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Abstract

We develop a rough path version for discrete nonautonomous systems generated from a
nonautonomous difference equation on a discrete time set (not necessarily regular), where the
driving path is free from a realization of a specific stochastic process. Using a modified Davie’s
approach and the discrete version of sewing lemma, we derive a norm estimate for the solution.
When applying to a dissipative system, we prove the existence and the upper semi-continuity of
the global pullback attractor.

Keywords: stochastic differential equations (SDE), rough path theory, rough integrals, random
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1 Introduction

Our project is motivated from the observations that

• In practice, one often works with discrete data on un-regular time step, for instance financial
asset price in real time only shows regular time steps in minute or higher scales, while quite
un-regular in second or lower scales.

• The residual noises from statistical estimates in general does not satisfy specific forms of
distributions like normality, and often has long range dependence. Hence an attempt to
model it as a realization of a given stochastic process only leads to generic results and not
applicable to the empirical data itself.

These observations really pose a question on how one can model and study realistic systems
from the start under discrete time sets without having to relate to some ideal limiting equation in
the continuous time scale. In this work, we try to answer part of the question using rough path
theory. Namely, we develop a discrete version for rough paths and try to relate it to the frame work
of nonautonomous dynamical systems.
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2 Discrete framework

2.1 Discrete functions

Since we investigate discrete approximation of solutions of rough differential equations on [0, T ], we
will have to deal with discrete functions on [0, T ]: functions defined on a finite collection of points
of [0, T ]. In this subsection we present some basic notions of discrete functions.

Let [a, b] ⊂ R be a closed interval of R, and Π = {ti : 0 ≤ i ≤ n, a = t0 < t1 < . . . <
tn = b} be an arbitrary (finite) set of points of [a, b], which actually make a partition of [a, b] into
∪n−1
i=0 [ti, ti+1] = [a, b]. With an abuse of language we call Π a (finite) partition of [a, b]. The number
|Π| := max0≤i≤n−1(ti+1 − ti) > 0 is called mesh of the finite partition Π. A discrete B-valued
function defined on Π, where B is some normed space, is simply a map

y : Π→ B, Π 3 ti 7→ yti ∈ B.

For discrete functions we introduce various norms which are natural discrete versions of the contin-
uous ones. Namely,

‖y‖∞,Π := sup
ti∈Π
|yti |,

and

|||y|||p−var,Π := sup
t∗i∈Π, 0≤i≤r, t∗0<t∗1...<t∗r

(
r−1∑
i=0

|yt∗i − yt∗i+1
|p
)1/p

,

‖y‖p−var,Π = |ya|+ |||y|||p−var,Π .

Clearly ‖ · ‖∞,Π and ‖ · ‖p−var,Π are norms on the space of discrete function determined on Π,
whereas |||y·|||p−var,Π is a semi-norm. Now, let c ∈ Π and y be a discrete function defined on Π. Put
Π[a, c] := {t ∈ Π : a ≤ t ≤ c}, Π[c, b] := {t ∈ Π : c ≤ t ≤ b}. Then we can consider the natural
restriction of y on [a, c] and [c, b] and we have

|||y|||p−var,Π[a,c] + |||y|||p−var,Π[c,b] ≤ 21−1/p |||y|||p−var,Π ,

|||y|||pp−var,Π[a,c] + |||y|||pp−var,Π[c,b] ≤ |||y|||pp−var,Π ≤ 2p−1[|||y|||pp−var,Π[a,c] + |||y|||pp−var,Π[c,b]].

The notion of a control function also has its discrete counterpart. For, let Π = {ti : 0 ≤ i ≤ n, a =
t0 < t1 < . . . < tn = b} be a partition of [a, b].

Definition 2.1 A non negative function ω defined on ∆Π := {(s, t) ∈ Π2|s ≤ t} is called a discrete
control function on Π if it vanishes on the diagonal, i.e. ω(s, s) = 0,∀s ∈ Π, and is superadditive,
i.e. for all s ≤ u ≤ t in Π

ω(s, u) + ω(u, t) ≤ ω(s, t).

If ω is a discrete control on [a, b] and |ytk − ytl | ≤ ω1/p(tk, tl) for all tk, tl ∈ Π, p ≥ 1 then

|||y|||p−var,Π ≤ ω
1/p(a, b).

Furthermore, if y· is a continuous function of bounded p−variation on [a, b], and Π[a, b] is a finite
partition of [a, b] then the function y restricted on Π[a, b] is a discrete function and we have the
following relation between continuous and discrete norms of y:

‖y‖∞,Π[a,b] ≤ ‖y‖∞,[a,b],
‖y‖p−var,Π[a,b] ≤ ‖y‖p−var,[a,b].

The notion of discrete function and discrete control function can be easily generalized for the case
of arbitrary (not necessarily finite) subset Π ⊂ [a, b].
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2.2 Discrete sewing lemma

In this section we fix [a, b] and a finite partition Π = {ti : 0 ≤ i ≤ n, a = t0 < t1 < . . . < tn = b} on
[a, b]. The following lemma is the main result of this section. It is actually an algebraic result and
provides us with an effective tool for investigation of discretized rough differential equations.

Lemma 2.2 (Discrete sewing lemma) Let Π = {ti : 0 ≤ i ≤ n, a = t0 < t1 < . . . < tn = b}
be a finite partition of [a, b] and F be an function defined on Π× Π, vanished on the diagonal, i.e.
F (s, s) = 0,∀s ∈ Π. Put

(δF )sut := Fs,t − Fs,u − Fu,t, s, u, t ∈ Π,

Ik,l :=
∑

k≤j≤l−1

Ftj ,tj+1 − Ftk,tl , tk ≤ tl ∈ Π.

Assume that for a discrete control ω on Π and a number λ > 1 we have for all s ≤ u ≤ t in Π the
following inequality

|(δF )sut| ≤ ωλ(s, t). (2.1)

Then there exists a constant θ > 0 depending only on λ such that

|Ik,l| ≤ K∗ωλ(tk, tl), ∀ tk ≤ tl ∈ Π. (2.2)

Proof: We prove by induction on l − k. For l = k, k + 1 the statement holds trivial.
Assume that (2.2) hold for all k, l such that 1 ≤ l − k < m − k. We prove that (2.2) is true for
l = m.

Define

l := max{k ≤ j ≤ m|ω(tk, tj) ≤
1

2
ω(tk, tm)}.

Then ω(tk, tl) ≤ 1
2ω(tk, tm) and ω(tk, tl+1) > 1

2ω(tk, tm). It follows that ω(tl+1, tm) < 1
2ω(tk, tm)

due to super additivity of ω.
Now we have

Ik,m = Ik,l + Il,m − (δF )tk,tl,tm

= Ik,l + Il,l+1 + Il+1,m − (δF )tl,tl+1,tm − (δF )tk,tl,tm

= Ik,l + Il+1,m − (δF )tl,tl+1,tm − (δF )tk,tl,tm since Il,l+1 = 0

By inductive hypothesis and assumption of δF we obtain

|Ik,m| ≤ |Ik,l|+ |Il+1,m|+ |(δF )tl,tl+1,tm |+ |(δF )tk,tl,tm |
≤ K∗ωλ(tk, tl) +K∗ωλ(tl+1, tm) + ωλ(tl, tm) + ωλ(tk, tm)

≤ 21−λK∗ωλ(tk, tm) + 2ωλ(tk, tm)

≤ (21−λθ + 2)ωλ(tk, tm)

≤ θωλ(tk, tm)

if we choose K∗ ≥ 2
1−21−λ . This completes the proof.

Remark 2.3 1. Take any discrete control function ω such that ω(s, t) 6= 0 for s 6= t in Π, for
instance ω(s, t) = |t− s|. Take any λ > 1. Put

C =

{
sups≤u≤t

|(δF )sut|1/λ
ω(s,t) , if ω(s, t) 6= 0

0, if ω(s, t) = 0
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then |(δF )sut| ≤ [Cω(s, t)]λ for all s ≤ u ≤ t in Π. Thus, there are abundant discrete control
functions furnishing the condition (2.1) of the discrete sewing lemma.

2. Condition (2.1) is satisfied if

|(δF )sut| ≤
M∑
i=1

Aiω
1/qi
1i (s, u)ω

1/pi
2i (u, t) (2.3)

for all s ≤ u ≤ t in Π, in which ω1i, ω2i are some discrete controls on Π, and pi, qi ≥ 1, Ai ≥ 0 for
i = 1,M,M ≥ 1 such that mini(

1
pi

+ 1
qi

) > 1.

Corollary 2.4 Let Π = {ti : 0 ≤ i ≤ n, a = t0 < t1 < . . . < tn = b} be a finite partition of [a, b].
Let y· : Π → Rn×d and x·,· : Π2 → Rd be discrete functions defined on Π and Π2, respectively.

Assume that for some p ≥ 1 and some discrete control function ωx on Π we have |xs,t| ≤ ω1/p
x (s, t)

for all s ≤ t ∈ Π. Then for q such that 1/p+ 1/q > 1 we have∣∣∣ n−1∑
j=0

ytjxtj ,tj+1 − yaxa,b
∣∣∣ ≤ K∗ω1/q

y (a, b)ω1/p
x (a, b),

where ω
1/p
y (s, t) := |||y|||qq−var,Π, θ = 2

1−21−1/p−1/q .

Proof: Apply Lemma 2.2 with ω(s, t) = ω
1/q
y (s, t).ω

1/p
x (a, b) and λ = 1/p+ 1/q.

Corollary 2.5 Let Πj = {tjk, 0 ≤ k ≤ nj}, j = 1, 2, . . ., be a sequence of finite partitions of [a, b]
satisfying |Πj | → 0 as j → ∞. Let F be a discrete function defined on (∪Πj)2. Assume that there
exists a discrete control function ω on (∪Πj) such that the following conditions hold
(i) for all s ≤ u ≤ t in ∪Πj, |Fs,t − Fs,u − Fu,t| ≤ ωλ(s, t),

(ii) sup0≤k≤nj ω(tjk, t
j
k+1)→ 0 as j →∞.

Then the sequence of real numbers

SΠj :=
∑

0≤k≤nj−1

F
tjk,t

j
k+1

converges.

Proof: Let 1 ≤ m ≤ l be arbitrary. First we consider the case Πm ⊂ Πl. Using Lemma 2.2,
we have

|SΠl − SΠm | = |
∑

0≤k≤nl−1

Ftlk,t
l
k+1
−

∑
0≤k≤nm−1

Ftmk ,t
m
k+1
|

=

∣∣∣∣∣∣∣
∑

0≤k≤nm−1

( ∑
tmk ≤t

l
i≤tmk+1

Ftli,tli+1
− Ftmk ,tmk+1

)∣∣∣∣∣∣∣
≤

∑
0≤k≤nm−1

∣∣∣ ∑
tmk ≤t

l
i≤tmk+1

Ftli,tli+1
− Ftmk ,tmk+1

∣∣∣
≤ K∗

∑
0≤k≤nm−1

ωλ(tmk , t
m
k+1)

≤ θ sup
0≤k≤nm

ωλ−1(tmk , t
m
k+1−1)

∑
0≤k≤nm−1

ω(tmk , t
m
k+1)

≤ θ sup
0≤k≤nm

ωλ−1(tmk , t
m
k+1)ω(a, b).
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For the case Πm 6⊂ Πl we put Π̂ = Πm ∪Πl, then by the preceding result we have

|SΠ̂ − SΠm | ≤ θ sup
0≤k≤nm

ωλ−1(tmk , t
m
k+1)ω(a, b),

|SΠ̂ − SΠl | ≤ θ sup
0≤k≤nl

ωλ−1(tlk, t
l
k+1)ω(a, b).

This implies

|SΠl − SΠm | ≤ |SΠ̂ − SΠm |+ |SΠ̂ − SΠl |

≤ K∗

(
sup

0≤k≤nm
ωλ−1(tmk , t

m
k+1) + sup

0≤k≤nl
ωλ−1(tlk, t

l
k+1)

)
ω(a, b).

Therefore, by assumption, |SΠl − SΠm | → 0 as m, l→∞, hence the sequence SΠj , j = 1, 2, . . ., is a
Cauchy sequence. We conclude that the sequence SΠj converges.

Now we use the discrete sewing lemma above to derive estimate solutions of a discrete system
of equations.

Lemma 2.6 Let Π = {ti : 0 ≤ i ≤ n, a = t0 < t1 < . . . < tn = b} be a finite partition of [a, b].
Consider a discrete system defined on Π

ytj+1 = ytj + Ftj ,tj+1 + εtj ,tj+1 , yt0 = y∗ ∈ Rd, j = 0, 1, . . . , n− 1, (2.4)

where F : Π2 → Rd, ε : Π2 → Rd. Assume that
(i) There exists a discrete control function ω such that (2.1) is satisfied for F ;
(ii) There exists a discrete control function ωF such that for some q ≥ 1 the following inequality
holds

|Fs,t| ≤ ω1/q
F (s, t), ∀s ≤ t ∈ Π; (2.5)

(iii) There exists a discrete control function ω0 such that |εtj ,tj+1 | ≤ ω0(tj , tj+1).
Then we have

|||y|||q−var,Π ≤ K
∗ωλ(a, b) + ω

1/q
F (a, b) + ω0(a, b). (2.6)

Proof: For any pair tk < tl ∈ Π we have

|ytl − ytk | = |
l−1∑
j=k

(ytj+1 − ytj )|

= |
l−1∑
j=k

(
Ftj ,tj+1 + εtj ,tj+1

)
|

≤ |
l−1∑
j=k

Ftj ,tj+1 |+ |
l−1∑
j=k

εtj ,tj+1 |

≤ |Ik,l|+ |Ftk,tl |+ ω0(tk, tl)

≤ K∗ωλ(tk, tl) + |Ftk,tl |+ ω0(tk, tl).

Therefore, by (2.5), we get

|ytl − ytk | ≤ K∗ωλ(tk, tl) + ω
1/q
F (tk, tl) + ω0(tk, tl).

Consequently,

|||y|||q−var,Π ≤ K
∗ωλ(a, b) + ω

1/q
F (a, b) + ω0(a, b).
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2.3 Discrete greedy sequence

The original idea of a greedy sequence was introduced in [4, Definition 4.7]. Given α > 0, a compact
interval I ∈ R and a control ω : ∆(I) → R+, the construction of such a sequence aims to have a
”greedy” approximation to the supremum in the definition of the so-called accummulated α-local
ω-variation (see [4, Definition 4.1])

Mα,I(ω) = sup
Π(I),ωti,ti+1≤α

∑
ti∈Π(I)

ωti,ti+1 .

In particular, ωs,t is chosen to be |||·|||pp-var,[s,t] in [4].

A similar version for stopping times was developed before in [17] and then has been studied further
recently by [10] for stability of the system. A more detailed presentation of another version of
greedy sequence of times which matches with the nonautonomous setting is given in [5].

The notion of greedy sequence of stopping times gives us a tool to estimate the growth of a
function x(t) in the arbitrary time intervals (s, t) of the determination domain of x(t) as it allows us
to choose various ”control” function ωs,t based on x(t). Thus this notion gives us a tool to indirectly
understand the growth of the solution y(t) of a rough differential equation driven by a path x(t)
on each time intervals (s, t) of the time interval of determination of the rough differential equation
under consideration.

We notice that an abstract definition of a greedy sequence of stopping times need not be born
by a rough differential equation and not only for the probabilistic setting (hence the stopping time
here is not necessarily stopping time in the probabilistic setting although in the stochastic setting
they are actually stopping times in probabilistic sense): all we need is just a function ωs,t which
must not always be a control function. Let us gives here our rigorous abstract definition of greedy
sequence of stopping time.

First we deal with the continuous time case. Let [a, b] ⊂ R be an arbitrary time interval, and
∆[a,b] := {(s, t) : a ≤ s ≤ t ≤ b} ⊂ [a, b]× [a, b]. Let ω : ∆[a,b] → [0,∞) be a continuous function of
two variables such that

(i) (zero on diagonal) ω(t, t) = 0 for all t ∈ [a, b] and
(ii) (monotonity) ω(s, u) ≤ ω(s, t) for all a ≤ s ≤ u ≤ t ≤ b. (2.7)

For any given parameter µ > 0, based on ω and µ we construct a nondecreasing sequence of
times G[a,b],ω,µ = {τ0, τ1, τ2, τ3, . . .} such that τ0 ≡ a and

τi+1 := inf{t ∈ [τi, b] : ω(τi, t) ≥ µ} ∧ b. (2.8)

The sequence G[a,b],ω,µ is called the greedy sequence of stopping times on [a, b] (constructed from
ω and µ). Notice that once τi is determined then if ω(τi, b) < µ then τi+1 = b, and if ω(τi, b) > µ
then τi+1 ∈ (τi, b) is determined uniquely since the function ω(τi, ·) is continuous, nondecreasing and
ω(τi, τi) = 0, ω(τi, b) > µ. Note that in case τi < b and ω(τi, b) ≥ µ, we see that τi+1 is intuitively
the first time ω(τi, ·) reaches µ. Clearly any control function (see [16, Definition 1.6]) satisfies the
condition (2.7) above, hence we can construct a greedy sequence based on it. Further, any positive
power of a control function, which is not necessarily a control, also satisfies (2.7).

Now let x be a given continuous-time function of finite p-variation on [a, b]. Consider the function
ω(s, t) := |||x|||p-var,[s,t]. It is easily seen that this function ω satisfies the condition (2.7) above, hence
for any parameter µ > 0 we can construct the greedy sequence G[a,b],ω,µ = {τ0, τ1, τ2, τ3, . . .} of
stopping times. We have τ0 ≡ a, and by definition of ω

τi+1 = inf{t ∈ [τi, b] : |||x|||p−var,[τi,t]
≥ µ} ∧ b. (2.9)
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Assign
N = N[a,b],µ(x) := sup{n : τn < b}+ 1. (2.10)

Since the function |||x|||p-var,[t0,t]
is continuous and nondecreasing w.r.t. t with κ(t0) = 0 (see [16])

we obtain
|||x|||p−var,[τi,τi+1] = µ, i = 0, · · · , N − 2. (2.11)

Then the following estimate holds

N[a,b],µ(x) ≤ 1 +
1

µp
|||x|||pp-var,[a,b] . (2.12)

Now we turn to the discrete framework. Let [a, b] ⊂ R be a closed interval of R, and Π = {ti :
0 ≤ i ≤ n, a = t0 < t1 < . . . < tn = b} be an arbitrary finite partition of [a, b]. Let ω be a discrete
control function on Π and β > 0 be arbitrary. Suppose we are given a fixed δ > 0. We define a
discrete sequence of greedy times GΠ,β,δ := {τ∗0 , τ∗1 , . . .} based on the discrete control ω, and the
parameters β, δ and taking values in Π as follows:
1. Set τ∗0 = t0 = a,
2. Suppose that the point τ∗i ∈ GΠ,β,δ is already constructed, thus τ∗i = tk ∈ Π. If τ∗i = tm = b
then we stop and the sequence GΠ,β,δ has been constructed. If τ∗i < tm = b, hence k < m, then we
define τ∗i+1 ∈ GΠ,β,δ as follows
(i) if ωβ(tk, tk+1) > δ then we set τ∗i+1 = tk+1;
(ii) otherwise we set τ∗i+1 = max{tl ∈ Π : k < l ≤ m,ωβ(tk, tl) ≤ δ}.
Note that the discrete sequence GΠ,β,δ is finite and it can be constructed for any partition of any
time interval [a, b].

Put N∗ = N∗Π[a,b],β,δ := #GΠ,β,δ the number of points t∗i of GΠ,β,δ in [a, b]. From the definition

of the sequence GΠ,β,δ it follows that for any 0 ≤ i ≤ N∗ − 2 we have ωβ(τ∗i , τ
∗
i+2) > δ. Therefore,

since ω is a control function we have

N∗ − 2 ≤
N∗−3∑
i=0

1

δ1/β
ω(τ∗i , τ

∗
i+2) ≤ 1

δ1/β

(
ω(τ∗0 , τ

∗
N∗) + ω(τ∗1 , τ

∗
N∗)
)
≤ 2

δ1/β
ω(a, b).

Hence,

N∗Π[a,b],β,δ ≤ 2 +
2

(δ)1/β
ω(a, b). (2.13)

3 Discrete Young systems

In this section we consider a fixed partition Π := {a = t0 < t1 < t2 < . . . < tn−1 < tn = b} with
|Π| := supk |tk+1− tk|. Let x : Π→ R be a discrete function defined on Π. We consider the discrete
system on Π driven by x, defined by

yt0 ∈ Rd,
ytk+1

= ytk + f(ytk)(tk+1 − tk) + g(ytk)[x(tk+1)− x(tk)] + ε∗tk,tk+1
, k = 0, 1, . . . , n− 1,

(3.1)

where f : Rd → Rd is a continuous function of linear growth, i.e. there exists a constant Cf > 0
such that

|f(y)| ≤ Cf |y|+ |f(0)|, ∀y ∈ Rd,
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where f(0) is the value of f evaluated at the vector 0 ∈ Rd; g : Rd → Rd is Lipchitz continuous
functions with Lipschitz constant Cg; ε

∗ : Π2 → Rd is a noise which is assumed to satisfied the
condition

|ε∗tk,tk+1
| ≤ H∗ω∗(tk, tk+1)

with H∗ being a positive constant and ω∗ being a discrete control on ∆Π. This system is a discrete
form of the (contnuous-time) Young differential equation

dy = f(y(t))dt+ g(y(t))dx(t), t ∈ [a, b], (3.2)

where x : [a, b]→ R is a continuous function defined on [a, b] and not necessary of bounded variation.
Clearly, for any initial value yt0 , the discrete system (3.1) has unique solution. We are interested

in the relation between the norm of the solution (output) y and the norm of the driver x. The main
result of this Section is Theorem 3.4 where we estimate the discrete norm of y in term of p-variation
norm of x and other input factors. As an application, the estimation for the Euler scheme of (3.2)
is derived at the end of the Section.

Let q ≥ p ≥ 1 be arbitrary numbers satisfying λ := 1/p + 1/q > 1. From now on we fix these
constants p, q, λ and the constants

K∗ :=
2

1− 21−1/p−1/q
, δ1 :=

1

2Cg(1 +K∗)
, δ2 :=

1

4Cf
.

Firstly, we have the following Lemma as a direct consequence of Lemma 2.6.

Lemma 3.1 The solution y of the discrete system (3.1) satisfies

|||y|||q−var,Π ≤(Cg|ya|+ g0) |||x|||p−var,Π + [Cf‖y‖∞,Π + f0](b− a)

+ Cg(K
∗ + 1) |||y|||q−var,Π |||x|||p−var,Π +H∗ω∗(a, b), (3.3)

where f0 = |f(0)|, g0 = |g(0)| with f(0), g(0) being the values of f, g evaluated at the vector 0 ∈ Rd.

Proof: To apply Lemma 2.6, we rewrite (3.1) in the form of (2.4)

ytk+1
= ytk + Ftk,tk+1

+ εtk,tk+1
, k = 0, 1, . . . , n− 1,

where

Fs,t := g(ys)(x(t)− x(s)), s, t ∈ Π,

εtj ,tj+1 := f(ytj )(tj+1 − tj) + ε∗tj ,tj+1
.

Put

ω(s, t) := C1/λ
g (|||y|||qq−var,Π[s,t])

p/(p+q)(|||x|||pp−var,Π[s,t])
q/(p+q);

ω
1/q
F (s, t) := (g0 + Cg‖y‖q−var,Π) |||x|||p−var,Π[s,t] ≥ |Fa,t − Fa,s|+ Cg |||y|||p−var,Π |||x|||p−var,Π[s,t] ;

ω0(s, t) := [Cf‖y‖∞,Π + f0](t− s) +H∗ω∗(s, t), (s, t) ∈ ∆Π.
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Then, one can easily prove that ω, ωF and ω0 are discrete control functions. Now, we verify the
assumptions of Lemma 2.6:

|(δF )sut| = |(g(yu)− g(ys))(xt − xu)|
≤ Cg |||y|||q−var,Π[s,t] |||x|||p−var,Π[s,t]

= Cg[(|||y|||qq−var,Π[s,t])
p/(p+q)(|||x|||pp−var,Π[s,t])

q/(p+q)]λ

= ωλ(s, t);

|Fs,t| ≤ |Fa,t − Fa,s|+ |(g(ya)− g(ys))(xt − xs)|
≤ |Fa,t − Fa,s|+ Cg |||y|||p−var,Π |(xt − xs)|

≤ ω
1/p
F (s, t);

|εtj ,tj+1 | ≤ ω0(tj , tj+1).

Thus, Lemma 2.6 is applicable and gives

|||y|||q−var,Π ≤ K∗ωλ(a, b) + ω
1/q
F (a, b) + ω0(a, b)

= K∗Cg |||y|||q−var,Π[a,b] |||x|||p−var,Π[a,b] + (g0 + Cg‖y‖q−var,Π) |||x|||p−var,Π[a,b]

+[Cf‖y‖∞,Π + f0](b− a) +H∗ω∗(a, b)

= (Cg|ya|+ g0) |||x|||p−var,Π + [Cf‖y‖∞,Π + f0](b− a)

+(K∗ + 1)Cg |||y|||q−var,Π[a,b] |||x|||p−var,Π[a,b] +H∗ω∗(a, b).

The proof is completed

Now we aim to get estimates for the norms of the discrete function y on Π. For this, first we
need to make estimate the norms of y on appropriate small parts of Π determined by constructions
of discrete greedy sequences, and then using the properties of greedy sequences to derive estimate
for norms of the function y on Π. To do this, we construct two greedy sequences as follows. Choose
two sets of parameters to construct two discrete greedy sequences:
1. ω1(s, t) = |||x|||pp−var,[s,t], β1 = 1/p, δ1, and construct the first sequence GΠ,β1,δ1 = {t∗i } ⊂ Π.

2. ω2(s, t) = |t− s|, β2 = 1, δ2, and construct the second sequence GΠ,β2,δ2 = {t∗∗i } ⊂ Π.

Denote by Ĝ := {τ̂i : τ̂0 < τ̂1 < . . . < τ̂N̂−1} the ordered increasingly combined sequence {t∗i }∪{t∗∗i }.
Then, by (2.13), the number N̂ := #Ĝ of points τ̂i of Ĝ satisfies

N̂ ≤ 4 +
2

δ2
(b− a) +

2

δp1
|||x|||p−var,[a,b] . (3.4)

Furthermore, for an arbitrary pair of two consecutive points [τ̂i, τ̂i+1] of the combined sequence Ĝ,
by the construction we have two alternative cases

1. (τ̂i, τ̂i+1) ∩Π = ∅, or (3.5)

2. (τ̂i, τ̂i+1) ∩Π 6= ∅, in this case

{
|τ̂i+1 − τ̂i| ≤ δ2,

|||x|||pp−var,[τ̂i,τ̂i+1] ≤ δ1
(3.6)

Note that if Π = {kh : 0 ≤ k ≤ n} then the number #GΠ,β2,δ2 of point t∗∗i of GΠ,β2,δ2 is equal to
the number of points of continuous greedy sequence and is equal to 1 + b−a

δ2
. In this case we have a

better estimate for N̂ as

N̂ ≤ 3 +
1

δ2
(b− a) +

2

δp1
|||x|||pp−var,[a,b] . (3.7)
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Next, in two lemmas below, we evaluate y on each small portion of Π, which are in fact determined
by consecutive points of the combined sequence Ĝ. For â, b̂ ∈ Π, â < b̂, we denote Π̂ = Π[â, b̂] :=
{t ∈ Π|â ≤ t ≤ b̂}.

Lemma 3.2 Let â, b̂ ∈ Π be such that |||x|||p−var,Π[â,b̂] ≤ δ1, |b̂ − â| ≤ δ2. Then for the solution y of

the discrete system (3.1) the following inequalities hold

‖y‖∞,Π[â,b̂] ≤
[
|yâ|+M(f0 ∨ g0) + 4H∗ω∗(â, b̂)

]
eκ − [M(f0 ∨ g0) + 4H∗ω∗(â, b̂)] (3.8)

and

‖y‖q−var,Π[â,b̂] ≤
[
|yâ|+M(f0 ∨ g0) + 4H∗ω∗(â, b̂)

]
eκ − [M(f0 ∨ g0) + 4H∗ω∗(â, b̂)], (3.9)

where κ = ln(2 + 2
1+K∗ ), M = 1

Cf
+ 2

Cg(1+K∗) .

Proof: Apply Lemma 3.1 with Π[a, b] replaced by Π[â, b̂]. Since by assumption |||x|||p−var,Π[â,b̂] ≤
δ1 = 1

2Cg(1+K∗) and |b̂− â| ≤ δ2 = 1
4Cf

we have

|||y|||q−var,Π̂ ≤(Cg|yâ|+ g0) |||x|||p−var,Π̂ + [Cf‖y‖∞,Π̂ + f0](b̂− â)

+ Cg(K
∗ + 1) |||y|||q−var,Π̂ |||x|||p−var,Π̂ +H∗ω∗(â, b̂)

≤(Cg|yâ|+ g0)
1

2Cg(K∗ + 1)
+ [Cf‖y‖∞,Π̂ + f0]

1

4Cf
+

1

2
|||y|||p−var,Π̂ +H∗ω∗(â, b̂),

which implies

|||y|||q−var,Π̂ ≤ (Cg|yâ|+ g0)
1

Cg(K∗ + 1)
+ [Cf‖y‖∞,Π̂ + f0]

1

2Cf
+ 2H∗ω∗(â, b̂). (3.10)

From this it follows that

sup
a≤ti≤b

|ytj − yâ| ≤
1

1 +K∗
|yâ|+

1

2
‖y‖∞,Π̂ +

f0

2CF
+

g0

(1 +K∗)Cg
+ 2H∗ω∗(a, b).

Consequently, we have

1

2
‖y‖∞,Π̂ − |yâ| ≤

1

1 +K∗
|yâ|+

f0

2CF
+

g0

(1 +K∗)Cg
+ 2H∗ω∗(â, b̂).

Therefore,

‖y‖∞,Π̂ ≤ (2 +
2

1 +K∗
)|yâ|+

f0

CF
+

2g0

(1 +K∗)Cg
+ 4H∗ω∗(â, b̂)

≤
[
|yâ|+M(f0 ∨ g0) + 4H∗ω∗(â, b̂)

]
eκ − [M(f0 ∨ g0) + 4H∗ω∗(â, b̂)].

Thus, (3.8) is proved. Combining this with inequality (3.10) we obtain

|||y|||q−var,Π̂ ≤ 1

1 +K∗
|yâ|+

1

2
‖y‖∞,Π̂ +

f0

2CF
+

g0

(1 +K∗)Cg
+H∗2ω∗(â, b̂)

=
1

1 +K∗
|yâ|+

1

2

(
‖y‖∞,Π̂ +

f0

CF
+

2g0

(1 +K∗)Cg
+ 4H∗ω∗(â, b̂)

)
≤ 1

1 +K∗
|yâ|+

1

2

[
‖y‖∞,Π̂ +M(f0 ∨ g0) + 4H∗ω∗(â, b̂)

]
≤ 1

1 +K∗
|yâ|+

1

2

[
|yâ|+M(f0 ∨ g0) + 4H∗ω∗(â, b̂)

]
eκ

≤
[
|yâ|+M(f0 ∨ g0) + 4H∗ω∗(â, b̂)

]
eκ − [M(f0 ∨ g0) + 4H∗ω∗(â, b̂)]− |yâ|.
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This implies (3.9) immediately. The proof is complete.

Lemma 3.3 Let â, b̂ be two consecutive points in Π such that |b̂− â| ≤ δ2. Then for the solution y
of the discrete system (3.1) the following inequalities hold

‖y‖∞,Π[â,b̂] ≤
[
|yâ|+M(f0 ∨ g0) + 4H∗ω∗(â, b̂)

]
eκ[1 + (1 +K∗)pCpg |||x|||

p

p−var,Π̂
]

−[M(f0 ∨ g0) + 4H∗ω∗(â, b̂)], (3.11)

and

‖y‖q−var,Π[â,b̂] ≤
[
|yâ|+M(f0 ∨ g0) + 4H∗ω∗(â, b̂)

]
eκ[1 + (1 +K∗)pCpg |||x|||

p

p−var,Π̂
]

−[M(f0 ∨ g0) + 4H∗ω∗(â, b̂)]. (3.12)

Proof: By definition of the system (3.1) we have

|yb̂| ≤ |yâ + f(yâ)(b̂− â) + g(yâ)(x(b̂)− x(â)) + ε∗
â,b̂
|

≤ |yâ|+ Cf (b̂− â)|yâ|+ f0(b̂− â) + Cg|yâ| |x(b̂)− x(â)|+ g0|x(b̂)− x(â)|+H∗ω∗(â, b̂).

We now estimate two terms in this inequality. Notice that, by virtue of the Young inequality, for
all 0 ≤ α ≤ 1, β ≥ 0 and p ≥ 1 we have αβ < α+ βp. Therefore, we have

Cg|x(b̂)− x(â)| = 1

(1 +K∗)
·
(
Cg(1 +K∗) |||x|||p−var,Π̂

)
≤ 1

(1 +K∗)
+ [Cg(1 +K∗) |||x|||p−var,Π̂]p

and

g0|x(b̂)− x(â)| = g0

Cg(1 +K∗)
[Cg(1 +K∗) |||x|||p−var,Π̂] ≤ g0

Cg(1 +K∗)

[
1 + (1 +K∗)pCpg |||x|||

p

p−var,Π̂

]
.

As a result we get

|yb̂| ≤ |yâ|+
1

2
|yâ|+

f0

2CF
+H∗ω∗(â, b̂) + |yâ|

[
1

1 +K∗
+ (1 +K∗)pCpg |||x|||

p

p−var,Π̂

]
+

g0

(1 +K∗)Cg

[
1 + (1 +K∗)pCpg |||x|||

p

p−var,Π̂

]
.

Consequently,

|yb̂| ≤ eκ|yâ|
(

1 + (1 +K∗)pCpg |||x|||
p

p−var,Π̂

)
+M(f0 ∨ g0)

(
1 + (1 +K∗)pCpg |||x|||

p

p−var,Π̂

)
+ H∗ω∗(â, b̂)

≤ [|yâ|+M(f0 ∨ g0)] eκ
(

1 + (1 +K∗)pCpg |||x|||
p

p−var,Π̂

)
−M(f0 ∨ g0)

(
1 + (1 +K∗)pCpg |||x|||

p

p−var,Π̂

)
+H∗ω∗(â, b̂)

≤
[
|yâ|+M(f0 ∨ g0) +H∗ω∗(â, b̂)

]
eκ
[
1 + (1 +K∗)pCpg |||x|||

p

p−var,Π̂

]
− [M(f0 ∨ g0) +H∗ω∗(â, b̂)]. (3.13)

Then we get

‖y‖∞,Π̂ = max{|yâ|, |yb̂|}

≤
[
|yâ|+M(f0 ∨ g0) +H∗ω∗(â, b̂)

]
eκ[1 + (1 +K)pCpg |||x|||

p

p−var,Π̂
]

− [M(f0 ∨ g0) +H∗ω∗(â, b̂)].
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Now, since â and b̂ are two consecutive points of Π we have

||y||q−var,Π̂ = |yâ|+ |||y|||q−var,Π̂ = |yâ|+ |yb̂ − yâ|.

An inspection of the estimation of |yb̂| in (3.13) above shows immediately that

||y||q−var,Π̂ ≤
[
|yâ|+M(f0 ∨ g0) +H∗ω∗(â, b̂)

]
eκ
[
1 + (1 +K∗)pCpg |||x|||

p

p−var,Π̂

]
− [M(f0 ∨ g0) +H∗ω∗(â, b̂)].

The proof is completed.

Now we state the main result of this Section.

Theorem 3.4 If |Π| ≤ δ2, there exists a positive constant D depending on f0, g0, κ such that

‖y‖∞,Π[a,b] ≤ [|ya|+M(f0 ∨ g0) + 4H∗ω∗(a, b)] e
8κCf (b−a)+D[1+(1+K∗)pCpg |||x|||pp−var,Π[a,b]

]
(3.14)

and

‖y‖q−var,Π[a,b] ≤ [|ya|+M(f0 ∨ g0) + 4H∗ω∗(a, b)] e
8κCf (b−a)+D[1+(1+K∗)pCpg |||x|||pp−var,Π[a,b]

]
N̂1−1/p

(3.15)

in which N̂ is estimated by (3.4). Furthermore, in case [a, b] is partitioned equally, i.e if Π = {kh :
0 ≤ k ≤ n}, then N̂ is estimated by (3.7) and the multiplier by κ in the exponents of (3.14)–(3.15)
can be changed from 8 to 4.

Proof: Recall the combined sequence Ĝ = {τ̂i : τ̂0 < τ̂1 < . . . < τ̂N̂−1} = GΠ,β1,δ1 ∪ GΠ,β2,δ2

of two discrete greedy sequences GΠ,β1,δ1 and GΠ,β2,δ2 . Note that since |Π| ≤ δ2, for every i,
|τ̂i+1 − τ̂i| ≤ δ2 and [τ̂i, τ̂i+1] satisfies either (3.5) or (3.6). Therefore, by Lemmas 3.2–3.3, the
following inequalities hold for all 0 ≤ i ≤ N̂ − 2

‖y‖∞,Π[τ̂i,τ̂i+1] ≤ [|yτ̂i |+M(f0 ∨ g0) + 4H∗ω∗(τ̂i, τ̂i+1)] eκ
[
1 + (1 +K∗)pCpg |||x|||

p
p−var,Π[τ̂i,τ̂i+1]

]
− [M(f0 ∨ g0) + 4H∗ω∗(τ̂i, τ̂i+1)] (3.16)

‖y‖q−var,Π[τ̂i,τ̂i+1] ≤ [|yτ̂i |+M(f0 ∨ g0) + 4H∗ω∗(τ̂i, τ̂i+1)] eκ
[
1 + (1 +K∗)pCpg |||x|||

p
p−var,[τ̂i,τ̂i+1]

]
− [M(f0 ∨ g0) + 4H∗ω∗(τ̂i, τ̂i+1)]. (3.17)

Note that if we replace ω∗(τ̂i, τ̂i+1) by ω∗(a, b) ≥ ω∗(τ̂i, τ̂i+1) then the right-hand sides of (3.16)
and (3.17) increase. Hence we have

‖y‖∞,Π[τ̂i,τ̂i+1] ≤ [|yτ̂i |+M(f0 ∨ g0) + 4H∗ω∗(a, b)] eκ
[
1 + (1 +K∗)pCpg |||x|||

p
p−var,Π[τ̂i,τ̂i+1]

]
− [M(f0 ∨ g0) + 4H∗ω∗(a, b)] (3.18)

‖y‖q−var,Π[τ̂i,τ̂i+1] ≤ [|yτ̂i |+M(f0 ∨ g0) + 4H∗ω∗(a, b)] eκ
[
1 + (1 +K∗)pCpg |||x|||

p
p−var,[τ̂i,τ̂i+1]

]
− [M(f0 ∨ g0) + 4H∗ω∗(a, b)]. (3.19)

From (3.18) it follows that for all 0 ≤ i ≤ N̂ − 2 we have

|yτ̂i+1
|+M(f0 ∨ g0) + 4H∗ω∗(a, b) ≤ [|yτ̂i |+M(f0 ∨ g0) + 4H∗ω∗(a, b)] e

κ+(1+K∗)pCpg |||x|||pp−var,Π[τ̂i,τ̂i+1] .
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Moreover, by induction, for 0 ≤ m ≤ N̂ − 1, we have

sup
a≤tj≤τ̂m

|ytj |+M(f0 ∨ g0) + 4H∗ω∗(a, b)

≤ [|ya|+M(f0 ∨ g0) + 4H∗ω∗(a, b)]
m−1∏
i=0

e
κ+(1+K∗)pCpg |||x|||pp−var,Π[τ̂i,τ̂i+1]

≤ [|ya|+M(f0 ∨ g0) + 4H∗ω∗(a, b)] e
κm+(1+K∗)pCpg

∑m−1
i=0 |||x|||

p
p−var,Π[τ̂i,τ̂i+1] . (3.20)

Put m = N̂ − 1 in (3.20), taking into account the estimation (3.4) and the choice of parameters we
get

sup
a≤tj≤b

|ytj |+M(f0 ∨ g0) + 4H∗ω∗(a, b)

≤ [|ya|+M(f0 ∨ g0) + 4H∗ω∗(a, b)] e
κ(N̂−1)+(1+K∗)pCpg |||x|||pp−var,Π[a,b]

≤ [|ya|+M(f0 ∨ g0) + 4H∗ω∗(a, b)] e
κ(3+8Cf (b−a)+2(2Cg(1+K∗))p|||x|||p

p−var,Π[a,b]
)+(1+K∗)pCpg |||x|||pp−var,Π[a,b] ,

from which we obtain (3.14). Moreover, it is easily seen that in case [a, b] is partitioned equally, i.e
if Π = {kh : 0 ≤ k ≤ n}, then we can estimate N̂ by (3.7) and the multiplier by κ in the exponent
of (3.14) can be changed from 8 to 4.

Now, to prove the remaining part of the theorem, we use property of p-var seminorm and (3.17)
to deduce the following inequalities

|||y|||q−var,Π[a,b] ≤ (N̂ − 1)1−1/p
N̂−2∑
i=0

|||y|||q−var,Π[τ̂i,τ̂i+1]

≤ (N̂ − 1)1−1/p
[ N̂−2∑
i=0

|yτ̂i |
(
e
κ+(1+K∗)pCpg |||x|||pp−var,[τ̂i,τ̂i+1] − 1

)
+ (M(f0 ∨ g0) + 4H∗ω∗(a, b)) e

κ+(1+K∗)pCpg |||x|||pp−var,Π[τ̂i,τ̂i+1]

]
Using the estimate of |yτ̂i | just derived above applied to each interval [a, τ̂i] we get

|||y|||q−var,Π[a,b]

≤ (N̂ − 1)1−1/p [|ya|+M(f0 ∨ g0) + 4H∗ω∗(a, b)]×

×
N̂−2∑
i=0

(
e

(i+1)κ+(1+K∗)pCpg |||x|||pp−var,Π[a,τ̂i+1] − eiκ+(1+K∗)pCpg |||x|||pp−var,Π[a,τ̂i]

)

+(N̂ − 1)1−1/p
N̂−2∑
i=0

(M(f0 ∨ g0) + 4H∗ω∗(a, b)) e
κ+(1+K∗)pCpg |||x|||pp−var,Π[τ̂i,τ̂i+1]

≤ (N̂ − 1)1−1/p [|ya|+M(f0 ∨ g0) + 4H∗ω∗(a, b)]×

×
(
e

(N̂−1)κ+(1+K∗)pCpg |||x|||pp−var,Π[a,b] − e0κ+(1+K∗)pCpg |||x|||pp−var,Π[a,τ̂0]

)
+(N̂ − 1)1−1/p(N̂ − 1) [M(f0 ∨ g0) + 4H∗ω∗(a, b)] e

κ+(1+K∗)pCpg |||x|||pp−var,Π[a,b]

≤ (N̂ − 1)1−1/p [|ya|+M(f0 ∨ g0) + 4H∗ω∗(a, b)] e
(N̂−1)κ+(1+K∗)pCpg |||x|||pp−var,Π[a,b] − |ya|

+(N̂ − 1)2−1/p [M(f0 ∨ g0) + 4H∗ω∗(a, b)] e
κ+(1+K∗)pCpg |||x|||pp−var,Π[a,b]
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Therefore, due to (3.4), we can find a constant D depending on Cf , Cg, κ such that

||y||q−var,Π[a,b] ≤ [|ya|+M(f0 ∨ g0) + 4H∗ω∗(a, b)] e
8κCf (b−a)+D[1+(1+K∗)pCpg |||x|||pp−var,Π[a,b]

]
(N̂−1)1−1/p.

Thus (3.15) is proved. Moreover, it is easily seen that in case [a, b] is partitioned equally, i.e if
Π = {kh : 0 ≤ k ≤ n}, then we can estimate N̂ by (3.7) and the multiplier by κ in the exponent of
(3.15) can be changed from 8 to 4. The theorem is proved.

Remark 3.5 If |ε∗tk,tk+1
| ≤ ωη(tk, tk+1) for some η > 1, and control ω. One may take H∗ =

supt,s∈Π,|t−s|≤|Π| ω
η−1(s, t). If, additionally, ω is a continuous control on [a, b], then H∗ → 0 as

|Π| → 0.

4 Application

Now we consider the stochastic differential equation

dy(t) = f(y(t))dt+ g(y(t))dZ(t) (4.1)

where f : Rd → Rd is dissipative, i.e. there exist c, d > 0 so that for all y ∈ Rd,

〈y, f(y)〉 ≤ c̄− d̄|y|2

and global Lipschitz continuous functions, g : Rd → Rd is linear of the form g(y) = Cy + g(0), and
Z is a two-sided stochastic process with stationary increments such that almost sure all realizations
of Z are in the space Cp−var(R,R) of continuous paths with finite p - variation norm, for some 1 ≤ p.
By assumption, g is Lipchitz continuous with constant Cg = |C|. An example for such a process Z
is a fractional Brownian motion BH ([26]) with Hurst index H ∈ (0, 1).

It is well known that equation (4.1) can be solved in the path-wise approach by taking a real-
ization x ∈ Cp−var(R,R) (which is also called a driving path) and considering the rough differential
equation

dyt = f(yt)dt+ g(yt)dxt, y0 ∈ Rd. (4.2)

Here we restrict to the case p ∈ (1, 2) for simplicity where we make use Young integral to to define
the integral w.r.t. x. Less regular cases are treated in the forth coming paper.

By assumption on Z one can construct a metric dynamical system (Ω,F ,P, θ) (see for instant
[11]) and work on this space. It is proved that (4.1) generates a RDS ϕ(t, x)y0. Moreover we recall
the following result from [8].

Theorem 4.1 There exists ε > 0 such that if |C| < ε, the generated RDS ϕ of (4.1) possesses a
pullback random attractor A(x).

In the following we consider the Euler scheme of the system. We define for each realization x ∈
(Ω,F ,P, θ) the scheme

yt0 ∈ Rd,
ytk+1

= ytk + f(ytk)(tk+1 − tk) + g(ytk)[x(tk+1 − x(tk)]
(4.3)

in which tk ∈ Π = {tk = kh, k ∈ N} with h = 1/m for some m ∈ N∗ for convenience. We prove that
(4.3) generates a RDS ϕh(t, x)y0 on time set {kh, k ∈ N} and then the existence and the convergence
of the pullback attractor Ah to A in the pathwise sense as h tends to 0.

We denote by ∆k the closed interval [k, k + 1].
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4.1 Existence of pullback attractors

Given a random dynamical system ϕ on Rd with time set T is Z or R, we follow [19], [2, Chapter
9] to present the notion of random pullback attractor. Recall that a random variable ρ(x) > 0 is
called tempered if it satisfies

lim
t→±∞

1

t
log+ ρ(θtx) = 0, a.s. (4.4)

(see e.g. [2, pp. 164, 386]) which, by [21, p. 220]), is equivalent to the sub-exponential growth

lim
t→±∞

e−c|t|ρ(θtx) = 0 a.s. ∀c > 0.

A random set D(x) is called tempered if it is contained in a ball B(0, ρ(x)) a.s., where the radius
ρ(x) is a tempered random variable.
A random subset A is called invariant, if ϕ(t, x)A(x) = A(θtx) for all t ∈ R, x ∈ Ω. An invariant
random compact set A ∈ D is called a pullback random attractor in D, if A attracts any closed
random set D̂ ∈ D in the pullback sense, i.e.

lim
t→∞

d(ϕ(t, θ−tx)D̂(θ−tx)|A(x)) = 0. (4.5)

A is called a forward random attractor in D, if A is invariant and attracts any closed random set
D̂ ∈ D in the forward sense, i.e.

lim
t→∞

d(ϕ(t, x)D̂(x)|A(θtx)) = 0. (4.6)

The existence of a random pullback attractor follows from the existence of a random pullback
absorbing set (see [19, Theorem 3]). A random set B ∈ D is called pullback absorbing in a universe
D if B absorbs all sets in D, i.e. for any D̂ ∈ D, there exists a time t0 = t0(x, D̂) such that

ϕ(t, θ−tx)D̂(θ−tx) ⊂ B(x), for all t ≥ t0. (4.7)

Given a universe D and a random compact pullback absorbing set B ∈ D, there exists a unique
random pullback attractor in D, given by

A(x) = ∩s≥0∪t≥sϕ(t, θ−tx)B(θ−tx). (4.8)

The following is crucial to the main theorem Theorem 4.3.

Lemma 4.2 There exist Λ1,Λ2 of the form eD[1+(1+K)pCpg |||x|||pp−var,∆n
] such that

|yn+1| ≤ e−d̄|yn|[1 + (h1−1/p + Cg)Λ1(x,∆n)] + (f0 ∨ g0)Λ2(x,∆n)

for all n ∈ N.
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Proof: We have

|y2
tk+1
| = |ytk |

2 + |f(ytk)|2h2 + |g(ytk)|2|xtk,tk+1
|2

+2h〈ytk , f(ytk)〉+ 2〈ytk , g(ytk)xtk,tk+1
〉+ 2h〈f(ytk), g(ytk)xtk,tk+1

〉
≤ |ytk |

2 + 2h2(C2
f |ytk |

2 + f2
0 ) + 2(C2

g |ytk |
2 + g2

0)|xtk,tk+1
|2

+2h(c̄− d̄|ytk |
2) + 2h(Cf |ytk |+ f0)(Cg|ytk |+ g0)|xtk,tk+1

|+ 2〈ytk , g(ytk)xtk,tk+1
〉

≤ |ytk |
2(1− 2hd̄) + 2〈ytk , g(ytk)xtk,tk+1

〉
+2|ytk |

2(h2C2
f + C2

g |xtk,tk+1
|2 + 2CfCgh|xtk,tk+1

|)
+M(h+ h2 + |xtk,tk+1

|h+ |xtk,tk+1
|2)

≤ |ytk |
2e−2d̄h + 2〈ytk , g(ytk)xtk,tk+1

〉
+2|ytk |

2(h2C2
f + C2

g |xtk,tk+1
|2 + 2CfCgh|xtk,tk+1

|)
+(f0 ∨ g0).M(h+ h2 + |xtk,tk+1

|h+ |xtk,tk+1
|2)

in which M is a generic constsnt, depends on Cf , Cg, c. By induction

|y2
tk
| ≤ |yn|2e−2d̄(tk−n) + 2

k−1∑
i=0

e−2d̄(tk−ti)〈yti , g(yti)xti,ti+1〉

+2|y|2∞,Π[n,n+1]

k−1∑
i=0

(h2C2
f + C2

g |xti,ti+1 |2 + 2CfCgh|xti,ti+1 |)

+M

k−1∑
i=0

(h+ h2 + |xti,ti+1 |h+ |xti,ti+1 |2)

≤ |yn|2e−2d̄(tk−n) + 2|
k−1∑
i=0

e−2d(tk−ti)〈yti , g(yti)xti,ti+1〉|

+2|y|2∞,Π[n,n+1](hC
2
f + C2

g |||x|||
2
p−var,Π[n,n+1] + 2CfCgh

1−1/p |||x|||p−var,Π[n,n+1])

+(f0 ∨ g0)M(1 + h+ |||x|||p−var,Π[n,n+1] + |||x|||2p−var,Π[n,n+1]).

Particulaly,

|y2
n+1| ≤ |yn|2e−2d̄ + 2|

m−1∑
i=0

e−2d(n+1−ti)〈yti , g(yti)xti,ti+1〉|

+2|y|2∞,Π[n,n+1](hC
2
f + C2

g |||x|||
2
p−var,Π[n,n+1] + 2CfCgh

1−1/p |||x|||p−var,Π[n,n+1])

+(f0 ∨ g0)M(1 + h+ |||x|||p−var,Π[n,n+1] + |||x|||2p−var,Π[n,n+1]). (4.9)

We are now going to estimate |
∑m−1

i=0 e−2d̄(tk−ti)〈yti , g(yti)xti,ti+1〉|. Put

Fs,t = e−2d̄(n+1−s)〈ys, g(ys)xs,t s, t ∈ Π[n, n+ 1].
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We then have for n ≤ s ≤ u ≤ t ≤ n+ 1

|(δF )sut| = |e−2d(n+1−s)〈ys, g(ys)〉(xt − xs)− e−2d̄(n+1−s)〈ys, g(ys)〉(xu − xs)
−e−2d̄(n+1−u)〈yu, g(yu)〉(xt − xu)|

= |[e−2d̄(n+1−u)〈yu, g(yu)〉 − e−2d̄(n+1−s)〈ys, g(ys)〉][(xt − xu)]|
= |[e−2d̄(n+1−u) − e−2d(n+1−s)]〈yu, g(yu)〉 − e−2d̄(n+1−s)[〈yu, g(yu)〉 − 〈ys, g(ys)〉]|.|(xt − xu)|

≤ |||x|||p−var,Π[u,t]

[
2d̄e−2d̄(n+1−u)(u− s)(Cg‖y‖∞,Π[n,n+1] + g0)+

+ e−2d̄(n+1−s) |||y|||p−var,Π[s,u] (2Cg‖y‖∞,Π[s,u] + g0)
]

≤ |||x|||p−var,Π[s,t]

[
2d̄(t− s) + |||y|||p−var,Π[s,t]

]
(2Cg‖y‖∞,Π[n,n+1] + g0)

in which we use the following estimate

|〈yu, g(yu)〉 − 〈ys, g(ys)〉| = |〈yu, g(yu)〉 − 〈yu, g(ys)〉+ 〈yu, g(ys)〉 − 〈ys, g(ys)〉|
≤ |〈yu, g(yu)− g(ys)〉|+ |〈yu − ys, g(ys)〉|
≤ |yu|Cg|yu − ys|+ (Cg|ys|+ g0)|yu − ys|
≤ |||y|||p−var,Π[s,u] (2Cg‖y‖∞,Π[s,u] + g0).

It means that (2.1) is satisfied. We can apply Lemma 2.2 to obtain∣∣∣∣∣
m−1∑
i=0

e−2d̄(tk−ti)〈yti , g(yti)xti,ti+1〉

∣∣∣∣∣
≤ e−2d̄〈yn, g(yn)xn,n+1〉

+K∗ |||x|||p−var,Π[n,n+1]

[
2d̄+ |||y|||p−var,Π[n,n+1]

]
(2Cg‖y‖∞,Π[n,n+1] + g0)

≤ D(p, d) |||x|||p−var,[n,n+1]

[
Cg‖y‖2p−var,Π[n,(n+1)] +

g2
0

C2
g

]
Combining this with (4.9) we obtain

|y2
n+1| ≤ |yn|2e−2d̄

+2D‖y‖2p−var,Π∆n
(hC2

f + C2
g |||x|||

2
p−var,Π[n,n+1] + 2CfCgh

1−1/p |||x|||p−var,Π[n,n+1] +

+Cg |||x|||p−var,Π[n,n+1])

+M(1 + h+ |||x|||p−var,Π[n,n+1] + |||x|||2p−var,Π[n,n+1])

≤ |yn|2e−2d̄ + 2D‖y‖2p−var,Π[n,n+1](h
1−1/p + Cg |||x|||p−var,Π[n,n+1])(1 + Cg |||x|||p−var,Π[n,n+1])

+(f0 ∨ g0)M(1 + h+ |||x|||p−var,Π[n,n+1] + |||x|||2p−var,Π[n,n+1]). (4.10)

Next we make use Proposition 3.4

‖y‖p−var,Π[n,n+1] ≤ [|yn|+M(f0 ∨ g0)] e
4κCf+D[1+(1+θ)pCpg |||x|||pp−var,Π[n,n+1]

]
N̂1−1/p

hence

‖y‖2p−var,Π[n,n+1] ≤
[
|yn|2 +M2(f0 ∨ g0)2

]
e

ln 2+8κCf+D[1+(1+θ)pCpg |||x|||pp−var,Π[n,n+1]
]

to obtain the conclusion.
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Theorem 4.3 Consider (4.3) where x ∈ (Ω,F ,P, θ), y0 ∈ Rd. (4.3) generates a discrete random
dynamical system ϕ(h). Moreover, there exists ε > 0 not depending on h such that for |C| < ε, there
exists h0 > 0 such that for all h ≤ h0 the discrete RDS Φh possesses a random pullback attractor
Ah(x).

Proof: It follows from [9] that the discrete scheme (3.1) generates a discrete random dynamical
system ϕ(h). Namely, put

ϕ̄(x)u0 = u0 + [Au0 + f(u0)]h+ g(u0)(x(h)− x(0)).

Then
ϕh(n, u0, x) = ϕ̄(θnhx) ◦ ϕ̄(θ(n−1)hx) · · · ◦ ϕ̄(x)u0.

ϕh is an RDS on the metric dynamical system (Ω,F ,P, θ) with discrete time set T = {nh, n ∈ N}.
The measurability of ϕ̄(x) w.r.t. (u0, x) and continuity of ϕ̄(x) w.r.t. u0 follows from the fact that
for (x, u0), (x, u′0) ∈ Ω× V ,

‖ϕ̄(x)u0 − ϕ̄(x′)u′0‖ ≤ ‖u0 − u′0‖+ ‖[Aλ(u0 − u′0) + f(u0)− f(u′0)]h‖+ ‖[g(u0)− g(u′0)]x(h)‖
+‖g(u′0)[x(h)− x′(h)]‖

≤ D(u0, x, h)(‖u0 − u′0‖+ ‖x− x′‖p−var,[0,h])

≤ D(u0, x, h)(‖u0 − u′0‖+ dp(x, x
′)).

Using similar arguments in [11] and [6], we can choose ε > 0 depending on d̄ and E |||Z|||pp−var,[−1,1]

such that if |C| < ε there exists tempered r.v. R̃(x), h0 > 0, such that for h < h0

|ytk(θ−tkx, y0)| ≤ R̃(x)

for tk large enough. This proves the existence of a random pullback attractor Ah of ϕh.

Remark 4.4 R̃(x) does not depend on h.

4.2 Convergence of numeric attractor

The following Proposition proves the convergence of numerical solution to the solution of (4.2). We
denote by z(·, 0, z0) the solution of (4.2) on arbitrary [a, b]. Recall from [11] that z is bounded by
a constant depending on z0, |||x|||p−var,[a,b].

Theorem 4.5 The following limit holds

lim
|Π[a,b]|→0

sup
0≤k≤m

|z(tk, 0, yt0)− ytk | = 0. (4.11)
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Proof: Denote by ztk the value of z at time tk. Then

|ztk+1
− ytk+1

| =
∣∣∣ztk − ytk +

∫ tk+1

tk

[f(z(u))− f(ztk)]du+

∫ tk+1

tk

[g(z(u))− g(ztk)]dx(u)

+[f(ztk)− f(ytk)](tk+1 − tk) + [g(ztk)− g(ytk)](x(tk+1)− x(tk))
∣∣∣

|ztl − ytl − ztk + ytk | ≤ |
l−1∑
j=k

(f(ztj )− f(ytj )(tj+1 − tj) + (g(ztj )− g(ytj )(x(tj+1)− x(tj)) +

+

l−1∑
j=k

[Cf |||z|||p−var,[tj,tj+1] (tj+1 − tj) +KCg |||x|||p−var,[tk,tk+1] |||z|||p−var,[tk,tk+1]]

≤ |
l−1∑
j=k

(f(ztj )− f(ytj )(tj+1 − tj) + (g(ztj )− g(ytj )(x(tj+1)− x(tj))|

+H∗ω∗(tk, tl)

in which H∗ → 0 as |Π| → 0, ω∗(s, t) = |||x|||εp−var,[s,t] |||z|||p−var,[s,t]] with suitable ε < 1 so that ε+1
p > 1

(see Remark 3.5). H∗, ω∗ depend on z, y. Now we repeat arguments in Proposition 3.4 to obtain

sup
ti∈Π[a,b]

|zti − yti | ≤ [|z0 − y0|+ 4H∗ω∗(a, b)] e
4κCf (b−a)+D[1+1+θ)pCpg (1+|||x|||p

p−var,[a,b]
)]

≤ D∗H∗ → 0 as |Π| → 0

since z0 = y0, in which D∗ is a constant depends on A, f, g, x, b − a, z0. This completes the proof.

Remark 4.6 In [9], the freezing technique is used to prove the convergence of Euler scheme to the
solution. Here, our proof is direct since we can make use of the Lipchitz continuity of f .

Theorem 4.7 (Convergence of numerical attractor) Assume that |C| is small enough so that A and
Ah exist. Then the numeric attractor Ah converges to the attractor A in the Hausdorf semi-distance,
i.e. d(Ah,A)→ 0 as h→ 0+, a.s.

Proof: We proceed a contradiction arguments. Namely, assume the assertion is false, then there
exists an ε0 > 0 and a sequence hj ↓ 0+ such that d(Ahj ,A) > ε0 for all j ∈ N. Since these attractors
are compact sets, there exists aj ∈ Ahj such that d(aj ,A) > ε0. Due to the invariance, there

exists for each mj ∈ N a point bj ∈ Ahj (θ−mjhjx) such that ϕhj (mj , θ−mjhjx)bj = y
hj
mj (bj) = aj .

Respectively one considers the continuous solution ϕ(mjh, θ−mjhjx, bj) = z(mjhj , θ−mjhjx, bj) and
applies the triangle inequality to obtain

ε0 < d(aj ,A) ≤ ‖z(mjhj , θ−mjhjx, bj)− y
hj
mj (bj)‖+ d(ϕ(mjhj , θ−mjhjx, bj),A). (4.12)

On the other hand, since A is the pullback attractor of ϕ there exists a fixed T (ε0) such that for
any mjhj ∈ [T (ε0), T (ε0) + 1]

d(ϕ(mjhj , θ−mjhjx, bj),A) ≤ ε0

2
. (4.13)

In addition, due to Proposition 4.5 we have

‖z(mjhj , θ−mjhjx, bj)− y
hj
mj (bj)‖ ≤

ε0

2
(4.14)

by choosing hj small enough. (4.13) and (4.14) contradict to (4.12), which completes the proof.
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with a Hölder noise. SIAM Journal on Control and Optimization, 57 (4), (2019), 3046-3071.

[13] A. M. Davie. Differential Equations Driven by Rough Paths: An Approach via Discrete Ap-
proximation Applied Mathematics Research eXpress, Vol. 2008.

[14] P. Friz, M. Hairer. A course on rough path with an introduction to regularity structure. Uni-
versitext, Vol. XIV, Springer, Berlin, 2014.

[15] H. Keller, G. Ochs. Numerical Approximation of Random attractor. Stochastic Dynamics,
1998.

[16] P. Friz, N. Victoir. Multidimensional stochastic processes as rough paths: theory and applica-
tions. Cambridge Studies in Advanced Mathematics, 120. Cambridge Unversity Press, Cam-
bridge, (2010).

20



[17] M. Garrido-Atienza, B. Maslowski, B. Schmalfuß. Random attractors for stochastic equations
driven by a fractional Brownian motion. International Journal of Bifurcation and Chaos, Vol.
20, No. 9 (2010) 2761–2782.

[18] H. Keller, B. Schmalfuss. Attractors for stochastic differential equations with nontrivial noise.
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