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Abstract

We develop a rough path version for discrete nonautonomous systems generated from a
nonautonomous difference equation on a discrete time set (not necessarily regular), where the
driving path is free from a realization of a specific stochastic process. Using a modified Davie’s
approach and the discrete version of sewing lemma, we derive a norm estimate for the solution.
When applying to a dissipative system, we prove the existence and the upper semi-continuity of
the global pullback attractor.
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1 Introduction

Our project is motivated from the observations that

e In practice, one often works with discrete data on un-regular time step, for instance financial
asset price in real time only shows regular time steps in minute or higher scales, while quite
un-regular in second or lower scales.

e The residual noises from statistical estimates in general does not satisfy specific forms of
distributions like normality, and often has long range dependence. Hence an attempt to
model it as a realization of a given stochastic process only leads to generic results and not
applicable to the empirical data itself.

These observations really pose a question on how one can model and study realistic systems
from the start under discrete time sets without having to relate to some ideal limiting equation in
the continuous time scale. In this work, we try to answer part of the question using rough path
theory. Namely, we develop a discrete version for rough paths and try to relate it to the frame work
of nonautonomous dynamical systems.
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2 Discrete framework

2.1 Discrete functions

Since we investigate discrete approximation of solutions of rough differential equations on [0, T, we
will have to deal with discrete functions on [0, T]: functions defined on a finite collection of points
of [0,7T]. In this subsection we present some basic notions of discrete functions.

Let [a,b] C R be a closed interval of R, and Il = {t; : 0 < i < nya =ty < t1 < ... <
t, = b} be an arbitrary (finite) set of points of [a, b], which actually make a partition of [a, b] into
U3 [ty tiv1] = [a,b]. With an abuse of language we call II a (finite) partition of [a,b]. The number
III| := maxo<ij<n—1(tiy1 — t;) > 0 is called mesh of the finite partition II. A discrete B-valued
function defined on II, where B is some normed space, is simply a map

y: I — B, HStiHytiGB.

For discrete functions we introduce various norms which are natural discrete versions of the contin-
uous ones. Namely,

[Ylloo,mm = sup |ys,|,
t, €Il

and
r—1 1/p
91l —var e = sup Dol —ve )
tyell, 0<i<r, t5<t}...<t: i—0
Hpr—V&r,H = ’y(l‘ + H’ymp—van]_[ .
Clearly || - ||oom and || - |[p—varm1 are norms on the space of discrete function determined on II,

whereas ||y ||,,_y,, 11 18 @ semi-norm. Now, let ¢ € Il and y be a discrete function defined on II. Put
Hla,c] :={t €l :a <t <c} Me,b] :=={t € II:¢c <t <b}. Then we can consider the natural
restriction of y on [a, c] and [¢, b] and we have
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p—var,Il

The notion of a control function also has its discrete counterpart. For, let Il = {¢; : 0 < i < n,a =
to <t <...<t,=>b} be a partition of [a, b].

Definition 2.1 A non negative function w defined on AIl := {(s,t) € I12|s < t} is called a discrete
control function on II if it vanishes on the diagonal, i.e. w(s,s) = 0,Vs € I, and is superadditive,
i.e. foralls<u<tinll

w(s,u) +w(u,t) < w(s,t).

If w is a discrete control on [a,b] and |y;, — yy,| < WP (ty,, ;) for all ty,t; € II, p > 1 then

Il —var 1t < w'/(a,0).

Furthermore, if y. is a continuous function of bounded p—variation on [a,b], and II[a,b] is a finite
partition of [a,b] then the function y restricted on II[a,b] is a discrete function and we have the
following relation between continuous and discrete norms of y:

HyHooII[a,b] < ||yHoo,[a,b]a
Hy”p—var,ﬂ[a,b] < Hpr—var,[a,b]'

The notion of discrete function and discrete control function can be easily generalized for the case
of arbitrary (not necessarily finite) subset II C [a, b].



2.2 Discrete sewing lemma

In this section we fix [a,b] and a finite partition Il = {¢; : 0 <i <n,a=tyg<t; <...<t, =b} on
[a,b]. The following lemma is the main result of this section. It is actually an algebraic result and
provides us with an effective tool for investigation of discretized rough differential equations.

Lemma 2.2 (Discrete sewing lemma) Let Il = {¢t; : 0 <i<ma=ty <t <...<t, =b}
be a finite partition of [a,b] and F be an function defined on II x II, vanished on the diagonal, i.e.
F(s,s) =0,Vs € II. Put

(6F)sut = Fs,t - Fs,u - Fu,t’ s,u,t €I,
Iy, = Z Feti — Pty te <t €Il
k<j<l-1

Assume that for a discrete control w on 11 and a number X > 1 we have for all s <u <t in Il the
following inequality
(O )ut] < (5, 8). (2.1)

Then there exists a constant 8 > 0 depending only on A such that
I < KoMty ty), Vi <t €l (2.2)

Proof: We prove by induction on [ — k. For [ = k, k 4+ 1 the statement holds trivial.
Assume that (2.2) hold for all &, such that 1 <[ —k < m — k. We prove that (2.2) is true for
l=m.
Define

1
[ :=max{k < j < m|w(ty, t;) < §w(tk,tm)}.
t

Then w(ty, ;) < tw(ty, tm) and wty, tiy1) > sw(ty, ty). It follows that w(tii1, ty) < sw(ty, tn)
due to super additivity of w.
Now we have

I = I+ Dy — (6F )t )t
= Dea+ Dgvr + Divim — OF )ty o, — (OF )ty 11t
= Iky+Iipim — OF )ty tm — (OF )ttt since Iy =0

By inductive hypothesis and assumption of J ' we obtain

k| < Ural + Hivtm] + 10F )ttt |+ [OF )ttt
< K*oMtp t) + KoMt tm) + w0 (t, tm) + 0tk t)
< 2RO by b)) + 207Nty tn)
< (20 4 20wty tm)
< HUJA(tk:y tm)
if we choose K* > 172% This completes the proof. O

Remark 2.3 1. Take any discrete control function w such that w(s,t) # 0 for s # t in II, for
instance w(s,t) = |t — s|. Take any A > 1. Put

1/x )
C = Supsguft %a Zf w(s, t) 7& 0
0, if w(s,t)=0



then [(6F)sui| < [Cw(s,t)]* for all s < u < t in II. Thus, there are abundant discrete control
functions furnishing the condition (2.1) of the discrete sewing lemma.
2. Condition (2.1) is satisfied if

[(6F ) aut] < ZAzwlf " (s, )/ (u, 1) (2.3)
=1

for all s < wu <t in I, in which wy;,w9; are some discrete controls on II, and p;,q; > 1, A; > 0 for
i=1,M,M > 1 such that mini(i + i) > 1.

Corollary 2.4 Let IT = {ti :0<i<n,a=ty <ty <...<t,=>} bea finite partition of [a,b].
Let y. : 1T — R™? gnd x.. : 12 — RY be discrete functions defined on II and 12, respectively.

Assume that for some p > 1 and some discrete control function w, on II we have |xs;| < wx/p(s t)
for all s <t €1l. Then for q such that 1/p+1/q > 1 we have

n—1
’ Z ytj xtj,thrl - yaxa,b S K*w;/q(aﬂ b)wi/p(a” b)7
7=0

2

where Wy/ (s,t) :== H|y|||q var,IT7 0= 1-91-1/p—1/q "

Proof: Apply Lemma 2.2 with w(s,t) = / 1(s,t).w L/ P(a,b) and A =1/p+1/q. O

Corollary 2.5 Let IV = {ti,O <k <n;},j=1,2,..., be a sequence of finite partitions of [a, b]
satisfying |I17| — 0 as j — oco. Let F be a discrete function defined on (UIl7)2. Assume that there
exists a discrete control function w on (UIIY) such that the following conditions hold
(i) for all s <u <t in U, |Fysy — Fyy — Fut| < w(s,t),
(47) SuPg<p<n, W (t tiﬂ) — 0 as j — oo.
Then the sequence of real numbers

Sty = Z Fk?t};Jrl

0<k<n,—1

converges.

Proof: Let 1 < m <[ be arbitrary. First we consider the case II" C I’ Using Lemma 2.2,

we have
St — Sm| = | E : FtL7t§c+1 N Z Ftw??ﬂ’
0<k<n;—1 0<k<mnm—1

= X (X R, Fea)

0<k<nm—1 gm<<em

< X | X Fau, P
0<k<nm—1 gn<tl<tm
*
< KT W)
0<k<nm—1
A=1lm m m 4m
< 0 sup Wt (iR 1) Z Wit tv)
0<k<nm

0<k<nm—1

< 6 sup w’\_l(t?,tﬂ_l)w(a,b).
0<k<nm,



For the case II,, ¢ II; we put II=1"u IT!, then by the preceding result we have

S = Sum| < 0 sup WA Y Jw(a,b),
0<k<nm,

IS — Sm| < 60 sup WAt th o q)w(a, b).
0<k<n

This implies
‘SHZ *S]‘[m| S |Sﬁ*SHm|+|Sﬁ*SHl|

< K*( sup w)‘_l(tzn,tﬁ_l)—}— sup w)‘_l(tgg,t§€+1)> w(a,b).

0<k<nm 0<k<n,
Therefore, by assumption, | S — Spm| — 0 as m,l — oo, hence the sequence Sy, 7 = 1,2,...,is a
Cauchy sequence. We conclude that the sequence S; converges. O

Now we use the discrete sewing lemma above to derive estimate solutions of a discrete system
of equations.

Lemma 2.6 Let I = {t; : 0 < i < n,a=ty) <ty <...<ty,=>b} bea finite partition of [a,b].
Consider a discrete system defined on I1

yth = ytj + th,tj+1 + Etj,thrla Yto = y* € Rda ] = 07 1a ceey N — 17 (24)
where F : 112 — R, ¢ : 12 — R?. Assume that

(i) There exists a discrete control function w such that (2.1) is satisfied for F;
(i) There exists a discrete control function wg such that for some q > 1 the following inequality

holds
|Fayl < wpl%s,t), Vs <tell; (2.5)
(iii) There exists a discrete control function wy such that |e;; ¢, 1| < wo(tj, tiv1)-
Then we have
Iyl varr < K (@, b) + wil(a, b) + wola, b). (2.6)

Proof: For any pair t;, < t; € II we have
1

~

’ytz - ytk‘ - ‘ (ytj+1 - ytj)‘
j=k
-1
= | Z (th,tjﬂ +€t0501) |
j=k
-1 -1
< | Zth,th‘ + | Z €t
j=k =k
< | + [ Fry | + woltr, tr)
< K*oMtg, ) + |Frpy | + wolte, ).

Therefore, by (2.5), we get
1
o —y| < Kw(te,tr) + Wp/q(tka t1) + wo(tk, 1)
Consequently,

* 1
Iyl a1 < B0 (@,b) + wi*(a, b) + wola, b).



2.3 Discrete greedy sequence

The original idea of a greedy sequence was introduced in [4, Definition 4.7]. Given o > 0, a compact
interval I € R and a control @ : A(I) — R, the construction of such a sequence aims to have a
”greedy” approximation to the supremum in the definition of the so-called accummulated c-local
w-variation (see [4, Definition 4.1])

Ma,[ (@) = sup E Wtitigr
(1)@t <@ t;elI(I)

In particular, ws, is chosen to be H]~|||gvar,[87t] in [4].

A similar version for stopping times was developed before in [17] and then has been studied further
recently by [10] for stability of the system. A more detailed presentation of another version of
greedy sequence of times which matches with the nonautonomous setting is given in [5].

The notion of greedy sequence of stopping times gives us a tool to estimate the growth of a
function z(t) in the arbitrary time intervals (s, ¢) of the determination domain of z(t) as it allows us
to choose various ”control” function @, ; based on x(t). Thus this notion gives us a tool to indirectly
understand the growth of the solution y(t) of a rough differential equation driven by a path x(t)
on each time intervals (s,t) of the time interval of determination of the rough differential equation
under consideration.

We notice that an abstract definition of a greedy sequence of stopping times need not be born
by a rough differential equation and not only for the probabilistic setting (hence the stopping time
here is not necessarily stopping time in the probabilistic setting although in the stochastic setting
they are actually stopping times in probabilistic sense): all we need is just a function ws; which
must not always be a control function. Let us gives here our rigorous abstract definition of greedy
sequence of stopping time.

First we deal with the continuous time case. Let [a,b] C R be an arbitrary time interval, and
Apgp = {(s,t) :a < s <t < b} Ca,b] x [a,b]. Let w: Ay — [0,00) be a continuous function of
two variables such that

(1)  (zero on diagonal) w(t,t) =0 forall t€ [a,b] and

t,t) (2.7)
(17) (monotonity) w(s,u) <w(s,t) forall a<s<u<t<hb. '

For any given parameter y > 0, based on w and p we construct a nondecreasing sequence of
times G|q 4w, = {70, 71,72, 73, . . .} such that 70 = a and

Tit1 = inf{t € [1, 0] : w(mi,t) > p} Ab. (2.8)

The sequence G| )., 1s called the greedy sequence of stopping times on [a, b] (constructed from
w and p). Notice that once 7; is determined then if w(7;,b) < p then 7,41 = b, and if w(7,b) > p
then 7,41 € (7;,b) is determined uniquely since the function w(7;, -) is continuous, nondecreasing and
w(7i, i) = 0, w(7,b) > p. Note that in case 7; < b and w(7;,b) > p, we see that 7,41 is intuitively
the first time w(7;, ) reaches p. Clearly any control function (see [16, Definition 1.6]) satisfies the
condition (2.7) above, hence we can construct a greedy sequence based on it. Further, any positive
power of a control function, which is not necessarily a control, also satisfies (2.7).

Now let « be a given continuous-time function of finite p-variation on [a, b]. Consider the function
w(s,t) := [|&[], var (s 4 It is easily seen that this function w satisfies the condition (2.7) above, hence
for any parameter p > 0 we can construct the greedy sequence Gigp) ., = {0, 11,72, 73,...} of
stopping times. We have 79 = a, and by definition of w

Tivt = InE{t € [72,6] Dol gy = 0} A D (2.9)

6



Assign

N = Nigpu(x) :=sup{n: 7, < b} + 1. (2.10)
Since the function ||z|, . 4, is continuous and nondecreasing w.r.t. ¢ with x(tg) = 0 (see [16])
we obtain
wx”|p—var,[n,7’i+1] =p, t=0,---,N—-2 (211)
Then the following estimate holds
1 P
Moot &) € 14 5 Il oy (2.12)

Now we turn to the discrete framework. Let [a,b] C R be a closed interval of R, and IT = {¢; :
0<i<na=ty<t; <...<t,=>b} bean arbitrary finite partition of [a,b]. Let w be a discrete
control function on IT and § > 0 be arbitrary. Suppose we are given a fixed § > 0. We define a
discrete sequence of greedy times G gs = {73,7{,...} based on the discrete control w, and the
parameters 3,d and taking values in II as follows:

1. Set 75 =tp = a,

2. Suppose that the point 7 € Gy g is already constructed, thus 7* =t € Il. If 7 =t,,, = b
then we stop and the sequence Gt g s has been constructed. If 7 < t,, = b, hence k < m, then we
define 77, € G, as follows

(i) if wP(tk, tp+1) > 0 then we set 775 = tji1;

(i) otherwise we set 777 = max{t; € 1 : k <1 < m,w” (), 1) < 6}

Note that the discrete sequence Gr g is finite and it can be constructed for any partition of any
time interval [a, b].

Put N* = ﬂ[a,b],ﬁ,é := #Gn s the number of points ¢} of G in [a,b]. From the definition
of the sequence G g5 it follows that for any 0 < i < N* — 2 we have w? (77, 7o) > 0. Therefore,
since w is a control function we have

N*—3

N*—2 S ZO WW(TZ 77_i+2) S (51/6 (CU(TD;TN*)+W(717TN*)) S Ww(G/’b)
Hence,
% 2
Nias5.6 < 2+ 5750 ) (2.13)

3 Discrete Young systems

In this section we consider a fixed partition II := {a =t < t1 < ta < ... < tp—1 < t, = b} with
III| := supy, |tx+1 —tx|. Let = : II — R be a discrete function defined on II. We consider the discrete
system on II driven by x, defined by

Yto € Rd?

. (3.1)
Yt = Yt + F(Ue) e — te) + 9y ) [2(tetr) — z(te)] + €4, 4, B=0,1,...,n—1,

where f : R — R is a continuous function of linear growth, i.e. there exists a constant Cy >0
such that

1f(W)| < Crlyl + | £(0)], VyeRY,



where £(0) is the value of f evaluated at the vector 0 € R% g : R? — R? is Lipchitz continuous
functions with Lipschitz constant Cg; e* : II? — R? is a noise which is assumed to satisfied the
condition

(et tpa| < H'W (ts tg)

with H* being a positive constant and w* being a discrete control on AIl. This system is a discrete
form of the (contnuous-time) Young differential equation

dy = f(y(t)dt + g(y(t))dz(t), t € [a, ], (3:2)

where x : [a,b] — R is a continuous function defined on [a, b] and not necessary of bounded variation.

Clearly, for any initial value v, the discrete system (3.1) has unique solution. We are interested
in the relation between the norm of the solution (output) y and the norm of the driver x. The main
result of this Section is Theorem 3.4 where we estimate the discrete norm of y in term of p-variation
norm of z and other input factors. As an application, the estimation for the Euler scheme of (3.2)
is derived at the end of the Section.

Let ¢ > p > 1 be arbitrary numbers satisfying A := 1/p+ 1/¢g > 1. From now on we fix these
constants p, g, A and the constants

2 1 1
K* = 6 = —"—— (5 =
1—2i-p-1/a "V 0,1+ K%' P 4Gy

Firstly, we have the following Lemma as a direct consequence of Lemma 2.6.

Lemma 3.1 The solution y of the discrete system (3.1) satisfies

lylly—ver,t <(Cylyal +90) 12l p—var,ir + [Crllylloor + fo] (b —a)
+ Cg(K* + 1) |Hy”|q—var7]_[ |||m|||p—va,r,]_[ + H*w*(a7 b)? (33)

where fo = |f(0)], go = |g(0)| with £(0),g(0) being the values of f, g evaluated at the vector 0 € RY.

Proof: To apply Lemma 2.6, we rewrite (3.1) in the form of (2.4)

Yty = Yty +Ftk,tk+1 T Ety oty k=0,1,...,n—1,

where
For = g(ys)(z(t) —x(s)), s,tell,
6tj,tj+1 = f(yt])(t.7+1 - t]) + e;tkj,tjﬂ'
Put
w(5,8) = O o) D Ul )7 P
1
WF/q(Sv t) = (90 + Cyllyllg—var,m) |||5Uwp_var,n[s,t} > |Fap — Fas| +Cy ”|y|Hp—var,H |||x|||p—va,r7]_[[s7t] ;
wo(5:8) = [Crllglloeut + fol(t — 5) + H'w" (5,), (s,1) € AIL



Then, one can easily prove that w, wp and wy are discrete control functions. Now, we verify the
assumptions of Lemma 2.6:

(OF)sutl = (9(yu) = 9(ys)) (21 — 2u)]
< C ”’qufvar,l_[[s,t} m‘rmp var,I[s,t]
S X (L1 A v T N L)

w (s,t);

[Fotl < [Fat — Fasl + 1(9(ya) — 9(ys)) (@ — )]
< |Fap — Fasl + Gy ”’ympfvar,l'[ (2t — ws))|
< 1/p(5 £);

et b | < wolty, tjrr)

Thus, Lemma 2.6 is applicable and gives

Iglly s < KW@, b) + wil“(a, b) + wola, b)
= K*Collyllyvar1tfoe) 121l —var 115y + (90 + Callyllg—var1) 12l var r1gay
HCllylloot + fol (b — @) + H*w*(a,b)
= (Colyal + 90) 12l varx1 + [CollYlloos + Fol (b — a)
HE + 1)Cy 1yl y—ar o) 121y —ar 11y + 6" (@, D).

The proof is completed O

Now we aim to get estimates for the norms of the discrete function y on II. For this, first we
need to make estimate the norms of y on appropriate small parts of II determined by constructions
of discrete greedy sequences, and then using the properties of greedy sequences to derive estimate
for norms of the function y on II. To do this, we construct two greedy sequences as follows. Choose
two sets of parameters to construct two discrete greedy sequences:

1. wi(s,t) = |||af:|||§ var 5.4’ p1 = 1/p, 01, and construct the first sequence G 5, 5, = {t;} C IL
2. wa(s,t) = |t —s|, B2 =1, d2, and construct the second sequence Gr g, s, = {t;*} C IL
Denote by G := {#; : 7o < 71 < ... < 75 _1} the ordered increasingly combined sequence {t; } U{t;*}.

Then, by (2.13), the number N := #G of points 7; of G satisfies

. 2
N<4+—(b—a)+ =

5 (3.4)

p—var,a,b] *

Furthermore, for an arbitrary pair of two consecutive points [7;, 7;4+1] of the combined sequence C’,
by the construction we have two alternative cases

1. (f‘i,ﬁq_l) NIl = @, or (35)

’7Ai+1 A31'| < 52>
< 51 ( )

bl ) <

2. (74, 7ix1) NIL # (O, in this case {

Note that if IT = {kh : 0 < k < n} then the number #Gr g, s, of point t of G g,.5, is equal to

the number of points of continuous greedy sequence and is equal to 1+ 2-¢. In this case we have a
better estimate for N as 1
N<3+5(b-a)+ 7 Ilellp varfab] (3.7)



Next, in two lemmas below, we evaluate y on each small portion of II, which are in fact determined
by consecutive points of the combined sequence G. For a,b € II,a < b, we denote II = Il[a, b] :=
{tella<t<b}.

Lemma 3.2 Let a,b € IT be such that ||z|| < 61, |b—a| < 8y. Then for the solution y of

p—var,TI[4,b]
the discrete system (3.1) the following inequalities hold
19l sy < [val + Mo V o) + 4H"w*(@,5)|e" — [M(fo v go) + 4H"w"(@,D)]  (3.8)
and
ot <[]+ MoV go0) + AH*w"@.8)] € — [M(fo v go) +4H"w" (@), (39)

where k =2+ =), M = g7 + g

Proof: Apply Lemma 3.1 with H[a b] replaced by I, b]. Since by assumption [z |||p7var,n[a,6] <
1= W and |bfa| <y = T we have
Il —vart <(Colval + 90) Dl _ars1 + [Crll9ll oo 1y + Fol (b — @)
+ Col K" + 1) ylly sar i B2l 1 + H'w"(@,D)
1

1 * k(A T
<(Colyal + 00) Ol + ol + 5 W+ Ha ).

1
2C,(K* + 1)

which implies

1 1 . wsa 2
19l ver. it < (Cglyal + go)m [Crlylloo it + fol 5 c; + 2H"w*(a,b). (3.10)
From this it follows that
1 fo 90
sup |y, —val < ———clval + 3 Hy||oOH + + + 2H*w*(a, b).

astieh 1+ K~ 2Cr | (1+ K*)C,

Consequently, we have

1 ]- f g0 * 7
- N A 2H*w*(a,b).
Therefore,
oy < @+ el + 2% + 20 a,h)
ool = 1+ K* Cr (14 K*)C, ’
lal + M (fo V go) + 4H*w*(a,b)|e" — [M(fo V go) + 4H*w* (@, b)].
Thus, (3.8) is proved. Combining this with inequality (3.10) we obtain
1 f 90 -
. < a H*2w*(a,b
1 fo 290 -
1 A
< X M(fo V go) + AH*w* b]
< ol [Hyn MoV g0) + < )
1 .
< . M AH*w* ]
< lual + 5 [l + Mo v g0) + 4 (0,5)

< {lal + M(fo v go) + 4H"w"(a,B) | e — [M(fo V go) + 4H"w" (@, 5)]  lyal-

10



This implies (3.9) immediately. The proof is complete. O

Lemma 3.3 Let a,b be two consecutive points in 11 such that \B —a| < 6y. Then for the solution y
of the discrete system (3.1) the following inequalities hold

Wloonasy < [lval + Mo v go) + 4Hw" (@, B)] e*[1 + (1 + K*PCR el ]

p—var, 11
—[M(foV go) + 4H"w"(a,b)], (3.11)
and
19y oy < |lwal + M(fo v go) +4Hw* @,B)| e*[L + (1 4+ K P Ch el (]
—[M(foV go) + 4H"w"(a,b)]. (3.12)

Proof: By definition of the system (3.1) we have
il < lva + Fa)(b— ) + g(ua) x(B) — 2(@)) + <
< lual + Oy — )yl + folb— @) + Cylyal |2(6) — 2(@)] + gola() — 2(a)| + H'w (8, b).
We now estimate two terms in this inequality. Notice that, by virtue of the Young inequality, for

all0<a<1,86>0and p>1 we have aff < a + pP. Therefore, we have

) 1 . 1 )
Cole(®) ~ ()| = gy (Col+ KV el o) < gy +Co0+ K Mol

and

gola(B) — 2(a)] = =2 [Cy(1 + K*) ]

go *
1 K*PCP
R (14 K el

<
p—var,H] — Cg(l + K*) p—var H:|

As a result we get

fo
2CF

gO [ * P :|
— |1 14+ K*)PCP N
e 1 A+ KOl

< vl + vl + 2 H*W*(&>3)+|ya![ (14 KNP o)

1
1+ K* p— varH:|

Consequently,

< el (1 T+ KPR, ) + Mo v o) (1 1+ KPCF Il )
+ H*w*(a,b)

< lval + M(fo v go)) e (1+ (1 + KPCh all”_ )
= M(foV go) (1+ (1 + Kol ) + H'w*(a,0)
< lwal + M(fo v go) + H'w"(a,B)| " [1+<1+K*>Pcp el &
— [M(foV go) + H*w* (@, ). (3.13)
Then we get
IWloery = max{lyal, ly;)}

< [Iya!+M(fo\/go) + H*w*(a,b)| "1 + (1 + K)PCP ||?
— [M(foV go) + H*w*(a,b)).

)

p— var,I1
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Now, since a and b are two consecutive points of II we have

111, art = 19l + D9l iz = [9a] + 195 — val.

An inspection of the estimation of |y;| in (3.13) above shows immediately that

0l et < [l + M(fo v g0) + H'w*(@,8)|e" [14 (1L + KPCE l?_ ]
a,

— [M(foV go) + H*w*(a,b)].

The proof is completed. O

Now we state the main result of this Section.

Theorem 3.4 If |II| < 6§y, there exists a positive constant D depending on fo, go, k such that

8kC(b—a)+D[1+(1+K*)PCP| z|?

19loo,11{a,5) < [|¥al + M (fo V go) +4H*w*(a,b)] e pvarmanl (3.14)

and

Hy”qfvar,ﬂ[a,b] < Hya‘ + M(f() vV go) + 4]?*(,‘)*(0,7 b)] 8kCy(b—a)+D[1+(1+K* )PCP|||I|HP var,I[a,b ]lel/p
(3.15)
in which N is estimated by (3.4). Furthermore, in case [a,b] is partitioned equally, i.e if II = {kh :

0 < k < n}, then N is estimated by (3.7) and the multiplier by r in the exponents of (3.14)~(3.15)
can be changed from 8 to 4.

Proof: Recall the combined sequence G = {7 : 7p < 7, < ... < T 1) = Gu,g6 U Gy,
of two discrete greedy sequences Grg,,5, and Grig,s,- Note that since [II| < 49, for every i,
|Tiv1 — 71| < d2 and [7y,7;41] satisfies either (3.5) or (3.6). Therefore, by Lemmas 3.2-3.3, the
following inequalities hold for all 0 < i < N -2

HyHOOaH[ﬂfiH] < lyal+ M(foV go) +4H w" (73, Tiy1)] €” [1 + 1+ K*)pcp ”|$|”p var H[T1,71+1]:|
— [M(foV go) +4H w* (74, Tit1)] (3.16)

[Yllg—var iz ziia) < [ysl +M(foVgo) + 4H W (73, Tiga)] € [1 + (14 E)PCY |l

p—var,| T1,7'1+1]j|
— [M(foV go) + 4H*w* (71, 7i11)]- (3.17)
Note that if we replace w*(7;, Ti+1) by w*(a,b) > w*(7;, 7i+1) then the right-hand sides of (3.16)
and (3.17) increase. Hence we have
[Wllooiizszin) < lyal + M(foV go) +4H w*(a,b)] e” {1 + (1 + K7)PCy [l=|f) Varn[ﬂmm]
— [M(foV go) +4H" w*(a,b)] (3.18)

9l gmaetin i < Uonl + MoV go) + 4H w* (a, b)) € [1 + (1 + K*)PCE )

p—var [7—17'f_i+1]:|
— [M(foV go) + 4H*w*(a,b)]. (3.19)
From (3.18) it follows that for all 0 <1 < N — 2 we have

H+(1+K*)PCPIIIxH\p var, I[#;, 74 1]

Y20 |+ M (foV go) +4H w"(a,b) < [lyz,| + M(fo V go) +4H w"(a,b)] e

12



Moreover, by induction, for 0 < m < N — 1, we have

sup |yg;| + M(foV go) +4H w*(a,b)

a<t;<Tm
T et KRl
x
[lyal + M(fo V go) + 4H*w*(a,0)] [] € pvan Il 7]

=0

km~4(14+K* pCP m
< lyal + M(fo V go) + 4H*w* (a, b)] ™™ K Co 2 i 1 1

IN

p—var,II[7 r+1] (320)

Put m = N — 1 in (3.20), taking into account the estimation (3.4) and the choice of parameters we
get

sup |yg;| + M(foV go) +4H*w*(a,b)
a<t; <b

[yal + M(fo V go) + 4H"w* (a, b)) "~
yal + M(fo V go) + 4H*w*(a, b)] "G H8Cr (0-a)+2Q2C, A+ K7))? 121, —var o, )+ AHEPCGI v gy

D+A+KPCGlly _or i)

AN IN

from which we obtain (3.14). Moreover, it is easily seen that in case [a, b] is partitioned equally, i.e
if IT = {kh : 0 < k < n}, then we can estimate N by (3.7) and the multiplier by  in the exponent
of (3.14) can be changed from 8 to 4.

Now, to prove the remaining part of the theorem, we use property of p-var seminorm and (3.17)
to deduce the following inequalities

N-2

”’qufvar,l_[[a,b] < (N - 1)1—1/p Z ”|y”’q7var,ﬂ[ﬁ,ﬁ+1}
=0

( C 1 1/p|: Z |y7_ ( 1+K*)PC’PH‘SE|"Z var,[73,%4.1] 1)

r+(1+K*)PCy Izl

IN

p—var,II[#;, 7 4 1]

+(M(foV go) + 4H*w*(a,b)) e

Using the estimate of |yz | just derived above applied to each interval [a, 7;] we get

lylly—var 1o,y
< (N =17 lyal + M(fo V go) +4H"w* (a,b)] x
N2 1 1+K*)PCh *\p P
y ( DR+ UHE P OFI e a2,y _ s+ (1K) CF Rl VarH[M])
=0
) Z (fo V go) + 4H"w*(a, b)) " M vt
< (N-1)'" 1“’[\%\ +M(fo\/go)+4H* “(a,b)] x
" ( (N=Drt (LK PRI iy _ LK PO g, m])
H(N = D) VPN = 1) [M(fo V go) + AH w*(a, b)] IOl o
< (N =1V [Jyal + M(fo V go) + 4w (a, b)] e VOO oy

+(N = 1> YP M (fo V go) + 4H*w*(a,b)] e At (LK )POs el var,ga,b)

13



Therefore, due to (3.4), we can find a constant D depending on Cy, Cy, k such that

SHCI-(b—a)+D[1+(1+K*)pC§7|||$|\\§7var’n[a’b]] (N_l)l,l/p.

Hqufvar,H[a,b] < Hya‘ + M(f() \ gO) + 4H*w*(a7 b)] €
Thus (3.15) is proved. Moreover, it is easily seen that in case [a,b] is partitioned equally, i.e if
I = {kh : 0 <k < n}, then we can estimate N by (3.7) and the multiplier by x in the exponent of
(3.15) can be changed from 8 to 4. The theorem is proved. O

Remark 3.5 If |} ; | < w"(tg,tg41) for some n > 1, and control w. One may take H* =

SUDy seIT, [t—s|<|TI| W™ 1(s,t). If, additionally, w is a continuous control on [a,b], then H* — 0 as
I} — 0.

4 Application

Now we consider the stochastic differential equation

dy(t) = f(y(t))dt + g(y(t))dZ(t) (4.1)

where f: R — RY is dissipative, i.e. there exist ¢,d > 0 so that for all y € R?,

(y, f(y) < &—dly?

and global Lipschitz continuous functions, g : RY — R? is linear of the form g(y) = Cy + g(0), and
Z is a two-sided stochastic process with stationary increments such that almost sure all realizations
of Z are in the space CP~V?" (R, R) of continuous paths with finite p - variation norm, for some 1 < p.
By assumption, g is Lipchitz continuous with constant Cy; = |C|. An example for such a process Z
is a fractional Brownian motion B¥ ([26]) with Hurst index H € (0,1).

It is well known that equation (4.1) can be solved in the path-wise approach by taking a real-
ization x € CP7V* (IR, R) (which is also called a driving path) and considering the rough differential
equation

dys = f(ye)dt + g(ye)dzy, o € RY (4.2)

Here we restrict to the case p € (1,2) for simplicity where we make use Young integral to to define
the integral w.r.t. x. Less regular cases are treated in the forth coming paper.

By assumption on Z one can construct a metric dynamical system (€2, F, P, 6) (see for instant
[11]) and work on this space. It is proved that (4.1) generates a RDS ¢(t, x)yo. Moreover we recall
the following result from [8].

Theorem 4.1 There exists € > 0 such that if |C| < €, the generated RDS ¢ of (4.1) possesses a
pullback random attractor A(z).

In the following we consider the Euler scheme of the system. We define for each realization x €
(Q, F,P,0) the scheme

Yto € Rd?

(4.3)
Ytrrr = Yt +  We,) (k1 — te) + 9y, ) [ (kg1 — 2(tk)]

in which t;, € IT = {tx = kh, k € N} with h = 1/m for some m € N* for convenience. We prove that
(4.3) generates a RDS " (¢, z)yo on time set {kh, k € N} and then the existence and the convergence
of the pullback attractor A" to A in the pathwise sense as h tends to 0.

We denote by Ay the closed interval [k, k + 1].

14



4.1 Existence of pullback attractors

Given a random dynamical system ¢ on R? with time set T is Z or R, we follow [19], [2, Chapter
9] to present the notion of random pullback attractor. Recall that a random variable p(z) > 0 is
called tempered if it satisfies

lim flog p(Oix) =0, as. (4.4)

t—+oo t

(see e.g. [2, pp. 164, 386]) which, by [21, p. 220]), is equivalent to the sub-exponential growth

tl}gloo e MpB,x) =0 as. Ve>O0.
A random set D(z) is called tempered if it is contained in a ball B(0, p(x)) a.s., where the radius
p(x) is a tempered random variable.
A random subset A is called invariant, if ¢(t,z)A(x) = A(6x) for all t € R, = € Q. An invariant
random compact set A € D is called a pullback random attractor in D, if A attracts any closed
random set D € D in the pullback sense, i.e.

Jim d(p(t,6-2)D(6_2)|A(x)) = 0. (4.5)

A is called a forward random attractor in D, if A is invariant and attracts any closed random set
D € D in the forward sense, i.e.

lim d(o(t, z)D(x)]A(6:x)) = 0. (4.6)

t—o00

The existence of a random pullback attractor follows from the existence of a random pullback
absorbing set (see [19, Theorem 3]). A random set B € D is called pullback absorbing in a universe
D if B absorbs all sets in D, i.e. for any De D, there exists a time to = to(x, D) such that

o(t,0_4x)D(0_sx) C B(x), for all t > to. (4.7)

Given a universe D and a random compact pullback absorbing set B € D, there exists a unique
random pullback attractor in D, given by

A(z) = NgzoU>sp(t, 0_z) B(6_sz). (4.8)
The following is crucial to the main theorem Theorem 4.3.

DA++K)P OGN, var. an) syuch that

Lemma 4.2 There exist A1, Ao of the form e
il < e yalll+ (177 4 C)Aa (@, A)] + (fo V go)Aa(w, Ay)

for alln € N.
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Proof: We have

Wil = vl + 1 W) Ph? + 19e) P12t b
+2h<ytk7 f(ytk» + 2<ytk7g(ytk)$tk,tk+1> + 2h<f(ytk), g(ytk)xtk,tk+1>

<y + 203 (CHlys, I + £3) + 2(C5 lye P + 98) 120ty |

+2h( — dlye, I*) + 20(Clys,| + f0) (Colye| + 90|ty tisr | + 2t 9t )Tty 11 40)
< ye (1 = 2hd) + 2y, 9(ve )Tty 110

+2[ye, [P(W*CF + Co gy by [ + 2C5Cohlze, 4,4, 1)

+M(h+ b2+ |t [P+ [T |)
<y e+ 20y, 9(Ue )Tt )

+2’ytk ‘Q(hZCJ% + Cg’xtkﬂfkﬂ ‘2 + 2Cfcgh|xtk,tk+1 D
+(f0 \ g()).M(h + h2 + ’xtk,tkﬂ ‘h + ’xtkﬂ‘/kﬂ ‘2)

in which M is a generic constsnt, depends on Cf,Cy, c. By induction

k-1
el < fynlPe 200 4 2y e gy )ay, i)
i=0
k-1
+2|y’go,ﬂ[n,n+1] Z(thJ% + CF |2t 5 |° + 201 Cohla, 1, )
i=0
k-1
+MZ(h + h? + ’xtiatiJrl ‘h + |xtz‘7ti+1 ’2)
i=0

k-1
|yn‘26_2d(tk_n) +2 Z e 2t t) <yti7g(yti)xtiyti+l>|
1=0

IN

2 2 2 2 -1
+2|y’oo,l—l[n,n+l](hcf + Cg mxmpfvar,l_[[n,nJrl] + 2Cf09h1 /P mxmpfvar,l_[[n,nJrl})
+(fO \ gO)M(l +h+ |“x|||p—var,l_[[n,n+1} + |||x”|12)—var,l_[[n,n+1])'

Particulaly,

m—1

|y121+1‘ < ‘yn’2672d + 2| Z eizd(nJrliti)(yti?g(yti)xti,ti+1>’
=0

+2‘y|go,l_[[n,n+1] (hC]% + ng me?)—var,ﬂ[n,n—%l} + 2Cfcgh1_1/p |||x“’p—var,ﬂ[n,n+l])
+(f0 \ gU)M(l +h+ ”|xH’p7var,H[n,n+1] + ”’xmzfvar,l_[[n,n+l})‘ (49)

We are now going to estimate | Z?;_ol efzd_(tk*ti)@ti,g(yti)xti,tiﬂﬂ. Put

Fo, = e~ 2d(n+1-s) (Ys, 9(ys)xsy s,t € [n,n + 1].

)
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We then have for n < s <u<t<n+1

[(0F)sut| = ’672d(n+1 S)<Z/ 9(s)) (v — x5) —e”
—e 2D () (2 — @)

e (g, g(ya)) — e (g, gy (e — @)

[e™2dnF1mu) — gm2dlntl= S)]<yu,g(yu)>—e_Zd("+1_S)[<yu,g(yu)>—<ys,g(ys)>]l-\(aﬁt—wu)l

20— var 7w, [Qde W (= ) (CyllY oot m1) + 90)+

+ 20 Pyl e oYt + 90)|

20019 (4 g(ye)) (2 — 5

IN

IN

’”xmpfvar,l_[[s,t] |:2J(t - S) + mympfvar,l_[[s,t] (2CQHyHOO,H[n,n+1] + gO)

in which we use the following estimate

(Y 9 (W) — Ws, 9Ws ) = [Yur 9(Yu)) — (Yus 9(Ys)) + (Yu, 9(Ys)) — (Ys, 9(ys))]
< Y 9(Yu) = 9(ys))| + [{Yu — ys, 9(s))]
< NyulCqlyu — ys| + (Cylys| + 90) [Yu — ys|
<

|||y|||p—var7H[s7u] (QCgHyHoo,H[s,u] + 90)
It means that (2.1) is satisfied. We can apply Lemma 2.2 to obtain

m—1

Z 672d(tk7tz‘) <yt1 , g(ytz )xti,ti+1>
=0

< e *Nyn, 9(yn)wnnr1)
+K* W~”U|||p_var7n[n,n+1] |:2J+ |||y|||p—var,l_[[n,n+1}] (20 ||y||oo,H[n,n+1] + gO)

g
=3 L] N— Lo —— (;;]

Combining this with (4.9) we obtain

Y201l < |yal?e

2DIYI2 i, (02 C2 12t + 207 Cah P Ul sy +
+Cy mxmpfvar,l_[[n,nJrl])
ML+ h+ 2], var 1) T |”~’U|||;29_var,n[n,n+1])
lyn| e + 2D[ylI2 _yar 11pn, n+1](h1_1/p + Cg 1zl p—var, i n+1) (1 + Co 2l —var 11,0417
+(foV go) M1+ h+ |2/l —ar ipns1) + ”’wmiwar,n[n,nﬂﬂ (4.10)

Next we make use Proposition 3.4

IN

Hprfvar,H[n,nJrl} < Hyn| + M(f() V 90)] 4an+D[1+(1+0)pCP\||$|||p var,II[n n+1]]N171/p
hence
Hpr T < “yn‘Q + M2(f0 Y 90) } ln2+8an+D[1+(1+9)PCP\lenp var,II[n, n+1]]
to obtain the conclusion. 0
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Theorem 4.3 Consider (4.3) where x € (Q, F,P,0), yo € R?. (4.3) generates a discrete random
dynamical system oM. Moreover, there exists € > 0 not depending on h such that for |C| < €, there
exists hg > 0 such that for all h < hg the discrete RDS ®" possesses a random pullback attractor
Al ().

Proof: 1t follows from [9] that the discrete scheme (3.1) generates a discrete random dynamical
system ¢ . Namely, put

p(x)uo = uo + [Aug + f(uo)lh + g(uo)(z(h) — z(0)).
Then
Soh(nv Uo, .7)) = @(th.f) o @(a(n—l)hx) o @(x)uo

©" is an RDS on the metric dynamical system (Q, F,P,6) with discrete time set T = {nh,n € N}.
The measurability of @(z) w.r.t. (ug,z) and continuity of @(z) w.r.t. ugy follows from the fact that
for (z,up), (z,uy) € X xV,

I(z)uo — @@ )ugll < lluo — ugll + [I[Ax(wo — up) + f(uo) — f(up)lhll + [|[g(uo) — g(up)]z(h)|
+llg(up)[z(h) — ' (W]

< D(u(]: x, h)(HuO - UE)H + Hx - x/“p—var,[ﬂ,h])

< D(uo,z,h)(|luo — upll + dp(z,2")).
Using similar arguments in [11] and [6], we can choose € > 0 depending on d and E||Z |||Z —var[~11]
such that if |C| < e there exists tempered r.v. R(z), ho > 0, such that for h < hg

|ytk (G—tk'ivv y0)| < R(ZC)

for t;, large enough. This proves the existence of a random pullback attractor A" of ©". O

Remark 4.4 R(z) does not depend on h.

4.2 Convergence of numeric attractor

The following Proposition proves the convergence of numerical solution to the solution of (4.2). We
denote by z(+,0, z9) the solution of (4.2) on arbitrary [a,b]. Recall from [11] that z is bounded by
a constant depending on 2o, |||, _ya (.0

Theorem 4.5 The following limit holds

li 6,0, 1) — yp, | = 0. 4.11
‘H[agﬂ%ogsgmlzu Yto) — Yt | (4.11)
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Proof: Denote by z;, the value of z at time t;. Then

ety =l = [t [ U0 = fldut [ la(et0) = gl (w)
) = )bt — 1) + [9z0) — 9] (@ltin) — ()
-1
20—y — 2,y < 1D (F(y) = Flug) (G — £) + (9(2;) — gy (@ (1) — () +

j=k
-1

310 el ey (41 = )+ KCy 12l var ot 1y —var il
ji=k

-1

IN

| > (f2t;) = flye) (Eivn —t5) + (9(zt;) — g(ye; ) (2 (tj41) — 2(t5))]

=

+H*w*(tk, tl)
in which H* — 0 as [II| = 0, w*(s,t) = [|z|,_. is.4] 12 llp—var,s,¢] With suitable € <1 so that EJ;% > 1
(see Remark 3.5). H* w* depend on z,y. Now we repeat arguments in Proposition 3.4 to obtain

.

P
su[p ] lze, — vy, < [lz0 — yo| + 4H w*(a,b)] e 4xC(b—a)+DA+140)PCo(1+lzlly _ ., 1wy
t;€llla,b

< D*H"—=0as|lI|—0

since zg = 1o, in which D* is a constant depends on A, f, g,x,b — a, zg. This completes the proof.
]

Remark 4.6 In [9], the freezing technique is used to prove the convergence of Euler scheme to the
solution. Here, our proof is direct since we can make use of the Lipchitz continuity of f.

Theorem 4.7 (Convergence of numerical attractor) Assume that |C| is small enough so that A and
A" exist. Then the numeric attractor A" converges to the attractor A in the Hausdorf semi-distance,
i.e. d(A", A) — 0 as h — 0%, a.s

Proof: We proceed a contradiction arguments. Namely, assume the assertion is false, then there
exists an 9 > 0 and a sequence h; | 07 such that d(AM, A) > g for all j € N. Since these attractors
are compact sets, there exists a; € A" such that d(aj, A) > 50 Due to the invariance, there
exists for each m; € N a point b; € A" 3(0_m,n;w) such that o i(myj, 0 _mn;w)bj = ymj(b ) = aj.
Respectively one considers the continuous solution o(mjh, 0_m;n,2,05) = z(mjhj, 0y p,7,b5) and
applies the triangle inequality to obtain

hv
c0 < d(aj, A) < J2(mjhj, 0_mn,,by) — v 0| + d((myhy, Oy, b)), A). (412)

On the other hand, since A is the pullback attractor of ¢ there exists a fixed T'(¢¢) such that for
any mjh; € [T(c0), T (e0) + 1]

€
d(p(mjhs, 0—mn,x,b;), A) < 50 (4.13)
In addition, due to Proposition 4.5 we have
h.
2mh, 0y, by) — i, (b)) < (4.14)

o
2
2),

by choosing h; small enough. (4.13) and (4.14) contradict to (4.12), which completes the proof. [
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