Lecture 3
 Nonparametric Methods

Statistical models with weak assumptions

Topics

- Nonparametric regression
- Sparse additive models
- Constrained rank additive models
- Nonparametric graphical models

Nonparametric Regression

Given $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ predict Y from X.

Assume only that $Y_{i}=m\left(X_{i}\right)+\epsilon_{i}$ where where $m(x)$ is a smooth function of x.

The most popular methods are kernel methods. However, there are two types of kernels:
(1) Smoothing kernels
(2) Mercer kernels

Smoothing kernels involve local averaging. Mercer kernels involve regularization.

Smoothing Kernels

- Smoothing kernel estimator:

$$
\widehat{m}_{h}(x)=\frac{\sum_{i=1}^{n} Y_{i} K_{h}\left(X_{i}, x\right)}{\sum_{i=1}^{n} K_{h}\left(X_{i}, x\right)}
$$

where $K_{h}(x, z)$ is a kernel such as

$$
K_{h}(x, z)=\exp \left(-\frac{\|x-z\|^{2}}{2 h^{2}}\right)
$$

and $h>0$ is called the bandwidth.

- $\widehat{m}_{h}(x)$ is just a local average of the Y_{i} 's near x.
- The bandwidth h controls the bias-variance tradeoff:

Small $h=$ large variance while large $h=$ large bias.

Example: Some Data - Plot of Y_{i} versus X_{i}

Example: $\widehat{m}(x)$

$\widehat{m}(x)$ is a local average

Effect of the bandwidth h

very small bandwidth

medium bandwidth

small bandwidth

Smoothing Kernels

Risk $=\mathbb{E}\left(Y-\widehat{m}_{h}(X)\right)^{2}=\operatorname{bias}^{2}+$ variance $+\sigma^{2}$.
$\operatorname{bias}^{2} \approx h^{4}$,
variance $\approx \frac{1}{n h^{p}}$ where $p=$ dimension of X.
$\sigma^{2}=\mathbb{E}(Y-m(X))^{2}$ is the unavoidable prediction error.
small h : low bias, high variance (undersmoothing) large h : high bias, low variance (oversmoothing)

Risk Versus Bandwidth

Estimating the Risk: Cross-Validation

To choose h we need to estimate the risk $R(h)$. We can estimate the risk by using cross-validation.
(1) Omit $\left(X_{i}, Y_{i}\right)$ to get $\widehat{m}_{h,(i)}$, then predict: $\widehat{Y}_{(i)}=\widehat{m}_{h,(i)}\left(X_{i}\right)$.
(2) Repeat this for all observations.
(3) The cross-validation estimate of risk is:

$$
\widehat{R}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{(i)}\right)^{2}
$$

Shortcut formula:

$$
\widehat{R}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{Y_{i}-\widehat{Y}_{i}}{1-L_{i i}}\right)^{2}
$$

where $L_{i i}=K_{h}\left(X_{i}, X_{i}\right) / \sum_{t} K_{h}\left(X_{i}, X_{t}\right)$.

Summary so far

(1) Compute \widehat{m}_{h} for each h.
(2) Estimate the risk $\widehat{R}(h)$.
(3) Choose bandwidth \widehat{h} to minimize $\widehat{R}(h)$.
(4) Let $\widehat{m}(x)=\widehat{m}_{\widehat{h}}(x)$.

Example

Another Approach: Mercer Kernels

Instead of using local smoothing, we can optimize the fit to the data subject to regularization (penalization). Choose \widehat{m} to minimize

$$
\sum_{i}\left(Y_{i}-\widehat{m}\left(X_{i}\right)\right)^{2}+\lambda \text { penalty }(\mathrm{m})
$$

where penalty (m) is a roughness penalty.
λ is a smoothing parameter that controls the amount of smoothing.

How do we construct a penalty that measures roughness? One approach is: Mercer Kernels and RKHS = Reproducing Kernel Hilbert Spaces.

What is a Mercer Kernel?

A Mercer Kernel $K(x, y)$ is symmetric and positive definite:

$$
\iint f(x) f(y) K(x, y) d x d y \geq 0 \quad \text { for all } f
$$

Example: $K(x, y)=e^{-\|x-y\|^{2} / 2}$.
Think of $K(x, y)$ as the similarity between x and y. We will create a set of basis functions based on K.

Fix z and think of $K(z, x)$ as a function of x. That is,

$$
K(z, x)=K_{z}(x)
$$

is a function of the second argument, with the first argument fixed.

Mercer Kernels

Let

$$
\mathcal{F}=\left\{f(\cdot)=\sum_{j=1}^{k} \beta_{j} K\left(z_{j}, \cdot\right)\right\}
$$

Define a norm: $\|f\|_{K}=\sum_{j} \sum_{k} \beta_{j} \beta_{k} K\left(z_{j}, z_{k}\right) .\|f\|_{K}$ small means f smooth.

If $f=\sum_{r} \alpha_{r} K\left(z_{r}, \cdot\right), g=\sum_{s} \beta_{s} K\left(w_{s}, \cdot\right)$, the inner product is

$$
\langle f, g\rangle_{K}=\sum_{r} \sum_{s} \alpha_{r} \beta_{s} K\left(z_{r}, w_{s}\right)
$$

\mathcal{F} is a reproducing kernel Hilbert space (RKHS) because

$$
\langle f, K(x, \cdot)\rangle=f(x)
$$

Nonparametric Regression: Mercer Kernels

Representer Theorem: Let \widehat{m} minimize

$$
J=\sum_{i=1}^{n}\left(Y_{i}-m\left(X_{i}\right)\right)^{2}+\lambda\|m\|_{K}^{2}
$$

Then

$$
\widehat{m}(x)=\sum_{i=1}^{n} \alpha_{i} K\left(X_{i}, x\right)
$$

for some $\alpha_{1}, \ldots, \alpha_{n}$.

So, we only need to find the coefficients

$$
\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

Nonparametric Regression: Mercer Kernels

Plug $\widehat{m}(x)=\sum_{i=1}^{n} \alpha_{i} K\left(X_{i}, x\right)$ into J :

$$
J=\|Y-\mathbb{K} \alpha\|^{2}+\lambda \alpha^{T} \mathbb{K} \alpha
$$

where $\mathbb{K}_{j k}=K\left(X_{j}, X_{k}\right)$

Now we find α to minimize J. We get: $\widehat{\alpha}=(\mathbb{K}+\lambda I)^{-1} Y$ and $\widehat{m}(x)=\sum_{i} \widehat{\alpha}_{i} K\left(X_{i}, x\right)$.

The estimator depends on the amount of regularization λ. Again, there is a bias-variance tradeoff. We choose λ by cross-validation. This is like the bandwidth in smoothing kernel regression.

Smoothing Kernels Versus Mercer Kernels

Smoothing kernels: the bandwidth h controls the amount of smoothing.

Mercer kernels: norm $\|f\|_{K}$ controls the amount of smoothing.
In practice these two methods give answers that are very similar.

Mercer Kernels: Examples

very small lambda

medium lambda

small lambda

large lambda

Multiple Regression

Both methods extend easily to the case where X has dimension $p>1$. For example, just use

$$
K(x, y)=e^{-\|x-y\|^{2} / 2} .
$$

However, this is hard to interpret and is subject to the curse of dimensionality. This means that the statistical performance and the computational complexity degrade as dimension p increases.

An alternative is to use something less nonparametric such as additive model where we restrict $m\left(x_{1}, \ldots, x_{p}\right)$ to be of the form:

$$
m\left(x_{1}, \ldots, x_{p}\right)=\beta_{0}+\sum_{j} m_{j}\left(x_{j}\right) .
$$

Topics

- Nonparametric regression
- Sparse additive models
- Nonparametric graphical models

Additive Models

Model: $m(x)=\beta_{0}+\sum_{j=1}^{p} m_{j}\left(x_{j}\right)$.

We can take $\widehat{\beta}_{0}=\bar{Y}$ and we will ignore β_{0} from now on.

We want to minimize

$$
\sum_{i=1}^{n}\left(Y_{i}-\left(m_{1}\left(X_{i 1}\right)+\cdots+m_{p}\left(X_{i p}\right)\right)\right)^{2}
$$

subject to m_{j} smooth.

Additive Models

The backfitting algorithm:

- Set $\widehat{m}_{j}=0$
- Iterate until convergence:
- Iterate over j :
- $R_{i}=Y_{i}-\sum_{k \neq j} \widehat{m}_{k}\left(X_{i k}\right)$
- $\widehat{m}_{j} \longleftarrow \operatorname{smooth}\left(X_{j}, R\right)$

Here, smooth $\left(X_{j}, R\right)$ is any one-dimensional nonparametric regression function.

R: glm

But what if p is large?

Sparse Additive Models

Ravikumar, Lafferty, Liu and Wasserman, JRSS B (2009)

Additive Model: $\quad Y_{i}=\sum_{j=1}^{p} m_{j}\left(X_{i j}\right)+\varepsilon_{i}, \quad i=1, \ldots, n$

High dimensional: $\quad n \ll p$, with most $m_{j}=0$.

Optimization:

$$
\begin{array}{cl}
\text { minimize } & \mathbb{E}\left(Y-\sum_{j} m_{j}\left(X_{j}\right)\right)^{2} \\
\text { subject to } & \sum_{j=1}^{p} \sqrt{\mathbb{E}\left(m_{j}^{2}\right)} \leq L_{n} \\
& \mathbb{E}\left(m_{j}\right)=0
\end{array}
$$

Related work by Bühlmann and van de Geer (2009), Koltchinskii and Yuan (2010), Raskutti, Wainwright and Yu (2011)

Sparse Additive Models

$$
C=\left\{m \in \mathbb{R}^{4}: \sqrt{m_{1}\left(x_{1}\right)^{2}+m_{1}\left(x_{2}\right)^{2}}+\sqrt{m_{2}\left(x_{1}\right)^{2}+m_{2}\left(x_{2}\right)^{2}} \leq L\right\}
$$

Stationary Conditions

Lagrangian

$$
\mathcal{L}(f, \lambda)=\frac{1}{2} \mathbb{E}\left(Y-\sum_{j=1}^{p} m_{j}\left(X_{j}\right)\right)^{2}+\lambda \sum_{j=1}^{p} \sqrt{\mathbb{E}\left(m_{j}^{2}\left(X_{j}\right)\right)}
$$

Let $R_{j}=Y-\sum_{k \neq j} m_{k}\left(X_{k}\right)$ be j th residual. Stationary condition

$$
m_{j}-\mathbb{E}\left(R_{j} \mid X_{j}\right)+\lambda v_{j}=0 \quad \text { a.e. }
$$

where $v_{j} \in \partial \sqrt{\mathbb{E}\left(m_{j}^{2}\right)}$ satisfies

$$
\begin{aligned}
v_{j} & =\frac{m_{j}}{\sqrt{\mathbb{E}\left(m_{j}^{2}\right)}} \text { if } \mathbb{E}\left(m_{j}^{2}\right) \neq 0 \\
\sqrt{\mathbb{E} v_{j}^{2}} & \leq 1 \text { otherwise }
\end{aligned}
$$

Stationary Conditions

Rewriting,

$$
\begin{aligned}
m_{j}+\lambda v_{j} & =\mathbb{E}\left(R_{j} \mid X_{j}\right) \equiv P_{j} \\
\left(1+\frac{\lambda}{\sqrt{\mathbb{E}\left(m_{j}^{2}\right)}}\right) m_{j} & =P_{j} \text { if } \mathbb{E}\left(P_{j}^{2}\right)>\lambda \\
m_{j} & =0 \text { otherwise }
\end{aligned}
$$

This implies

$$
m_{j}=\left[1-\frac{\lambda}{\sqrt{\mathbb{E}\left(P_{j}^{2}\right)}}\right]_{+} P_{j}
$$

SpAM Backfitting Algorithm

Input: Data $\left(X_{i}, Y_{i}\right)$, regularization parameter λ.
Iterate until convergence:
For each $j=1, \ldots, p$:
Compute residual: $R_{j}=Y-\sum_{k \neq j} \hat{m}_{k}\left(X_{k}\right)$
Estimate projection $P_{j}=\mathbb{E}\left(R_{j} \mid X_{j}\right)$, smooth: $\widehat{P}_{j}=\mathcal{S}_{j} R_{j}$
Estimate norm: $s_{j}=\sqrt{\mathbb{E}\left[P_{j}\right]^{2}}$
Soft-threshold: $\hat{m}_{j} \leftarrow\left[1-\frac{\lambda}{\hat{s}_{j}}\right]_{+} \widehat{P}_{j}$
Output: Estimator $\widehat{m}\left(X_{i}\right)=\sum_{j} \widehat{m}_{j}\left(X_{i j}\right)$.

Example: Boston Housing Data

Predict house value Y from 10 covariates.

We added 20 irrelevant (random) covariates to test the method.
$Y=$ house value; $n=506, p=30$.

$$
Y=\beta_{0}+m_{1}(\text { crime })+m_{2}(\operatorname{tax})+\cdots+\cdots m_{30}\left(X_{30}\right)+\epsilon .
$$

Note that $m_{11}=\cdots=m_{30}=0$.

We choose λ by minimizing the estimated risk.

SpAM yields 6 nonzero functions. It correctly reports that $\widehat{m}_{11}=\cdots=\widehat{m}_{30}=0$.

L_{2} norms of fitted functions versus $1 / \lambda$

Estimated Risk Versus λ

Example Fits

Example Fits

RKHS Version

Raskutti, Wainwright and Yu (2011)

Sample optimization

$$
\min _{f} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{p} m_{j}\left(x_{i j}\right)\right)^{2}+\lambda \sum_{j}\left\|m_{j}\right\|_{\mathcal{H}_{j}}+\mu \sum_{j}\left\|m_{j}\right\|_{L_{2}\left(\mathbb{P}_{n}\right)}
$$

where $\left\|m_{j}\right\|_{L_{2}\left(\mathbb{P}_{n}\right)}=\sqrt{\frac{1}{n} \sum_{i=1}^{n} m_{j}^{2}\left(x_{i j}\right)}$.

By Representer Theorem, with $m_{j}(\cdot)=K_{j} \alpha_{j}$,

$$
\min _{f} \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{p} K_{j} \alpha_{j}\right)^{2}+\lambda \sum_{j} \sqrt{\alpha_{j}^{T} K_{j} \alpha_{j}}+\mu \sum_{j} \sqrt{\alpha_{j}^{T} K_{j}^{2} \alpha_{j}}
$$

Finite dimensional SOCP, but no scalable algorithms known.

Open Problems

- Under what conditions do the backfitting algorithms converge?
- What guarantees can be given on the solution to the infinite dimensional optimization?
- Is it possible to simultaneously adapt to unknown smoothness and sparsity?

Multivariate Regression

$Y \in \mathbb{R}^{q}$ and $X \in \mathbb{R}^{p}$. Regression function $M(X)=\mathbb{E}(Y \mid X)$.

Linear model $M(X)=B X$ where $B \in \mathbb{R}^{q \times p}$.

Reduced rank regression: $r=\operatorname{rank}(B) \leq C$.

Recent work has studied properties and high dimensional scaling of reduced rank regression where nuclear norm

$$
\|B\|_{*}:=\sum_{j=1}^{\min (p, q)} \sigma_{j}(B)
$$

as convex surrogate for rank constraint (Yuan et al., 2007; Negahban and Wainwright, 2011)

Nonparametric Reduced Rank Regression

Foygel, Horrell, Drton and Lafferty (2012)

Nonparametric multivariate regression $M(X)=\left(m^{1}(X), \ldots, m^{q}(X)\right)^{T}$

Each component an additive model

$$
m^{k}(X)=\sum_{j=1}^{p} m_{j}^{k}\left(X_{j}\right)
$$

What is the nonparametric analogue of $\|B\|_{*}$ penalty?

Low Rank Functions

What does it mean for a set of functions $m^{1}(x), \ldots, m^{q}(x)$ to be low rank?

Let x_{1}, \ldots, x_{n} be a collection of points.
We require the $n \times q$ matrix $\mathbb{M}\left(x_{1: n}\right)=\left[m^{k}\left(x_{i}\right)\right]$ is low rank.
Stochastic setting: $\mathbb{M}=\left[m^{k}\left(X_{i}\right)\right]$. Natural penalty is

$$
\|\mathbb{M}\|_{*}=\sum_{s=1}^{q} \sigma_{s}(\mathbb{M})=\sum_{s=1}^{q} \sqrt{\lambda_{s}\left(\mathbb{M}^{T} \mathbb{M}\right)}
$$

Population version:

$$
\|M\|_{*}:=\|\sqrt{\operatorname{Cov}(M(X))}\|_{*}=\left\|\Sigma(M)^{1 / 2}\right\|_{*}
$$

Constrained Rank Additive Models (CRAM)

Let $\Sigma_{j}=\operatorname{Cov}\left(M_{j}\right)$. Two natural penalties:

$$
\begin{gathered}
\left\|\Sigma_{1}^{1 / 2}\right\|_{*}+\left\|\Sigma_{2}^{1 / 2}\right\|_{*}+\cdots+\left\|\Sigma_{p}^{1 / 2}\right\|_{*} \\
\left\|\left(\Sigma_{1}^{1 / 2} \Sigma_{2}^{1 / 2} \cdots \Sigma_{p}^{1 / 2}\right)\right\|_{*}
\end{gathered}
$$

Population risk functional (first penalty)

$$
\frac{1}{2} \mathbb{E}\left\|Y-\sum_{j} M_{j}\left(X_{j}\right)\right\|_{2}^{2}+\lambda \sum_{j}\| \| M_{j} \|_{*}
$$

Stationary Conditions

Subdifferential is $\partial\|F\|_{*}=\left\{\left(\sqrt{\mathbb{E}\left(F F^{\top}\right)}\right)^{-1} F+H\right\}$ where $\|H\|_{\text {sp }} \leq 1, \mathbb{E}\left(F H^{\top}\right)=0, \mathbb{E}\left(F F^{\top}\right) H=0$

Let $P(X):=\mathbb{E}(Y \mid X)$ and consider optimization

$$
\frac{1}{2} \mathbb{E}\|Y-M(X)\|_{2}^{2}+\lambda\|M\|_{*}
$$

Let $\mathbb{E}\left(P P^{T}\right)=U \operatorname{diag}(\tau) U^{T}$ be the SVD. Define

$$
M=U \operatorname{diag}\left([1-\lambda / \sqrt{\tau}]_{+}\right) U^{\top} P
$$

Then M is a stationary point of the optimization, satisfying

$$
E(Y \mid X)=M(X)+\lambda V(X) \text { a.e., for some } V \in \partial\|M\|_{*}
$$

CRAM Backfitting Algorithm (Penalty 1)

Input: Data $\left(X_{i}, Y_{i}\right)$, regularization parameter λ.
Iterate until convergence:
For each $j=1, \ldots, p$:
Compute residual: $R_{j}=Y-\sum_{k \neq j} \widehat{f}_{k}\left(X_{k}\right)$
Estimate projection $P_{j}=\mathbb{E}\left(R_{j} \mid X_{j}\right)$, smooth: $\widehat{P}_{j}=\mathcal{S}_{j} R_{j}$
Compute SVD: $\frac{1}{n} \widehat{P}_{j} \hat{P}_{j}^{T}=U \operatorname{diag}(\tau) U^{T}$
Soft-threshold: $\widehat{M}_{j}=U \operatorname{diag}\left([1-\lambda / \sqrt{\tau}]_{+}\right) U^{\top} \widehat{P}_{j}$
Output: Estimator $\widehat{M}\left(X_{i}\right)=\sum_{j} \widehat{M}_{j}\left(X_{i j}\right)$.

Example

Data of Smith et al. (1962), chemical measurements for 33 individual urine specimens.
$q=5$ response variables: pigment creatinine, and the concentrations (in $\mathrm{mg} / \mathrm{ml}$) of phosphate, phosphorus, creatinine and choline.
$p=3$ covariates: weight of subject, volume and specific gravity of specimen.

We use Penalty 2 with local linear smoothing.

We take $\lambda=1$ and bandwidth $h=.3$.

Statistical Scaling for Prediction

Let \mathcal{F} be class of matrices of functions that have a functional SVD

$$
M(X)=U D V(X)^{\top}
$$

where $\mathbb{E}\left(V^{\top} V\right)=I$, and $V(X)=\left[v_{s j}\left(X_{j}\right)\right]$ with each $v_{s j}$ in a second-order Sobolev space. Define

$$
\mathcal{M}_{n}=\left\{M: M \in \mathcal{F},\|D\|_{*}=o\left(\frac{n}{q+\log (p q)}\right)^{1 / 4}\right\} .
$$

Let \widehat{M} minimize the empirical risk $\frac{1}{n} \sum_{i}\left\|Y_{i}-\sum_{j} M_{j}\left(X_{i j}\right)\right\|_{2}^{2}$ over the class \mathcal{M}_{n}. Then

$$
R(\widehat{M})-\inf _{M \in \mathcal{M}_{n}} R(M) \xrightarrow{P} 0
$$

Nonparametric CCA

Canonical correlation analysis (CCA, Hotelling, 1936) is classical method for finding correlations between components of two random vectors $X \in \mathbb{R}^{p}$ and $Y \in \mathbb{R}^{q}$.

Sparse versions have been proposed for high dimensional data (Witten \& Tibshirani, 2009)

Sparse additive models can be extended to this setting.

Sparse Additive Functional CCA

Balasubramanian, Puniyani and Lafferty (2012)

Population version of optimization:

$$
\begin{aligned}
& \max _{f \in \mathcal{F}, g \in \mathcal{G}} \mathbb{E}(f(X) g(Y)) \quad \text { subject to } \\
& \max _{j} \mathbb{E}\left(f_{j}^{2}\right) \leq 1, \quad \sum_{j=1}^{p} \sqrt{\mathbb{E}\left(f_{j}^{2}\right)} \leq C_{f} \\
& \max _{k} \mathbb{E}\left(g_{k}^{2}\right) \leq 1, \quad \sum_{k=1}^{q} \sqrt{\mathbb{E}\left(g_{k}^{2}\right)} \leq C_{g}
\end{aligned}
$$

Estimated with analogues of SpAM backfitting, together with screening procedures. See ICML paper.

Topics

- Nonparametric regression
- Sparse additive models
- Nonparametric graphical models

Regression vs. Graphical Models

assumptions	regression	graphical models
parametric	lasso	graphical lasso
nonparametric	sparse additive model	nonparanormal

The Nonparanormal (Liu, Lafferty, Wasserman, 2009)

A random vector $X=\left(X_{1}, \ldots, X_{p}\right)^{T}$ has a nonparanormal distribution

$$
X \sim N P N(\mu, \Sigma, f)
$$

in case

$$
Z \equiv f(X) \sim N(\mu, \Sigma)
$$

where $f(X)=\left(f_{1}\left(X_{1}\right), \ldots, f_{p}\left(X_{p}\right)\right)$.
Joint density
$p_{X}(x)=\frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(f(x)-\mu)^{T} \Sigma^{-1}(f(x)-\mu)\right\} \prod_{j=1}^{p}\left|f_{j}^{\prime}\left(x_{j}\right)\right|$

- Semiparametric Gaussian copula

Examples

The Nonparanormal

- Define $h_{j}(x)=\Phi^{-1}\left(F_{j}(x)\right)$ where $F_{j}(x)=\mathbb{P}\left(X_{j} \leq x\right)$.
- Let \wedge be the covariance matrix of $Z=h(X)$. Then

$$
X_{j} \amalg X_{k} \mid X_{\text {rest }}
$$

if and only if $\Lambda_{j k}^{-1}=0$.

- Hence we need to:
(1) Estimate $\widehat{h}_{j}(x)=\Phi^{-1}\left(\widehat{F}_{j}(x)\right)$.
(2) Estimate covariance matrix of $Z=\widehat{h}(X)$ using the glasso.

Winsorizing the CDF

Truncation to estimate \widehat{F}_{j} for $n>p$:

Properties

- LLW (2009) show that the resulting procedure has the same theoretical properties as the glasso, even with dimension p increasing with n.
- The truncation of the empirical distribution is crucial for the theoretical results when p is large, although in practice it does not seem to matter too much.
- If the nonparanormal is used when the data are actually Normal, little efficiency is lost.

Gene-Gene Interactions for Arabidopsis thaliana

Dataset from Affymetrix microarrays, sample size $n=118, p=40$ genes (isoprenoid pathway).

Example Results

NPN

glasso

difference

Transformations for 3 Genes

- These genes have highly non-Normal marginal distributions.
- The graphs are different at these genes.

S\&P Data (2003-2008): Graphical Lasso

S\&P Data: Nonparanormal

S\&P Data: Nonparanormal vs. Glasso

differences

The Nonparanormal SKEPTIC

Liu, Han, Yuan, Lafferty \& Wasserman, 2012

Assuming $X \sim N P N\left(f, \Sigma^{0}\right)$, we have

$$
\Sigma_{j k}^{0}=2 \sin \left(\frac{\pi}{6} \rho_{j k}\right)
$$

where ρ is Spearman's rho:

$$
\rho_{j k}:=\operatorname{Corr}\left(F_{j}\left(X_{j}\right), F_{k}\left(X_{k}\right)\right)
$$

Empirical estimate:

$$
\widehat{\rho}_{j k}=\frac{\sum_{i=1}^{n}\left(r_{j}^{i}-\bar{r}_{j}\right)\left(r_{k}^{i}-\bar{r}_{k}\right)}{\sqrt{\sum_{i=1}^{n}\left(r_{j}^{i}-\bar{r}_{j}\right)^{2} \cdot \sum_{i=1}^{n}\left(r_{k}^{i}-\bar{r}_{k}\right)^{2}}} .
$$

Similar relation holds for Kendall's tau.

The Nonparanormal SKEPTIC

Using a Hoeffding inequality for U-statistics, we get

$$
\max _{j k}\left|\widehat{\Sigma}_{j k}^{\rho}-\Sigma_{j k}^{0}\right| \leq \frac{3 \sqrt{2} \pi}{2} \sqrt{\frac{\log d+\log n}{n}},
$$

with probability at least $1-1 / n^{2}$.

Can thus estimate the covariance at the parametric rate

Punch line: For graph and covariance estimation, no loss in statistical or computational efficiency comes from using Nonparanormal rather than Normal graphical model.

Graph-Valued Regression

- $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ where Y_{i} is high-dimensional
- We'll discuss one particular version: graph-valued regression (Chen, Lafferty, Liu, Wasserman, 2010)
- Let $G(x)$ be the graph for Y based on $p(y \mid x)$
- This defines a partition $\mathcal{X}_{1}, \ldots, \mathcal{X}_{k}$ where $G(x)$ is constant over each partition.
- Three methods to find $G(x)$:
- Parametric
- Kernel graph-valued regression
- GO-CART (Graph-Optimized CART)

Graph-Valued Regression

multivariate regression
(supervised)
$\mu(x)=\mathbb{E}(Y \mid x)$
$Y \in \mathbb{R}^{p}, x \in \mathbb{R}^{q}$
graphical model
(unsupervised)
$\mu(x)=\mathbb{E}(Y \mid x)$
$\operatorname{Graph}(Y)=(V, E)$
$(j, k) \notin E \Longleftrightarrow Y_{j} \amalg Y_{k} \mid Y_{\text {rest }}$
graph-valued regression
$\operatorname{Graph}(Y \mid x)$

- Gene associations from phenotype (or vice versa)
- Voting patterns from covariates on bills
- Stock interactions given market conditions, news items

Method I: Parametric

- Assume that $Z=(X, Y)$ is jointly multivariate Gaussian.
- $\Sigma=\left(\begin{array}{cc}\Sigma_{X} & \Sigma_{X Y} \\ \Sigma_{Y X} & \Sigma_{Y}\end{array}\right)$.
- Get $\hat{\Sigma}_{X}, \widehat{\Sigma}_{Y}$, and $\hat{\Sigma}_{X Y}$
- Get Ω_{X} by the glasso.
- $\widehat{\Sigma}_{Y \mid X}=\widehat{\Sigma}_{Y}-\widehat{\Sigma}_{Y X} \widehat{\Omega}_{X} \widehat{\Sigma}_{X Y}$.
- But, the estimated graph does not vary with different values of X.

Method II: Kernel Smoothing

- $Y \mid X=x \sim N(\mu(x), \Sigma(x))$.

$$
\begin{aligned}
\widehat{\Sigma}(x) & =\frac{\sum_{i=1}^{n} K\left(\frac{\left\|x-x_{i}\right\|}{h}\right)\left(y_{i}-\widehat{\mu}(x)\right)\left(y_{i}-\widehat{\mu}(x)\right)^{T}}{\sum_{i=1}^{n} K\left(\frac{\left\|x-x_{i}\right\|}{h}\right)} \\
\widehat{\mu}(x) & =\frac{\sum_{i=1}^{n} K\left(\frac{\left\|x-x_{i}\right\|}{h}\right) y_{i}}{\sum_{i=1}^{n} K\left(\frac{\left\|x-x_{i}\right\|}{h}\right)}
\end{aligned}
$$

- Apply glasso to $\widehat{\Sigma}(x)$
- Easy to do but recovering $\mathcal{X}_{1}, \ldots, \mathcal{X}_{k}$ requires difficult post-processing.

Method III: Partition Estimator

- Run CART but use Gaussian log-likelihood (on held out data) to determine the splits
- This yields a partition $\mathcal{X}_{1}, \ldots, \mathcal{X}_{k}$ (and a correspdonding tree)
- Run the glasso within each partition element

Simulated Data

(a)

(b)

(c)

Climate Data

Tradeoff

- Nonparanormal: Unrestricted graphs, semiparametric
- We'll now trade off structural flexibility for greater nonparametricity

Forest Densities (Gupta, Lafferty, Liu, Wasserman, Xu, 2011)

A distribution is supported by a forest F with edge set $E(F)$ if

$$
p(x)=\prod_{(i, j) \in E(F)} \frac{p\left(x_{i}, x_{j}\right)}{p\left(x_{i}\right) p\left(x_{j}\right)} \prod_{k \in V} p\left(x_{k}\right)
$$

- For known marginal densities $p\left(x_{i}, x_{j}\right)$, best tree obtained by minimum weight spanning tree algorithms.
- In high dimensions, a spanning tree will overfit.
- We prune back to a forest.

Step 1: Constructing a Full Tree

- Compute kernel density estimates

$$
\widehat{f}_{n_{1}}\left(x_{i}, x_{j}\right)=\frac{1}{n_{1}} \sum_{s \in \mathcal{D}_{1}} \frac{1}{h_{2}^{2}} K\left(\frac{X_{i}^{(s)}-x_{i}}{h_{2}}\right) K\left(\frac{X_{j}^{(s)}-x_{j}}{h_{2}}\right)
$$

- Estimate mutual informations

$$
\widehat{I}_{n_{1}}\left(X_{i}, X_{j}\right)=\frac{1}{m^{2}} \sum_{k=1}^{m} \sum_{\ell=1}^{m} \widehat{f}_{n_{1}}\left(x_{k i}, x_{\ell j}\right) \log \frac{\widehat{f}_{n_{1}}\left(x_{k i}, x_{\ell j}\right)}{\widehat{f}_{n_{1}}\left(x_{k i}\right) \widehat{f}_{n_{1}}\left(x_{\ell j}\right)}
$$

- Run Kruskal's algorithm (Chow-Liu) on edge weights

Step 2: Pruning the Tree

- Heldout risk

$$
\widehat{R}_{n_{2}}\left(f_{F}\right)=-\sum_{(i, j) \in E} \int \widehat{f}_{n_{2}}\left(x_{i}, x_{j}\right) \log \frac{f\left(x_{i}, x_{j}\right)}{f\left(x_{i}\right) f\left(x_{j}\right)} d x_{i} d x_{j}
$$

- Selected forest given by

$$
\widehat{k}=\underset{k \in\{0, \ldots, p-1\}}{\arg \min } \widehat{R}_{n_{2}}\left(\widehat{f}_{\widehat{T}_{n_{1}}^{(k)}}\right)
$$

where $\widehat{T}_{n_{1}}^{(k)}$ is forest obtained after k steps of Kruskal

S\&P Data: Forest Graph—Oops!

S\&P Data: Forest Graph

S\&P Data: Forest vs. Nonparanormal

Summary

- Smoothing kernels, Mercer kernels
- Sparse additive models
- Constrained rank additive models
- Nonparametric graphical models: Nonparanormal and forest-structured densities
- A little nonparametricity goes a long way.

Summary

- Thresholded backfitting algorithms derived from subdifferential calculus
- RKHS formulations are problematic
- Theory for infinite dimensional optimizations still incomplete
- Many extensions possible: Nonparanormal component analysis, etc.
- Variations on additive models enjoy most of the good statistical and computational properties of sparse linear models, with relaxed assumptions
- We're building a toolbox for large scale, high dimensional nonparametric inference.

