + C

∞∑
j=1

∞∑
k=2

k log k P(k < |X(j)|1/α 6 k + 1)

6 C + C
∞∑
j=1

∞∑
k=1

( k∑
n=1

log n
)
P(k < |X(j)|1/α 6 k + 1)

= C + C
∞∑
j=1

∞∑
n=1

log nP(|X(j)| > nα).

It suffices to show that

∞∑
j=1

∞∑
n=1

log nP(|X(j)| > nα) <∞. (3.7)

Noting that for all n, j > 1, {I(X
(j)
k > nα), k > 1} and {I(X

(j)
k < −nα), k > 1} are

NA. Then by Lemma 2.1,

Var
( n∑
k=1

I(|X(j)
k | > nα)

)
6 2Var

( n∑
k=1

I(X
(j)
k > nα)

)
+ 2Var

( n∑
k=1

I(X
(j)
k < −nα)

)
6 4

n∑
k=1

Var
(
I(X

(j)
k > nα)

)
+ 4

n∑
k=1

Var
(
I(X

(j)
k < −nα)

)
6 4

n∑
k=1

P(|X(j)
k | > nα),

and so Lemma 2.5 ensures that

(
1− P( max

16k6n
|X(j)

k | > nα)
)2 n∑

k=1

P(|X(j)
k | > nα) 6 4P( max

16k6n
|X(j)

k | > nα). (3.8)

On the other hand, from (3.6) we get

∞∑
j=1

∞∑
n=1

log n

n
P
(

max
16k6n

|X(j)
k | > εnα

)
<∞ for all ε > 0. (3.9)
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Then for every ε > 0,

∞∑
j=1

∞∑
n=1

nP
(

max
16k62n

|X(j)
k | > ε 2nα

)

6 C
∞∑
j=1

∞∑
n=1

2n+1−1∑
m=2n

logm

m
P
(

max
16k62n

|X(j)
k | > ε 2nα

)
6 C

∞∑
j=1

∞∑
m=1

logm

m
P
(

max
16k6m

|X(j)
k | > (ε/2α)mα

)
<∞.

This implies
∞∑
j=1

P
(

max
16k6n

|X(j)
k | > nα

)
→ 0 as n→∞.

Therefore, by (3.8), there exists a positive integer n0, which does not depend on j,

such that

n∑
k=1

P(|X(j)
k | > nα) 6 C P( max

16k6n
|X(j)

k | > nα) for all n > n0, j > 1. (3.10)

Combining (1.1), (3.9) and (3.10), we have

∞∑
j=1

∞∑
n=1

log nP
(
|X(j)| > nα

)
=
∞∑
j=1

n0∑
n=1

log nP
(
|X(j)| > nα

)
+
∞∑
j=1

∞∑
n=n0+1

log nP
(
|X(j)| > nα

)
6 C

∞∑
j=1

n0∑
n=1

log n

n

n∑
k=1

P
(
|X(j)

k | > nα
)

+ C

∞∑
j=1

∞∑
n=n0+1

log n

n
P
(

max
16k6n

|X(j)
k | > nα

)
6 C

∞∑
j=1

∞∑
n=1

log n

n
P
(

max
16k6n

|X(j)
k | > nα

)
<∞,

and so (3.7) holds. This ends the proof of Theorem 3.5.

Remark 3.6. It is interesting that the above theorem does not require the coor-

dinatewise weakly upper bounded condition on the random vectors {Xn, n > 1}.
Therefore, we cannot prove Theorem 3.5 by using the same arguments as in the

proof of Theorem 2.6 in [7].

Remark 3.7. If H is finite dimensional, then in Theorem 3.5, the condition (3.5)

can be removed. Now we will consider this condition in the case where H is infinite
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dimensional. Let α be a real number (α > 1/2), and let {X,Xn, n > 1} be as in

Example 3.2. Then for every ε > 0, we have

∞∑
j=1

∞∑
n=1

log n

n
P
(

max
16k6n

∣∣∣ k∑
l=1

X
(j)
l

∣∣∣ > εnα
)

6 C

∞∑
j=1

∞∑
n=1

log n

n2α+1
E
(

max
16k6n

∣∣∣ k∑
l=1

X
(j)
l

∣∣∣)2
6 C

∞∑
j=1

∞∑
n=1

log n

n2α+1

n∑
k=1

E|X(j)
k |

2 <∞,

so that (3.6) holds. We also see that

∞∑
j=1

E
(
|X(j)|1/α log+ |X(j)| I(|X(j)|1/α 6 2)

)
=
∞∑
j=1

1

j
=∞,

and the conclusion (3.3) fails.

Thus, in Theorem 3.5, we cannot remove the condition (3.5) or even replace it

by the weaker condition E
(
|X(j)|1/α log+ |X(j)| I(|X(j)|1/α 6 2)

)
→ 0 as j →∞.

Remark 3.8. Let α, β be real numbers (1/2 < α < β), and let {X,Xn, n > 1} be

a sequence of `2-valued i.i.d. random vectors with P
(
X(j) = ±j−β

)
= 1/2 for all

j > 1. It is easy to verify that the conditions (3.5) and (3.6) are satisfied. Thus, the

conclusion (3.3) follows immediately from Theorem 3.5.
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