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Introduction

SVMs are currently of great interest to theoretical researchers and
applied scientists.

By means of the new technology of kernel methods, SVMs have been
very successful in building highly nonlinear classifiers.

SVMs have also been successful in dealing with situations in which
there are many more variables than observations, and complexly
structured data.

Wide applications in machine learning, natural language processing,
boinformatics.



Kernel methods: key idea
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Kernel PCA

linear PCA (x.y) = (x-v)
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Using kernel function, linear operators of
PCA is carried out in a reproducing kernel
Hilbert space with a linear mapping.
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Regularization (1/4)

 Classification is one inverse problem
(induction): Data — Model parameters

 Inverse problems are typically ill posed, as
opposed to the well-posed problems typically

when modeling physical situations where the deduction
model parameters or material properties are

known (a unique solution exists that depends induction
continuously on the data). S ‘

[ To solve these problems numerically one
must introduce some additional information
about the solution, such as an assumption on

the smoothness or a bound on the norm. JMM data

4 8 12 16 2
20

Intensity (arb. unit)

6



Regularization (2/4)

d Input of the classification problem: m pairs of training data (x, y;) generated
from some distribution P(x,y), x; € X, y;, € C ={Cy, C,, ..., C,} (training data).

 Task: Predict y given x at a new location, i.e., to find a function f (model)
to do the task, f: X 2> C.

W Training error (empirical risk): Average of a loss function on the training
data, for example

0, y; = f(x)

Remp[ f]= %gc(xi’ Yis f (Xi)) for example, C(Xi Y ’f(Xi )= { Ly # f(Xi )

U Target: (risk minimization) to find a function fthat minimizes the test error
(expected risk)

RIT]:=E[Re[ T11=E[c(x, y, T (x))]= IC(X, y, T (x))dP(x,y)
Y



Regularization (3/4)

Problem: Small R, [f] does not always ensure small R[f] (overfitting), i.e,,
Remp[f]_R[f]‘ <‘9}

we may get small
Fact 1: Statistical learning theory says the difference is small if & is small.

Prob{sup; _.

Fact 2: Practical work says the difference is small if fis smooth.

Remplf2] = 5/40 Remplf2] = 3/40 Rempl[f1] = 0




Regularization (4/4)

Regularization is restriction of a class & of possible minimizers (with fe &)
of the empirical risk functional R, , [f] such that § becomes a compact set.

emp

Key idea: Add a regularization (stabilization) term Q[f] such that small Q[f]
corresponds to smooth f(or otherwise simple f) and minimize

Riog[F1:= R [ F 14+ AQ f]

R.¢,[f]: regularized risk functionals;
Remplf]: empirical risk;
Q[f]: regularization term; and

A: regularization parameter that specifies the trade-off between

minimization of R, ,[f] and the smoothness or simplicity enforced by

small Q[f] (i.e., complexity penalty).

emp

o 0O 0O O

We need someway to measure if the set §. = {f | Q[f] < C} is a “small” class
of functions.
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Linear support vector machines
The linearly separable case

Learning set of data L= {(x;,y;):i=1, 2, ..,n}, x; € R", y; € {—1,+1}.

The binary classification problem is to use L to construct a function
f:R" 2R so that C(x) = sign(f(x)) is a classifier.

Function f classifies each x in a test set T into one of two classes, [1+ or
[1-, depending upon whether C(x) is +1 (if f{x) 2 0) or -1 (if f{x) < 0),
respectively. The goal is to have fassign all positive points in T (i.e,,
those with y = +1) to [1+ and all negative pointsin T (y = -1) to II-.

The simplest situation: positive (y; = +1) and negative (y; = -1) data
points from the learning set L can be separated by a hyperplane,

{x:f(x) = Bo+x"B = 0} (1)
B is the weight vector with Euclidean norm || ]|, and f3, is the bias.

11



Linear support vector machines
The linearly separable case

If no error, the hyperplane is called a separating hyperplane.

Let d_and d, be the shortest distance from the separating hyperplane
to the nearest negative and positive data points. Then, the margin of the
separating hyperplane is defined asd =d_ + d,.

We look for maximal margin classifier (optimal separating hyperplane).

If the learning data are linearly separable, 3 5, and B such that

Po+xiB=+1if yi=+1 (2) Bo+xiB <—-Lifyi=—1 (3)

If there are data vectors in L such that equality holds in (1), then they lie
on the hyperplane H, ;: (8, - 1) + x*B = 0; similarly, for hyperplane H_;:
(B, + 1) + x*B = 0. Points in L that lie on either one of the hyperplanes
H_, or H,, are said to be support vectors.

12



Linear support vector machines
The linearly separable case

= Ifx_;lieson H_;, and if x,, lies on
H,,, then

Bo+xZqB =—1and Bo+xi4f = +1

the difference between them is
xL 1B — x%,B =2 and their sum is

1
Bo=- E(x?uﬁ — x2,B).The
perpendicular distances of the
hyperplane f, + x* = 0 to x, and

FIGURE 11.1. Support vector machines: the linearly separable case. The

x+1 are red points correspond to data points with y; = —1, and the blue points cor-
d _ |Bo + le B |_ 1 rl'ff.‘;pond to data points with y; = +1. The separating hyperplane is the line
- T ﬁ” = T ﬂ” 93+X73 = 0. The support vectors are those points lying on the hyperplanes
H_1 and H.1. The margin of the separating hyperplane is d =2/ || 3 |.
T
d _|Bot xy4Bl_ 1
4= =
Bl Bl

13



Linear support vector machines
The linearly separable case

Combine (2) and (3) into a single set of inequalities

Vi(Bo+xIB) = +1,i=1,2, .., n.

The quantity y; (B, + x; B) is called the margin of (x;, y,) with respect to
the hyperplane (1),i=1, .., nand x; is the support vectors wrt to (1) if

Vi(Bo + x; B) =1.

Problem: Find the hyperplane that miximizes the margin 2

18I
Equivalently, find S, and g to
minimize %IIBII2
subjectto  y;(Bo+xiB)=1,i=1,2,..,n (4)

Solve this primal optimization problem using Lagrangian multipliers.
14



Linear support vector machines
The linearly separable case

Multiply the constraints, y; (B, + x{ B) - 1 = 0, by positive Lagrangian
multipliers and subtract each product from the objective function ...

Dual optimization problem: Find  to,
maximize Fp(a)=1ja— % a'Ha
subjectto a=0,a’y=0 (5)
where y = (y1,¥2, .., Yn)% H = (Hy) = y;; (27 x;).

If a*solves this problem, then B*=Y7, @/ v;x;> B*=Yiccp, @ Vi X;

*_LZ 1_yixfp*
'80_|577| LESV

Vi

Optimal hyperplane  f*(x) =55 + x"B" = B + Yieqp af vi(x7x,)

15



Linear support vector machines
The linearly nonseparable case

= The nonseparable case occurs if
either the two classes are
separable, but not linearly so, or
that no clear separability exists
between the two classes, linearly
or nonlinearly (caused by, for
example, noise).

= Create a more flexible formulation
of the problem, which leads to a
. . . FIGURE 11.2. § 1 vector chines: the linearly separable case.
S Of t-mar g In so I ution. We Intro duce The red points f.‘ﬂ?‘?:ii;:;{i ta‘: {ijh:?:i;i'.:;:-{u.-‘:'#hl;!-nin—i ?Lt.”:;t?li t;ifi;in:p;?n;s
a nonnega tlve S IaC k Varla b Ie E for correspond to data points with y; = +1. The separating hyperplane is the
) S
each observation (x, y;)in £,i=1,

line 3y + x™3 = 0. The support vectors are those circled points lying on
the hyperplanes H_y and H . The slack variables §; and £, are associated
with the red points that violate the constraint of hyperplane H_1, and points

2 n L et marked by £2,£q, and £5 are associated with the blue points that violate the
yrEryan constraint of hyperplane H . Points that satisfy the constraints of the
E — (E . E )1_- > O appropriate hyperplane have £ = 0.
1 > S5n) = Y-
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Linear support vector machines
The linearly nonseparable case

The constraints in (5) become y;(By + x{B) +&; = 1fori=1, 2, .., n.

Find the optimal hyperplane that controls both the margin, 2/||B||, and
some computationally simple function of the slack variables, such as
go(é)=21-, &/ . Consider “1-norm” (¢ = 1) and “2-norm” (g = 2).

The 1-norm soft-margin optimization problem is to find §,, B and ¢ to

... 1 J
minimize - 18117 + CX- &

subjectto & = 0,y;(Bo+xiB)=1-¢&;, i=1,2,..,n. (6)

where C > 0 is a regularization parameter. C takes the form of a tuning
constant that controls the size of the slack variables and balances the
two terms in the minimizing function.

17



Linear support vector machines
The linearly nonseparable case

We can write the dual maximization problem in matrix notation as
follows. Find a to

maximize Fp(a) = 1}, a — % a'Ha
subjectto a'y=0, 0<a<(C1, (7)
The difference between this optimization problem and (4), is that here the

coefficients a;, i = 1.. n, are each bounded above by C; this upper bound
restricts the influence of each observation in determining the solution.

This constraint is referred to as a box constraint because « is constrained
by the box of side C in the positive orthant. The feasible region for the
solution to this problem is the intersection of hyperplane a*y = 0 with
the box constraint 0 < a < C1,. If C = 0 = hard-margin separable case.

If a*solves (7) then B* =) .., a; v;x; yields the optimal weight vector.

18
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Nonlinear support vector machines

What if a linear classifier is not appropriate for the data set?
Can we extend the idea of linear SVM to the nonlinear case?

The key to constructing a nonlinear SVM is to observe that the
observations in £ only enter the dual optimization problem through
the inner products (xl-,xj) =x;x;,i,j=1,2,..,n.

1
Fp(a) =X a;— > =1 Z?ﬂ a; Q;Yiyj (xij)

20



Nonlinear support vector machines
Nonlinear transformations

Suppose we transform each observation, x; € R", inLusing some
nonlinear mapping ®:R" — H, His an N,-dimensional feature space.

The nonlinear map ® is generally called the feature map and the space H
is called the feature space.

The space H may be very high-dimensional, possibly even infinite
dimensional. We will generally assume that H is a Hilbert space of real-
valued functions on with inner product (.,.) and norm |[|. ||.

Let ®(x;) = (P1(x;), .., quH(xi))T € H,i=1.n. The transformed sample is
{®(x,),y;}, where y, € {-1, +1} identifies the two classes.

If substitute ®(x;) for x; in the development of the linear SVM, then data
would only enter the optimization problem by way of the inner products
(®(x,),P(x))) = P(x;)"®@(x;). The difficulty in using nonlinear transform is
computing such inner products in high-dimensional space H.

21



Nonlinear support vector machines
The “kernel trick”

The idea behind nonlinear SVM is to find an optimal separating
hyperplane in high-dimensional feature space H just as we did for the
linear SVM in input space.

The “kernel trick” was first applied to SVMs by Cortes & Vapnik (1995).

Kernel trick: Wonderful idea that is widely used in algorithms for
computing inner products (®(x;),®(x;)) in feature space H.

The trick: instead of computing the inner products in H, which would be
computationally expensive due to its high dimensionality, we compute
them using a nonlinear kernel function, K (x;, x;) = (Cb(xi), CD(xj)) in
input space, which helps speed up the computations.

Then, we just compute a linear SVM, but where the computations are
carried out in some other space.

22



Nonlinear support vector machines
Kernels and their properties

A kernel K is a function K: R" X R" - RsuchthatVax,y € R"

K(x,y) ={®(x), ®(y))

The kernel function is designed to compute inner-products in H by
using only the original input data - substitute (®(x), ®(y)) by K(x, y)
whenever. Advantage: given K, no need to know the explicit form of ®.

K should be symmetric: K(x, y) = K(y, X), and [K(x, ¥)]*°< K(x, x)K(y,y).

Kis a reproducing kernel if V fe H:(f(.),K(x,.)) = f(x) (8),
K is called the representer of evaluation. Particularly, if f(.) = K(., x)
then (K(x,.), K(»;,.)) = K(x, y).

Let x4,..., X, be n points in R". The (n X n)-matrix K = (Kij) = (K(x;, x;))
is called Gram (or kernel) matrix wrt x4,..., Xy,.

23



Nonlinear support vector machines
Kernels and their properties

If for any n-vector u, we have u*Ku > 0, K is said to be nonnegative-
definite with nonnegative eigenvalues and K is nonnegative-definite
kernel (or Mercer kernel).

If Kis a Mercer kernel on R" X R", we can construct a unique Hilbert
space H, say, of real-valued functions for which K is its reproducing
kernel. We call H'y a (real) reproducing kernel Hilbert space (rkhs). We
write the inner-product and norm of H ' by {., . )}[K and ||. II}[K.

Ex: inhomogeneous polynomial kernel of degree d (¢, d: parameters)
K(x,y) =({xy)+c)d, x,y € R
Ifr= 2! d= 2! X = (Xl,XZ)T, y = (yl'yZ)T'

K(x,y) = ((x,¥) +c)? = (xy, + x,7, + ¢)? =(D(x), P(y))
CD(x) = (xlz, XZZ,\/_le.'X'Z, \/Z_Cxl.xZ, \/Z_Cxl, \/Z_C.X?, C)

24



Nonlinear support vector machines
Examples of kernels

= Here /' = R® monomials have degree < 2.In general, dim(#) = (r Z d)

consisting of monomials with degree < d.

= For 16x16 piXGlS, r= TABLE 11.1. Kernel functions, K(x,y), where ¢ > 0 is a scale parame-
256.Ifd =2 dlm(}[) — ter, a,b,e = 0, and d is an integer. The Euclidean norm is ||x||* = x"x.
[ ] - ’ -
33,670; d = 4, dim(H) =
Kernel Kix,y)
186,043,585.
. . . —  Polynomial of degree d ((x,¥) + €)*
Examples of translation-invariant —\
(stationary) kernels having the Gaussian radial basis function exp {—"’f—_,;é"lg}
general form ~
KCr) = k(= y) ks 3 = 3 {22
Thin-plate spline ( @]2 log, {"x;—"""}
sigmoid kernel is not strictly a kernel \ © ) 1 . \
. .. . i i tanh(a(x,y) + b)
but very popular in certain situations { o ey

If no information, the best approach is to try either a Gaussian RBF, which has only a

single parameter (o) to be determined, or a polynomial kernel of low degree (d = 1 or 2).
25



Nonlinear support vector machines
Example: String kernels for text (Lodhi et al., 2002)

A“string” s = 5,5, ... S| is a finite sequence of elements of a finite
alphabet A.

We call u a subsequence of s (written u = s(1)) if there are indices

i = (i1,ip . i), 150 < - <iy<|s|, suchthatu=s;,j=12,..., |u].

If the indices 1 are contiguous, we say that u is a substring of s. The
length of uinsis (i) = ip, — iy + 1.

Lets="“cat’ (s;=¢ s, =a,s3=1¢t,|s| = 3). Consider all possible 2-symbol
sequences, “ca,” “ct,” and “at,” derived from s.

au=cahasu;=c=s,u,=a=s,u=s(i),i= (i, i,) = (1, 2), (i) = 2.
au=cthasu;=c=s,u,=t=s51= (i, 1,) = (1, 3),and (i) = 3.
aou=athasu;=a=s,u,=t=s5i1=(2, 3),and (i) = 2.

26



Nonlinear support vector machines
Examples: String kernels for text

IfD = A™ = {all strings of length at most m from A}, then, the feature
space for a string kernel is RP.

Using A € (0, 1) (drop-off rate or decay factor) to weight the interior
gaps in the subsequences, we define the feature map ®,,: R — R

q)u(S) — Zi:u=s(i) Al(i), u e c/qm

®,,(s) is computed as follows: identify all subsequences (indexed by i)
of s that are identical to u; for each such subsequence, raise A to the
power (i); and then sum the results over all subsequences.

In our example above, ®_,(cat) = A%, d_(cat) = A3, and d_(cat) = A2,

Two documents are considered to be “similar” if they have many
subsequences in common: the more subsequences they have in
common, the more similar they are deemed to be.

27



Nonlinear support vector machines
Examples: String kernels for text

The kernel associated with the feature maps corresponding to s and t is
the sum of inner products for all common substrings of length m

Kn(s,0) = ) (@y(), 0u(0) = ) Y H AOHO
u€eD u€D i:u=s(i) j;u=s(j)
and it is called a string kernel (or a gap-weighted subsequences kernel).
Lett="car” (t;=c¢ t, =a, t; =7, |t| = 3). The strings “cat” and “car” are
both substrings of the string “cart.” The three 2-symbol substrings of t

are “ca,” “cr,” and “ar.” We have that ®_,(car) = A%,®_(car) = A3, ®_ (car)
= A%, and thus K,(cat, car) = ®_,(cat),d_,(car) = A%

We normalize the kernel by removing any bias by document length
K, (s, t)

K. (s, t) =
(5 8) \/Km(s,s)Km(t, t)

28



Nonlinear support vector machines
Optimizing in feature space

Let K be a kernel. Suppose obs. in £ are linearly separable in the feature
space corr. to K. The dual opt. problem is to find & and 3, to
maximize Fp(a) = 1}, a — % a'Ha
subjecttoa = 0,a'y =0 (9)
where y = (¥4, ¥1, - ¥1)% H = (Hy) = vy, K (x5, %) = v, 9, Kij.

Because K is a kernel, the K = (K;;) and so H are nonnegative-definite =
the functional Fj (a) is convex = unique solution. If &« and S, solve this
problem, the SVM decision rule is (f *(x) is optimal in feature space)

sign{f *(x)} = sign{Bo+Xiesy a; YiK(x, x;)}
In the nonseparable case, the dual problem of the 1-norm soft-margin
opt. problem is to find a to
maximize Fp(a) = 1} a — % a'Ha
subjectto a'y=0, 0 <a<(C1,
29



Nonlinear support vector Machines
Example: E-mail or spam?

4,601 messages: 1,813 spam e-mails and 2,788 non-spam e-mails. There
are 57 variables (attributes).

Apply nonlinear SVM (R package libsvm) using a Gaussian RBF kernel to
the 4,601 messages. The solution depends on the cost C of violating the
constraints and o2 of the Gaussian RBF kernel. After applying a trial-and-
error method, we used the following grid of values for C and y = 1/0%:

C =10, 80, 100, 200, 500, 1,000,
y=0.00001(0.00001)0.0001(0.0001)0.002(0.001)0.01(0.01)0.04.

Plot the 10-fold CV misclassification rate against y listed above, where
each curve (connected set of points) represents a different value of C.

For each C, we see that the CV/10 misclassification curves have similar
shapes: a minimum value for y very close to zero, and for values of y
away from zero, the curve trends upwards.

30



Nonlinear support vector Machines
Example: E-mail or spam?

We find a minimum CV /10 misclassification rate of 8.06% at (C, y) =
(500, 0.0002) and (1,000, 0.0002). The level of the misclassification rate
tends to decrease as Cincreases and y decreases together.

misclassification rate of £ [ e c-m
6-91% at C - 11, OOO and y - %m L L — %:-15- /_——-"""-__ io L
0.00001, at corresponding etV 2ol V
tO ClaSSification rate: o om g:;::nu im oM T am am g“:fm o oM R gw::':_n o oM
0 0.9043,0.9478,0.9304, ;[ e= |5 ew 5T ow
0.9261, 0.9109,
o 0.9413,0.9326,0.9500. - |/ el |
0.9326’ 0.9328. "7 o oo gﬂc_;::"u [T T "7 om om g&“:fm om omM T o oom ‘;“m“_:r';_\ll om0
. Initial grid search for the minimum 10-fold CV misclassification
1S better than LDA and QDA rate using 0.00001 <y < 0.04. The curves correspondto C = 10
(dark blue), 80 (brown), 100 (green), 200 (orange), 500 (light
931 SllppOI't vectors (482 e- blue), and 1,000 (red). Within this intial grid search, the minimum
mails. 449 spam) CV/10 misclassification rate is 8.06%, which occurs at (C, y) =
) .

(500, 0.0002) and (1,000, 0.0002).
31



Nonlinear Support Vector Machines
SVM as a Regularization Method

Regularization involves introducing additional information in order to
solve an ill-posed problem or to prevent overfitting. This information is
usually of the form of a penalty for complexity.

Let f € H, the reproducing kernel Hilbert space associated with the
kernel K, with ||f||32L[K the squared-norm of fin Hy.

Consider the classification error, y, - f{x;), where y, € {-1, +1}. Then

lyi — x| =lyi(L=yif e )= 11—y f (x)| = (1= yif (x:))+

i=1.n, (x);=max (x, 0). The quantity
(1—y;f (x;))+, which could be zero if R
all x; are correctly classified, called
hinge loss function. The hinge loss plays '
a vital role in SVM methodology.

0
f(x)

32



Nonlinear Support Vector Machines
SVM as a Regularization Method

Want to find f € H' to minimize a penalized version of the hinge loss.
Specifically, we wish to find f€ H  to

e . 1
minimize ¥, (1 -y i), + Alfl3 (10)

The tuning parameter A > 0 balances the trade-off between estimating f
(first term: measures the distance of the data from separability) and
how well f can be approximated (second term: penalizes overfitting).

After the minimizing f has been found, the SVM classifier is
C(x) = sign{f(x)}, x € R".

(10) is nondifferentiable, but every f € H can be written as sum
fO)= 10+ Q) =2 ai K(xi, ) +f ()

where flle H . is the projection of fonto the subspace Hy of H and f+
is in the subspace perpendicular to H; thatis, (f1(.), K(x;,.))s= 0.

33



Nonlinear support vector machines
SVM as a regularization method

We write f(x;) via the reproducing property
fx)=(F (K (. )) = {10, K(xi, ) +(FH() K (x3,.))
We have f(x) = Y, a; K(x;, x) (11)

is independent of f* as the second term is zero. We have

117 = 11X @K (e, )%, (12)

This important result is known as the representer, says that the
minimizing f can be written as a linear combination of a reproducing
kernel evaluated at each of the n data points (Kimeldorf and Wahba,
1971). Problem (10) is equivalent to find 5, and B to

minimize -3, (1 - y;(Bo + ®(x)"B), + AIBIZ  (13)



Kernel methods: math background

Input space X Feature space F
X1 X inverse map ¢
o ® <
° 6(x) .
® o o >

N kOox;) = 90)90) | 4
N ~N

et unctin k105 4 (emmel matrix kb ssomonk

Linear algebra, probability/statistics, functional analysis, optimization

m Mercer theorem: Any positive definite function can be written as an inner
product in some feature space.

m Kernel trick: Using kernel matrix instead of inner product in the feature space.
m Representer theorem (Wahba): Every minimizer of fngﬁ!cn{C(f,{xi,yi})+Q(HfHH) admits

arepresentdaionof theform f(.) = ZaiK(., X.)
i=1
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Multiclass support vector machines
Multiclass SVM as a series of binary problems

= One-versus-rest:
Divide the K-class
problem into K
binary classification
subproblems of the
type “kth class” vs.
“not kth class,”
k=1,2,...,K

= One-versus-one:
Divide the K-class
problem into
comparisons of all
pairs of classes.

TABLE 11.3. Summary of support vector machine (SVM) “one-versus-
one” classification results for data sets with more than two classes. Listed
are the sample size (n), number of variables (v), and number of classes
(K ). Also listed for each data set is the 10-fold cross-validation (CV/10)
misclassification rates corresponding to the best choice of (C,v). The data
sets are listed in increasing orvder of LDA misclassification rates {Table
8.7).

Data Set n r K SVM-CV/10 C ¥
Wine 178 13 3 0.0169 105 8x107%
Iris 150 4 3 0.0200 100 0.002
Primate scapulae 105 7T 5 0.0286 100 0.0002
Shuttle 43500 8 7 0.0019 10 (0.0001
Dhabetes 145 5 3 0.0414 100 0.000009
Pendigits 10,992 16 10 0.0031 10 (0.0001
E-coh 336 T B 0.1280 10 1.0
Vehicle 846 18 4 0.1501 600  0.00005
Letter recognition 20,000 16 26 0.0183 50 0.04
Glass 214 9 & 0.0093 10 0.001
Yeast 1484 8 10 0.3935 10 7.0
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Multiclass support vector machines
A true multiclass SVM

To construct a true multiclass SVM classifier, we need to consider all K
classes, I1,,I1,, ... ,II;, simultaneously, and the classifier has to reduce to
the binary SVM classifier if K = 2.

One construction due to Lee, Lin, and Wahba (2004).

Provide a unifying framework to multicategory SVM when there are
either equal or unequal misclassification costs.
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Other issues
Support vector regression

The SVM was designed for classification. Can we extend (or generalize)
the idea to regression?

How would the main concepts used in SVM — convex optimization,
optimal separating hyperplane, support vectors, margin, sparseness of
the solution, slack variables, and the use of kernels — translate to the
regression situation?

It turns out that all of these concepts find their analogues in regression
analysis and they add a different view to the topic than the views we
saw previously.

g-insensitive loss functions

Optimization for linear -insensitive loss
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Other issues
Optimization algorithms for SVMs

Quadratic programming (QP) optimizers can solve problems having
about a thousand points, general-purpose linear programming (LP)
optimizers can deal with hundreds of thousands of points. With large
data sets, however, a more sophisticated approach is required.

Gradient ascent: Start with an estimate of the a-coefficient then
successively update a one a-coefficient by steepest ascent algorithm.

Chunking: Start with a small subset; train an SVM on it, keep only
support vectors; apply the resulting classifier to the remaining data.

Decomposition: Similar to chunking, except that at each iteration, the
size of the subset is always the same.

Sequential minimal optimization (SMO): An extreme version of the
decomposition algorithm.



Other issues
Software packages

TABLE 11.4. Some implementations of SVM.

Package Implementation
SVMiiaht http://svmlight. joachims.org/
LIBSVM http://csie. ntu.edu.tw/ cjlin/libsvm/
SVMTorch I http://www.idiap.ch/machine-learning.php
SVMsequel http://www.isi.edu/ " hdaume/SVM=equel/
TinySVM http://chasen.org/ taku/TinySVM/

Some of our work on SVM and kernel methods

Nguyen, D.D., Ho, T.B. (2006). A Bottom-up Method for
Simplifying Support Vector Solutions, IEEE Transactions
on Neural Networks, Vol.17, No. 3, 792-796.

Nguyen, C.H., Ho, T.B. (2008). An Efficient Kernel Matrix
Evaluation Measure, Pattern Recognition, Elsevier, 41
(11), 3366-3372
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Some challenges in kernel methods
Scalability and choice of kernels etc.

The choice of kernel function. In general, there is no way of choosing or
constructing a kernel that is optimal for a given problem.

The complexity of kernel algorithms. Kernel methods access the
feature space via the input samples and need to store all the relevant
input samples.

Examples: Store all support vectors or size of the kernel matrices
grows quadratically with sample size = scalability of kernel methods.

Incorporating priors knowledge and invariances in to kernel functions
are some of the challenges in kernel methods.

.1 regularization may allow some coefficients to be zore = hot topic

Multiple kernel learning (MKL) is initially (2004, Lanckriet) of high
computational cost = Many subsequent work, still ongoing, has not
been a practical tool yet.

John Langford, Yahoo Research 44



