MEROMORPHIC MAPPINGS ON KAHLER MANIFOLDS WEAKLY
SHARING HYPERPLANES IN P*(C)

SI DUC QUANG

ABSTRACT. In this paper, we study the uniqueness problem for linearly nondegenerate
meromorphic mappings from a Kéhler manifold into P™(C) satisfying a condition (C,)
and sharing hyperplanes in general position, where the condition that two meromorphic
mappings f, g have the same inverse image for some hyperplanes H is replaced by a
weaker one that f~1(H) C g~!'(H). Moreover, we also give some improvements on the
uniqueness problem and algebraic dependence problem of meromorphic mappings which
share hyperplanes and satisfy (C,) conditions for different non-negative numbers p.

1. INTRODUCTION

Let f: M — P"(C) be a meromorphic mapping of an m-dimensional complete con-
nected Kéahler manifold M, whose universal covering is biholomorphic to a ball B(Ry) =
{z € C™;||z]| < Ro} (0 < Ry < +00), into P*(C). For p > 0, we say that f satisfies the
condition (C,) if there exists a nonzero bounded continuous real-valued function h on M
such that

pQy + dd®log h? > Ricw,

where (¢ is the full-back of the Fubini-Study form Q on P*(C),w = g > hijdzin dz;
is the Kéhler form on M, Ricw = dd¢log (det (hz;)) .d=0+0 and d° = %(5— d).

Take a local holomorphic coordinates (U, z) of M, where z = (z1,...,2,) and U is a
Cousin II domain. Let f = (fo : --- : fa) be a (local) reduced representation of f on
U. Denote by M, the field of all germs of meromorphic functions at a point p € U.
Denote by F* the M,-submodule of M»*! generated by {(D*fo,...,D*f,) : || < w} for

k> 0and F~' = {0}. Here || = 3 7", a; and D% = 88& for each meromorphic

[e]
2y L0z

function ¢ on U and o = (o, ..., ) € N™. We define
re(k) = 1rank/\4pj’:]§C - rankMp]:;f_l (k> 0),
ryo= er(k) —1 and ¢;:= Zkrf(k),

k>0 k>0
-1 +
my = Z(k — )t min ¢, 1 H;, (rf(k) - anH)\> 5
K, A=0
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where ¥ = max{z,0} for a real number = and ,_; H) denotes the number of repeated
combinations of A elements among n — 1 elements. One has

Ogmfgﬁ@,

Let H be a hyperplane in P"(C), we (throughout this paper) also denote by the same
letter H a linear form defining H, i.e., we may write
H(l’o, Ce ,In) = Z aljxj,
=0
Let f=(fo:-: fn) be alocally reduced representation of f. We set

H(f)=aofo+ -+ anfa

Then, the function H(f) is locally defined and depends on the choice of the local reduced
representation of f. However, its zero divisor vy does not depend on this choice and
hence it is globally well-defined.

Two meromorphic functions f and g from M into P™(C) are said to share the hyperplane
H without multiplicity if f~'(H) = ¢ '(H) and f = g on f~'(H). In 1986, H. Fujimoto
[5] proved the following uniqueness theorem for meromorphic mappings on a complete
Kéhler manifold sharing a family of hyperplanes in P"(C) in general position as follows.

Theorem A (see [5, Main Theorem|). Let M be a complete, connected Kihler manifold
whose universal covering is biholomorphic to B(Ry) C C™ (0 < Ry < +00), and let f and
g be linearly nondegenerate meromorphic maps of M into P*(C). If f and g satisfy the
condition (C,) and there exist hyperplanes {H;}{_, of P*(C) in general position such that

(i) f7H(H;) =g~ (H;) (1<i<q) and f=g on UL, f~'(H)),
(ii) ¢ > n+ 1+ p(ly +£g) + mys + my,
then f = g.

Hence, Theorem A implies the previous uniqueness results for meromorphic mappings
from C™ into P"(C) given by R. Nevanlinna [8], L. Smiley [12] and S. J. Drouilhet [2].
Recently, K. Zhou and L. Jin [14] considered the case of meromorphic mappings from C™
into P"(C) where the condition “f~'(H;) = ¢g~*(H;)” is replaced by a weaker one that
i c g7 (H;) for some hyperplane H;. They proved the following.

Theorem B (see [14, Theorem 1.1]). Let f,g : C™ — P*(C) be meromorphic maps. Let
Hy, ..., H, be hyperplanes of P"(C) in general position with f(C™) ¢ H;,g(C™) € H; for
1<j<qanddimf~YHNH;)<m-—2 for1<i<j<gq. Suppose that:

(a) f~H(H;) =g "(H;) for 1 < j <p, and f~'(H;) C g~ (H;) forp <j<q,
(b) f=gonUj, f1(H)).

Then f = g if any one of the following conditions is satisfied:

(i) f or g is nonconstant and p =2n+2,q > 3n+ 3 — 2\/n.

(ii) f or g is linearly nondegenerate and p = 2n + 2,q > 2n + 3.

(iii) f or g is nonconstant and p = 2n+ 1,q > 4n + 3.

(iv) Both f and g are linearly nondegenerate and p=n+2,q > n®>+n*+n+4.
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Motivated by the work of K. Zhou and L. Jin, our first aim in this paper is to extend
the above mentioned results to the case of meromorphic mappings on Kéahler manifold.
Namely, we will prove the following result.

Theorem 1.1. Let M be a complete, connected Kdahler manifold whose universal cover-
ing is biholomorphic to B(Ry) C C™ (0 < Ry < 400). Let f,g : M — P"(C) be lin-
early nondegenerate meromorphic mappings satisfying a condition (C,). Let Hy,..., H,
be hyperplanes of P"(C) in general position with dim f~*(H; N H;) < m — 2 for every
1<i<yjy<gq, such that

(i) fffH) =g " (H)V1<i<p, fT'(H) Cg '(H) Vp+1<i<y,
(ii) f =g on UL, [~ (H),
wheren +2 <p<2n+2. Then f =g if

1 1
g>mi24pn (T 1) vy T
1 p—n—1

-1
or q>2n+1+pn( " _ )—|—2p<€f—{—L€g).
p—n—1 n p—n—1

Remark 1. The condition of p and ¢ is fullfiled in the following cases:

(1) p=2n+2,q¢>2n+2+2p(l; +{,).
2)p=2n+1,¢>4n+2+2p(l;+{,).

(3) p=2n,q¢>6n-+2+ -2 +2p({; + 250, for n > 2.
(4) p=n+2,g>n’+n>+n+3+2p(l;+nly).

Then, our result implies the above mentioned result of K. Zhou and L. Jin for the case
of linearly nondegenerate meromorphic mappings. In order to prove the above result, we
have to develop our previous method on “funtions of small integration” and “functions of
bounded integeration” in [9, 10]. We will prove a key lemma (see Lemma 3.1 in Section
3), which generalizes and improves Proposition 3.5 of [10], and apply it to estimate the
divisor of the auxilliary functions.

With the useful of Lemma 3.1, we may improve the previous result on the unique-
ness problem and the algebraic degeneracy problem of meromorphic mappings on Kéhler
manifolds. Moreover, we may consider the case of meromorphic mappings satisfying the
condition (C,) with different numbers p. Namely, we will prove the following result.

Theorem 1.2. Let M be as in Theorem 1.1. Let f,g: M — P"(C) be linearly nondegen-
erate meromorphic mappings, which satisfy the condition (C,;) and (C,,) for non-negative
constants py and p,, respectively. Let Hy,..., H, be q hyperplanes of P*(C) in general
position with dim f~'(H; N H;) <m — 2 for every 1 <i < j < g, such that

(1) l/ﬁ(f) = I/I[Li_(g) for elvecy i=1,...,q,
(ii) f =g on U1gi§q(f )H(H,).
Then f = g if any one of the following conditions is satisfied:

(a) =1 and qg>2n+2+ ps,(y+{,), where psg = 25}%'
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3 2 f n n n2—
(b) £>n+1 and q > 2n+1+max {3 }Ep2 ;f-(z( n)/)n, S l}n} +p1.9(5=1 (Ug+Ly)+(—n),
n+1)

where p = (2n+2 .

For the case of more than two meromorphic mappings sharing a family of hyperplanes,
we prove the following two results.

Theorem 1.3. Let M be as in Theorem 1.1. Let f*, f% f2 : M — P*(C) (n > 2) be

linearly nondegenerate meromorphic mappings, which satisfy the condition (C, ,),(Cy ,)

and (C’pr) for non-negative constants pgi,pp2 and pygs, respectively. Let Hy, ..., H, be

q hyperplanes of P"(C) in general position with dim(f")~'(H; N H;) < m — 2 for every

1 <i<j<gq. Assume that f = g on Jicuss(f*)"N(H;). Then fXA 2N f2 =0 if
1<i<q

-1
3n 3
q>n+1+2q+22 2+2<Zu 1p;u) zuzlgf“-

Theorem 1.4. Let M be as in Theorem 1.1. Let f* ..., f*: M — P*(C) be k linearly
nondegenerate meromorphic mappings, which satisfy the conditions (Cy..), - - -, (C’pfk) for

non-negative constants ps1, ..., pse, respectively. Let Hy, ..., Hy be g hyperplanes of P™(C)
in general position with dim(f*)"*(H; N H;) < m — 2 for every 1 <i < j < ¢ such that
(i) I/Ej(fl):---zy[ 3( W foreveryi=1,...,q,

(i) f=g 0”U1§i§q( ) ( i)
-1
Thenfl/\~~~/\f’“:0z'fq>n—|—1+(k_1)éﬂr%+2<zulp;u) SF

Remark 2. (a) Theorems 1.2, 1.3 and 1.4 generalize and improve the recent results in
[10] (Lemma 4.3, Theorem 1.2) and [11] (Theorem 1.2).

(b) In this paper, we only concentrate on linearly nondegenerate meromorphic mappings.
But our method can be applied to study the case of nonconstant meromorphic mappings.
However, in that case the computation may be much more complicate, since there are
many more parameters appearing. Then, that problem is still an interesting open question.

2. AUXILIARY RESULTS

Let E be a divisor on B(Ry), which is usually regarded as a function from B(Ry) into
Z. The support Supp(F) is defined as the closure of the set {z|E(z) # 0}. For a positive
integer k (may be +00), we define E¥(2) = min{E(z), k} and

(¢, ) = Jsuppmn EMom—y i m > 2, where v,y (2) = (dd°|12|*)"

The truncated counting function to level k of E is defined by

N[k} (r, ro; E) = / %dt (7"0 <r< Ro) .
To

We omit the character ¥ if k = +00.
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Let ¢ be a non-zero meromorphic function on B(Ry). We denote by v (resp. v2° ) the

divisor of zeros (resp. divisor of poles ) of ¢ and set v, = Vg — vg°. For convenience, we

will write N, (r,79) and Nl,k] (r,ro) for N (r,r;1/2) and N (7, rg; v2), respectively.
Let f: B(Ry) — P"(C) be a meromorphic mapping. Fix a homogeneous coordinates

system (wyg : - -+ : w,) on P"(C). We take a reduced representation f = (fo:---: f,) and
1/2
set I £l = (Ifol* + -+ 1fal")

Ty (r, o) = / gl —/ log || fllom, 0 <ro<r< R,
z||l=r z||l=ro

. The characteristic function of f is defined by

where 0,,(2) = d°log ||z]|? A (dd® log || z||?*)™*. Here and throughout this paper, we assume
that the numbers ry and Ry are fixed with 0 < ry < Ry.

Suppose that f is linearly nondegenerate. Then, there is an n+1-tuple o = (ay, ..., ) €
(N™)"+1 guch that (D(f),...,D*®-1) is a basis of M,-module F*®) where ((k) =
dimp, F* for all k = 1,...,ky = min{k : (k) = n + 1}. The tuple o = (ay,..., o) is
called the admissible set of f and

Wao,.ooan (for - fn) = det(DY(f;))o<ji<n
is called the generalized Wronskian of f. We note that |a| = > |a;| = ¢5.
Proposition 2.1 (see [5, Proposition 2.12]). Let Hy,..., H, be q¢ hyperplanes in P*(C)
in general position. Let f be a linearly nondegenerate meromorphic mapping from the
ball B™(Ry) C C™ into P"(C) with a reduced representation f = (fo,..., fn) and let

(ag, ..., 0ap) be an admissible set of f. Then, for 0 <ro < Ry and 0 < tl; < p < 1, there
exists a positive constant K such that for ro <r < R < Ry,

t
/ ao+tam Wao ..... an (an s >fn)
S(r)

Hy(f) .. Hq(f)

Let f1,..., f¥ be k meromorphic mappings from B™(R,) into P*(C). We fix a reduced
representation f* = (f¥ : --- : fY%) of f* and set ||f*| = (|fe* + --- + [f¥?)"/? for
u=1,... k.

Denote by C(B™(Ry)) the set of all functions g : B™(Ry) — [0, +00] which is continuous
outside an analytic set of codimension two and only attain +oco in an analytic thin set.

Rmel
. t(g—n—1) < K
I, < & (7

z

T¢(R, r0)>p.

- T

3. MAIN LEMMAS

For a non negative integer ly, we denote by S(lp; f1,..., f¥) the set of all functions g
in C(B™(Ryp)) such that there exist an element a@ = (av,...,ay,) € N™ with |a] < Iy
satisfying: for every 0 < tly < p < 1, there exists a positive number K with

k p
o it Rmel
/S(T) 12%g['om < K (R—r Zﬂfu(ﬂ%))

u=1

for all r with 0 < ro <7 < R < Ry, where 2% = 27" --- z%m.

Let p be a non negative integer. Denote by B(lo; (f1,p1),..., (f* pr)) the set of all
meromorphic functions h on B™(Ry) such that there exists g € S(lo; f*, ..., f¥) satisfying

A< AP LR - g,
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outside a proper analytic subset of B™(Ry). We will write B(p,lo; f*,..., f*) as in [10]
for B(lo; (', p).---. (f*,p)).

We easily have the following fundamental properties of the families S(lo; {f“}*_;) and
B(lo; {(f*, pu) Z:l)'

e If g is a constant function then g € S(0; {f*}%_)).

o g € S {f}E,) (1< <s) then [T, gr € S0, i {F"}_,) (see Propo-
sition 2.1 in [10]).

e A meromorphic mapping h belongs to B(0,lp; {f*}*_,) if and only if |h| €
Sl ()nr). |

o If hy € B(I; {fY,pt}, ..., {f%pi}) (1 <i<s) then

hl te 'hm € B(Zli; {flazpih ] {fk,zpi;})
=1 =1 =1

e Proposition 2.1 implies that if W (f) is the generalized wronskian of a linearly
nondegenerate meromorphic mapping f : B™(Ry) — P*(C) and Hy,..., H, be

W) - Il

q hyperplanes in P*(C) in general position then the function
© (]).. By(J)

belongs to S(¢y; f).

Firstly, we prove the following key lemma.

Lemma 3.1. Let M = B™(Ry) (0 < Ry < +00) be a complete connected Kdihler manifold.
Let k be a positive integer and for each w € {1,... k}, let f* be a linearly nondegenerate
meromorphic mapping from M into P"(C), which satisfies the condition (C,,) and has a
reduced representation f* = (fg :---: f). Let {HY,...,H}} (1 <u < k) bek families
of hyperplanes of P"(C) in general position, where q1, . .., qy are positive integers. Assume
that there exists a non zero holomorphic function h on B(Ry) such that:

(a) h € Blo; {(f* pu)}r_,), where ly is a non-negative integer, p1, ..., py are positive
constants;

(b) v > S A 0%, Vl[flll(fu), where A\, (1 < u < k) are positive constants.

Then there is an index u such that \y(q, —n — 1) —p, <0, or

k
)\u u —1) - u
Z{ (Qu=n—-1)—p —2Au£fu] < 2,
u=1 Pu
Here, we regard that § = +o00 and < = —oo for every z > 0.

Proof. Suppose contrarily that A,(¢g, —n—1) —p, >0, for all u =1,...,k and

k

—n—-1)—
Z[Au(qu 7; ) p“—QAuefu} > 2.

u=1

We consider the following two cases.
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Case 1: Ry = +o00. By the second main theorem in Nevanlinna theory we have

k k qu k
Z)\ (qu —n — 1)Tpu(r, 1) Z ZNELJL fu)(r,l)—i-O(ZTfu(Tal))
u=1 u=1 = u=1
S Nh(n 1) + O(Z Tf“(n 1))
u=1

= " puTpe(r, 1) + oY Tpu(r, 1))

for all r € (1,400) outside a Lebesgue set of finite measure. This is a contradiction.

Case 2: Ry < +o00. For each u (1 < u < k), since f* is linearly nondegenerate, there
exists an admissible set (a,...,a%) € (N™)"*! such that the generalized Wronskian

W (f*) := det (D*(f{");0 < 4,5 <n) #0.

By usual argument in Nevanlinna theory, we have

k q
Vp > Z)\ Zy[”L (f®) Z)\u (Z l/HZu(fu) — VW(fu)) .
— = i=1
Put w,(z) = z% T tan W) (1 <u<k).

i1 H(f)
1=1""1

Since h € B(lo; {(f* pu)}i_,), there exists a non-negative plurisubharmonic function
g€ S ..., f%) and B = (B1,...,Bm) € Z7 with |B] <y such that

} 8 |t’ R2m—1 i l
(3.2) / 2Pgl o =0 Tpu(r,m0) |
S(r) A
/ k u|| Pk — 2
for every 0 < lot' <l < 1and |h| <[], I f*“|IP*g. Put ¢ S Ot e 0 and
¢ = |wy [ - Jwg|[* - |2Ph], Then a = tlog ¢ is a plurisubharmonic function on B™(Ry)

and
k
(Z )\ugfu + lo)t < 1.

u=1

Therefore, we may choose a positive number p such that 0 < 25:1 At < p < 1.

Since f* satisfies the condition (C,,), there is a continuous plurisubharmonic function
@, on B™(Ry) such that

e#dV < || vm
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Note that in this case, p, > 0 for all w. Then the function ¢ = N1 +---+ N.or +ais a

plurisubharmonic on B™(Ry), where X, = )‘“(q+ One has S2F_ N =1 and then
k
eV = HetINATEtqy < O 80 [T o = mtIDvw%m
u=1
k k
e ) (T TR TR R § (TR K e
u=1 u=1
Yo Xily Yo Xily
where C’ C” are positive constants. Setting x, = ZZ*;\AK L HO, Yy = E“l)l\ L HO, we have
ut fu 0
ZIZ T —{— 4 = 1. By integrating both sides of the above inequality over B"(Ry) and
applying Holder inequality, we get
1/y k 1/Te
[ooem=er ([ e L Gl ey,
B™(Ro) B™(Ro) u=1 B™(Ro)

1/y
e fonf ] )

0
Subcase 2.a: We suppose that

k
Tru
hm sup Zu:l f (T7 TO)
r—Ro log ]-/(RO — ’T‘)

We see that A\,tx,lp = tyly = t(Zle Ail i 4+ ly) < p. By Proposition 2.1, there exists a
positive constant K such that, for every 0 < ro < r < R < Ry, we have
2m—1

u —n— AuTuy R p
/ (lwal 177 0) %m§K< ﬂwamﬂ (1<u<h),
S(r) R—r
Rmel p
and /S()|Zﬂg|tyvmSK(R_TTfu(R,T‘O)) .

, we have T (R, 19) < 2Tfu(r,19), for all r outside

Choosing R =r+

€ Max)<y<k Tfu (7” 7’0)
a subset E of (0, Ry] with [ B Ros 7 —-dr < +00. Then, the above inequality implies that

: 13 N . Fr[ 1 2p
wy| - || fY| @Iy < (1o 1<u<k),

K/ 1 2p
and / Pglv, < ——— (lo )
S(r) 17l (Ro —1)P s Ry —r

for all r outside F, and for some positive constant K’. The inequality (3.3) yields that

Ro K’ 1 2p
/ etdV < C’”Qm/ p2m-1 (Iog ) dr < +o0.
B™(Ro) 0 Ry —r Ry —
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This contradicts the results of S.T. Yau [13] and L. Karp [6].
Subcase 2.b: We suppose that

k
) Tru
lim sup &=u=L-7 (r, o) —
r—Ro log ]_/(R() — T)

By [4, Proposition 6.2], we have

k k q
Zpquu(r,ro) > Np(r,ro) + S(r Z Z H fu)(T ro) + S(r)
u=1 u=1

k
+ log™ Z Tyu(ro, 7)),

u=1

M)~

Ai(qu —n — 1)Tpu(r,m0) + O(log+ .
1 0™

S
Il

for every r excluding a set E with [ 5 R

Hence, the supposition is false. The lemma is proved. O

Secondly, we prove the following generalization theorem for uniqueness problem of lin-
early nondegenerate meromorphic mappings on Kéhler manifolds.

Lemma 3.4. Let M be a complete, connected Kdhler manifold whose universal covering
is biholomorphic to B(Ry) C C™, where 0 < Ry < co. Let f,g: M — P"(C) be linearly
nondegenerate meromorphic mappings, which satisfy the condition (C,,), (C,,) for non-
negative constants py, pg, respectively. Let Hy, ..., H, be q hyperplane of P"(C) in general
position and letn+2 < p < 2n+ 2 < q. Assume that:

(a) dim f~YH,NH;)) <m—-2V1<i<j<gq,
(b) fHH) =g "(H)V1<i<p, f7'(H)Cg '(H)Vp+1<i<y,
(c) f=gon UL, f~'(H).
Then f = g if there exist non-negative numbers t < % and o such that:
(1) (2+t)(q—n— 1) — (2n+2+p(t+a)) >0,
2) 2+8)(p—n-1)—(2n+2) >0,
<3> o) tnipse) o PERONED L (9 4 gy 4 (24 2)0,)

Pf Pg

wheret =0 ifp>q—n—1 andt:%z’fpgq—n—l.

Proof. Since the universal covering of M is biholomorphic to B(Ry),0 < Ry < +o0,
by using the universal covering if necessary, without loss of generality we assume that

M = B(Ry) C C™. Also, we may assume that ¢ and « are rational numbers.

Suppose contrarily that f # g. Consider the simple graph H, where the set of vertice is
{1,2,...,2n + 2} and the set of edges is consist of all pairs {7, j} such that H(fc; # g;—((’;g.
Since f ;—é g, the degree of H at every vertex is at least (2n + 2) -n > 2"+2 By Dirac’s
theorem, H has a Hamiltonian cycle, for instance it is (1,2,3,...,2n + 2, 1) Therefore,

P, = Hi(f)H,i)(9) — Hi(g9)How) (f) #Z 0,
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where 0(i) =7+ 1 for i < g and o(2n + 2) = 1. We easily see that

q

vp(z) > Z min {vy, (s (z (z)} + Z min {vy, 5 (z),1}
j:i,O'(Z) ‘ j:1
J#i,0(4)
for all 2 ouside the analytic subset ;< .,<, [~ (Hu N H,), which is of codimension two.

Then, by setting P = [[-"1* P, # 0, we have

2n+2 2n+2
. 1 1
Vp22Zmln{qu(f),ij(g)}+2nZyl[ql(f) + (2n + 2) Z ,/[]
j=1 7=1 j=2n+3
- [n] [n] - (1]
n n 1
>2) <ij(f)+VHj( )~ vy )*2”2’/ +@n+2) D v
j—l j=p+1
n 1
= 22 pnt 2241](9 cene) Y
Jj=p+1
q
[n] [n] (1]
NI SIS oF
Jj=1 J=p+1

p p P
] [n] [1] [n]
> (2+1) Z Vit~ (EF @) D Vi @ Vi) + 23 iy
j=1 7=1 7=1 7=l
- q ] p 9 a\ w [n]
> (240 vy = (E+a)> v+ T > Vi)
j=1 J=1 =1

Take a positive integer k so that k(t + «) is an integer and consider the holomorphic
function P = P* . [T, H( f)FE) Tt is clear that

p p
n Q n
vp > k(t + «) g v, (p) +kvp > k(2 +1) g VL](f +k (2 + E) E VI[,{J]_(Q)

Jj=1 Jj=1 Jj=1

and P € B(0; (f, (2n+2+p(t+a))k), (g, (2n+2)k)). By Lemma 3.1, one of the following
must hold:

e 241)(g—n—1)—2n+2+pt+a)) <0,
e (2+9)(p—n—-1)—(2n+2) <0,

2 —n—1)—(2n+2 o 2+2 ) (p—n—1)—(2n+2) o
o GHillenD-Cur2iplire) 4 (+2) - <2(2+ )+ (2+2)1,).

This is a contradiction. Therefore, we must have f = ¢g. The lemma is proved. O

4. UNIQUENESS PROBLEM

Proof of Theorem 1.1. By Theorem 3.4, in order to show that f = ¢ we just show the
existence of the non-negative numbers ¢ < 2 and « satisfying the inequalities (1), (2), (3)
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(2n+2+e )
a=nl——-2],
p—n-—1

of Theorem 3.4. We choose

where € is a positive constant small enough. Then the inequality (2) of Theorem 3.4 is
satisfied. The inequalities (1) and (3) of Theorem 3.4 become

2n + 2
(4.1) (2—|—t)(q—n—1)—2n—2—p(t—2n+nu)>O,
p—n-—1
and
2n + 2
(2+ﬂ@—n—m—2n—2—pG—2n+mﬁi—if>+e
p—n—1
2n+2+¢€ )
—, ).
p—n—1
Therefore, in order to show the existence of such ¢ and « (equivalent to the existence of
¢ > 0) we just to show that there is ¢ € [0, 2] such that:

(4.2)
> 2,0 ((2 + t)gf +

2 + 2
(2+t)(Q—n—1)—2n—2—p<t—2n+nL1)
_n_
(4.3) ! 2n 4 2
n
2 ( 2+t +—"1, ).

If put t = 0 then the inequality (4.3) is equivalent to that

1 1
qg—n—1>n+1+pn L—1 + 2p €f+L€g
p—n—1 p—n—1

1 1
S qg>2n+2+pn L—1 +2p €f+L€g )
p—n—1 p—n—1

If put ¢ = 2 then the inequality (4.3) is equivalent to that

n+1 1—n? n+1 n+1 n+1
(q—nmn—=1)>n+1+p +n +2p by + ————4,
n n p—n-—1 n p—n—1

—1
S g>2n+14+pn n _z + 2p ﬁf—i—Lﬁg .
p—n—1 n p—n—1

Then, with the asumption of the themrem, the inequality (4.3) is satisfied for ¢ = 0 or
t= % Hence, f = g. The proof of the theorem is completed. O

In order to prove Theorem 1.2, we need the following proposition of H. Fujimoto [3].

Proposition 4.4 (See H. Fujimoto [3]). Let G be a torsion free abelian group and A =
(a1,...,aq) be a g—tuple of elements a; in G. If A has the property (P.;) for some r,s

with ¢ > r > s > 1, then there exist i1,...,0q—ry2 with 1 < iy < -+ < tg_pyo < q Such
that a;, = az, = -+ = a;,_, .,

Here, the g-tuple A has the property (P, ) if any r elements a;(1), . . ., ) in A satisfy the
condition that for any given iq,...,1, (1 <i; < -+ < iz <), there exist jy,...,7s (1 <

Ji < -or < g <) with {dy, ... 05} # {j1,.. ., Js} such that a) - - @i,y = @) - - @)
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Proof of Theorem 1.2. Similarly as in the proof of Lemma 3.4, we may suppose that
M =B(Ry) C C™. Suppose contrarily that f # g.

Consider the simple graph H, where the set of vertice is {1,2,...,q} and the set of
edges consists of all pair {(i, ) gl((;)) e Hilg) the degree of H at every
J

vertex is at least ¢ —n > . By Dirac’s theorem, H has a Hamiltonian cycle, for instance
it is (1,2,3,...,q,1). Therefore

Py = Hi(f)Ho(i)(9) — Hi(9)Ho(i) (f) # 0,
where (i) =7+ 1 for i < g and o(q) = 1. We easily see that

q

vp(z) > Z min{VHj(f)( ) Vi, ( }+ Z min{l/Hj(f)(z),l}
j=ha (i) e
i#jF#o(4)
for all z ouside the analytic subset ;<. <, f ~Y(H, N H,), which is of codimension two.

Define v; = min{1, |vu,(5) — Vu,(9)|} and ¢ = max{0,¢ —n}. We see that if v;(z) # 0
then min{vy, (s, vu,(e)} > ¢. Then, by setting P =[]’ P, # 0, we have

q q
vp > 2Zmin (i, v} + (@ =2 vl

j=1

q
[1] (1]
> 2 E ( )+ I/H (@)~ Wi T g’%) (g —2) E ij(f)

(4.5) Y g
] q—2n— 1]
_QZVH(f)-i-I/H g))+TZ(uH( + +2£/Zy,
j—l
Q+2n—2 [n] [n]
> LS uhly +obl) -2 S

J=1

It is clear that P € B(q, 0; f,g). By Lemma 3.1, we have

+2n — 2 1 1 +2n — 2
(CEEIES T W E ST DRYECES A0S

Pi Py n
N ¢ —(n+3)g— (n+1)(2n —2) < 2p5pg(Ly + Ly)
q+2n—2 B Pr+ Py
q(q —2)
_ 1 lp+ 10

it _a=nt +ppg(ly +Ly)-

This implies that
q+2n—2

(4.6) < Ti—32 (n+1+prg(ly +45)) -

We now prove the theorem in the following two cases.
(a) Assume that ¢ = 1. Since ¢ > 2n + 2, one has % < 2. Then, from (4.6) we get

q<2n+2+42ps,(ls+1£,).
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This is a contradiction. Therefore, the supposition is false. Hence, f = g.

(b) Assume that ¢ > n. Then ¢ > 0. Because of Part a), it is enough for us to consider
the case where q <2n+242pp (0 +4,).

Hi(f) hi _ Hi(f)H;(g) -
We set h; = ( ) (1 <i<ygq). Then = Hg-(f)-f;i(g) does not depend on the choice of
the reduced representations of f and g respectively.

Take an arbitrary subset of 2n 4 2 elements of the set {1,...,q}, for instance it is
{1,...,2n + 2}. Denote by Z the set of all combinations I = (iy,...,i,41) with 1 <4y <
o <py1 < q. Foreach I = (i1,...,in41) € Z, put hy = H?:ll h;; and define

Ay = (_1)("4'1)#+i1+---+in+1 'det(airl; 1<r<n+1,0<1< n)

xdet(a;;;1 <s<n+1,0<1[<n),
where J = (ji1,...,Jns1) € Z such that TUJ ={1,2,...,2n + 2}. Since

Zaikfk_hi'zaikgkzo (1<i<2n+2),

k=0 k=0
one has
det (ao, ..., G, aiohi, ... amhi; 1 <@ <2n+2) =0.
Therefore, ), .; Arhy = 0 (note that Ay € C*).

Take Iy € Z. Denote by t the minimal number satisfying the following: There exist ¢
elements Iy,...,I; € T\ {Iy} and ¢ nonzero constants b; € C* such that S"_ bk, = 0.
By the minimality of ¢, the family {hy,, ..., hy} is linearly independent over C.

Case 1: t = 1. ThenZ c C*.

Iy
Case 2: t > 2. Consider the linearly nondegenerate meromorphic mapping F' from
B™(Ry) into P!~1(C) with a reduced representation F' = (hy,d : --- : hy,d), where d is a
meromorphic function. We see that
2n+-2
Zydh ) < >4l € L viyn)(2) > vinyo)(2))
j=1
2n+2

+ Z Hilj & Lisva, ) (2) < viyg)(2)}

for every z outside an analytlc set of codimension two. Here by £5 we denote the number
of elements of the set S.

It is clear that Tp(r,70) < (n+ 1)(T¢(r,r0) + Ty(r,r0)). Let W(F) be a generalized
Wronskian of F' and set

o IL(ME)
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Then we have G € B(0,3(t — 1)(t + 1)/2; F) C B(0,3(p — 2)p/2; f,g). For each subset
JC{l,...,q},set Jo={1,...,q} \ J. It is clear that

U @\ u\n)={1....q-

0<s<i<2

We have

—vg =3 E Vhy,d — SVW(F) — g Vhy,d—hy,d

=0 0<s<iI<2
t
[t—1] 0
<3 E :Vhlid - (Vhfl/h15—1>
i=0 0<s<I<2

t
Bt=1)Y via— Y > Vins)
=0

0<s<I<L2ie((L\Is)U(Is\I}))¢

t
2>2V Z [1 p—Q)pVi - ZVE’](f)

Then, we have

+2n —2 n
VH3:1P1' > d m Z( ; ]( )+I/H +2£/Zl/z

=1
q+2n—2 [n] [n] had ~
= o ;<H<f>+y ()>+3(p—2)p ;VHi(f)_VG ‘

This yields that

q+2n— g n
Ve (1L, Pye=2r 2 (3(p ~ 2P 2— ) Z <V1[H](f + Vi g))

Note that G' € B(0,3(p — 2)p/2; f,g) and P; € B(1,0; f,g). Then G*([[L_, P;)3®—2P
belongs to B(3q¢(p — 2)p,6¢'(p — 2)(p — 1); f, g). From Lemma 3.1, we have

3q(p — 2)p 60'(p —2)(p — 1)
<n+1+ -+ Cp+ Ly + ;
= 3(p— pT 4 2 T\ TR T g gt o
3(2n + 2+ 2p5 4Ly + £ 60'(p—2)(p — 1
a3t n3q+2n 2 Pﬁg(y{/ Dy, <£f+£g+ 6(p 2)(p M))
2 a2 (p=2p+7
3(2n +2) 60'(p— 2)(p — 1) + 2(¢5 + £,)
§n+1+—w+pfag(€f+€g+ 7
6+ ~ryp 6(p —2)p+ £
3(p—2)p— 0
=2n+1+ b= 2p + prg Uy + L+ 1)

3p=2p+l/n
This is a contradiction. Hence, this case does not happen.

Therefore, for each I € Z, there is J € 7\ {I} such that % e C.
J
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Consider the torsion free abelian subgroup generated by the family {[h4],...,[hy]} of
the abelian group M*,,/C*. Then the family {[h4],...,[hs]} has the property P,, 1.
By Proposition 4.4, there exist ¢ — 2n > 2 elements, without loss of generality we may

h
assume that they are [hq], [h;] such that [hy] = [h;]. Then h_l = A € C*. Suppose that

)

A # 1. Since Zléj)) =1 for each z € Y?_, f~(Hp) \ (f~'(Hy,) U f~'(H;)), it implies that
i ki

%;% S~ (Hy) = 0. Hence Zk QUI[r?i(f) = %; Vz[r{ () = 0- Then, by Lemma 3.1, we have
q—2<n+1+ppg(ly+Ly).

This is a contradiction. Thus, A = 1, i.e., hy = h;. Hence vy, (5) = vu, (g and vy, =
VH,(9)- By the assumption, we note that 2 <1 < q.

Now we consider

Py = H,(f)H(9) — Hao(f)Hi(g9) =

From this inequality, we easily see that

(1]
(4.7) ve, = (Vi) + Vi) + Vi + Z”
and similarly

(1]
ve, 2 (Vi) + Vi, p) + V) T Z VHk(f)’
(1] [n] (1]
Vp,_y 2 (VHi(f) +vy H(f )) +VHZ 1( + Z VH(f)
ki1,
[1] ) [1]
ve, 2 (Vi) + Vi) Vi Z Yh
kyﬁz 7,+1

Then, similar as (4.5), with the help of (4.7) and (4.8), we have

4+2n =2~ ( [n] )
(4.9) vp() 2 5 — > <VHk(f>( )+ ”Hk<g>(z)> +2) Vi

k=1 k=1,

Consider the simple graph H’, where the set of vertice is {1,...,q} \ {1,7} and the set
of edges consists of all pairs {u,v} such that 3 the degree of H’

at every vertex is at least ¢ —2 —n > %. By Dirac’s theorem, H' has a Hamiltonian
cycle ji,...,jg—2,71. Therefore,

Py = H;, (f)How)(9) = Hj, (9)Hory (f) # 0,
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where o'(u) = j,41 for u < ¢ — 2 and o'(q — 2) = j;. We easily see that

q—2
vp(2) > D min{va, (), vm, 02+ Y i () D Vi (2)

k=u,o’(u) k=1 k=1,i
k#u,0! (u)

for all 2 outside the analytic subset |, <, .,, f~'(H, N H,), which is of codimension two.
Let P' = [[%_% P! and similar as (4.5), we get

q+2n—4 a n n 1
v (2) 2 L= (vl ) (2) + vl ) (2)) + (e = 2) ZV“ (2)

q+2n_4 n n 1
I we— Z(Ef]w)()*’ju()(‘z) 2) D vinp(2)
k=1 k=1,i

It is clear that P"" P’ € B(ng — 2,0; f, g) and satisfying

n(qg+2n—=2) =2~ ( )
Upn-1pr > 5 ; (qu(f)( )+ Vi )(z)) :

Then from Lemma 3.1, we have
2n(ng — 2)
n(q+2n—2) —2
2n(2n? + 2n — 2) N 4n2psa(Lr + €,)

g<n+1+prgly+4,) +

<n+1+prgly+4,)+

4n? — 2 4n? — 2
2n — 1 4n? —1
=2 14+ —F — U+ ¢
nr +2n—1/n+pf92n2 (b +Ly).
This is a contradiction.
Hence, we must have f = ¢g. The theorem is proved. U

5. ALGEBRAIC DEPENDENCE PROBLEM

Lemma 5.1 (See [11, Lemma 3.1]). Let f', f2 ..., f* be as in Theorem 1.3 and M =
B™(Ry). Assume that each f* has a reduced representation f* = (f§:---: f*), 1 <u <
k. Suppose that there exist integers 1 < iy < g < --- < 1, < q such that

P :=det (Hij<fu>)1§j,u§k # 0.
Then we have
k
a (1]
> 2 (12“%{% (&)} = vy, (2 ) - ZVH o
=

for every z € B™(Ry) outside an analytic set of codimension two.

Proof of Theorem 1.3. As usual, we may suppose that M = B™(Ry). For each 1 <i < ¢,
we put V; = ((f', Hy), (f* H;), (f3 ). We write V; 2 V; if V; A'V; = 0, otherwise we
write V; 22 V.



MEROMORPHIC MAPPINGS ON KAHLER MANIFOLDS WEAKLY SHARING HYPERPLANES 17
Suppose that f1' A f2 A f2 #£ 0. Without loss of generality, we may assume that
I/lg...gvlll%;g}/ll“g...g‘/lgg_él/lﬁlg...gw%;...%vlyl SRS L.

-~ -~ -~ -

group 1 group 2 group 3 group s

where [, = q. For each 1 <i < ¢, we set

) i+n iti+n <gq,
o(i) =< o
t+n—q ifi+n>q.

Since each group has at most n elements, V; and V,; belong to two distinct groups, i.e.,
Vi AV, # 0. Then, we may choose another index, denoted by (i), such that

Vi AVoiy A V) # 0.
We set

Py o= det (Hy(f*), Hogo ("), ooy (f*): 1 < u < 3) £ 0.
Then, by Lemma 5.1 we have

= Y (m )HZVH

j=i,0(i)
j=io(i) \u=l
Summing-up both sides of the above inequality over all 1 < i < ¢, we have
q
[n] 1] 2(_] + QTL -2
o P22ZZVH o T @a—An=2) 3 vy = S5 iy
u=1 j=1 j=1 u=1 j=1

It is easy to see that [[7, P, € B(q,0; f*, f%, f*). Then, by Lemma 3.1 we have

3 -1 3
2q+2n — 2 2q+2n — 2
= = (g—-n—-1)—qg<2/—/—— E E {ru
3n (q " ) 1= 3n ( pfu> A

u=1
ie.,
3ng 1 o
qSntltg o gt (;pfu) ;@u.
This is a contradiction. Hence f* A f2 A f2 = 0. The theorem is proved. O

Proof of Theorem 1.4. Denote by T the set of all k-tuples I = (iy,...,i;) € NF with
1<y <ig <---<ip<gq. Suppose contrarily that f! x f2 x ---x f* is not algebraically
degenerate. Then for every I = (iy,..., i) € Z,

Pr = det (Hy; (")) < uep, # O-
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By Lemma 5.1, we have

M=

I/PI >

q
_ M _ § : (1]
(11<nu12k VHi (1) ~ Vh, (fl)) +(k—1) YHi(f)

i=1

q
n 1 1
(’/f[rfjj ()~ Vi, (f1)> + (k=1 vi
i=1

Setting P = [],.; Pr and summing up both sides of the above inequality over all I € Z,
we get

1

J

>

M-

1

J

(k—1)g—Fk) n
vp 2 4T Z <‘”H(f YH,, (1)

q

—o (G4 0 )zz il

u=1 i=1

(5.2)

Applying Lemma 3.1 for the function P € B(#Z,0; f*,..., f*), we get

N e o) L e S A YERRUESEL

2 -

u=1

lrw <0
kng >f_’

le.,

kng k
< w.
q_n+1+(k:—1)q—|—k(n—1)+2<g > uglﬁf

This is a contradition. Therefore, f! x --- x f¥ is algebraically degenerate. The theorem
is proved. 0
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