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Abstract

In the paper, we prove the existence of weak solutions to the complex
Monge-Ampère equation in the class D(Ω) on an open subset Ω of Cn. As
an application, we show the existence of a global solution of the complex
Monge-Ampère equation (ddcu)n = µ in the class D(Cn) ∩ L where µ is a
Borel measure in Cn.

1 Introduction

As well known, the complex Monge-Ampère operator plays a central role in
pluripotential theory and has been extensively studied for many years. For a
C2-smooth plurisubharmonic function u defined on an open subset Ω of Cn, its
complex Monge-Ampère operator is defined by

(ddcu)n = n!4ndet

(
∂2u

∂zj∂zk

)
dV2n,

where dV2n is the volume form of Cn. However, by an example in [19], Shiffman
and Taylor have shown that it is impossible to extend the domain of definition
of complex Monge-Ampère operator in a meaningful way to the whole class of
plurisubharmonic functions and still have the range contained in the class of non-
negative Borel measures (see Appendix 1 in [19]). Bedford and Taylor [3] proved
in 1982 that the complex Monge-Ampère operator is defined for locally bounded
plurisubharmonic functions. Cegrell in [9] introduced and investigated in 2004
some classes of unbounded plurisubharmonic functions on bounded hyperconvex
domains in Cn. He has shown that the complex Monge-Ampère operator is well
defined on the class E(Ω) as a non-negative Radon measure and it is continuous
on decreasing sequences of plurisubharmonic functions in this class. At the same
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time, in [9] he proved that the class E(Ω) is the biggest class of plurisubharmonic
functions with this property. To extend the class E(Ω), in 2006 B locki in [6]
introduced the class D(Ω) of plurisubharmonic functions on an open Ω of Cn

and showed that the complex Monge-Ampère operator can be well defined on
this class. In the case n = 2 he described this class by the equality: D(Ω) =
PSH(Ω)∩W 1,2

loc (Ω) (see Theorem 1.1 in [5]), where W 1,2
loc (Ω) is the Sobolev space

on Ω. He also showed that if Ω is a bounded hyperconvex domain then E(Ω) =
PSH−(Ω) ∩ D(Ω). Therefore, by results of B locki in [6] one has known that the
class D(Ω) is the biggest class on which the complex Monge-Ampère operator is
well-defined when Ω is an open subset of Cn.
One of the important and central problems of pluripotential theory is to define
weak solutions to the complex Monge-Ampère equation. Namely we consider the
following problem. Let µ be a non-negative Radon measure defined in an open
subset Ω of Cn. To find w ∈ PSH(Ω) such that

(1)

{
w ∈ D(Ω),

(ddcw)n = µ in Ω.

When Ω is a strictly pseudoconvex domain in Cn, there are some known results
concerning to weak solutions of (1). Bedford and Taylor in [2] proved in 1976 that
if µ = fdV with f ∈ C(Ω) then (1) has a continuous solution on Ω. Ko lodziej
[18] showed in 1995 that if there exists a bounded subsolution for (1) then the
problem is solvable.
In the case Ω is a bounded hyperconvex domain in Cn, the problem becomes
much more complicated. Cegrell [8] considered in 1998 weak solutions of the
above problem for unbounded plurisubharmonic functions. In [9] he proved that
if Ω is a bounded hyperconvex domain and µ vanishes on all pluripolar sets of
Ω then (1) has a unique weak solution in the class Fa(Ω) (see Theorem 5.14
in [9]). Next, Åhag, Cegrell, Czyż and Hiep in [1] studied in 2009 the above
problem for non-negative measures carried by a pluripolar set. They showed that
if µ ≤ (ddcu)n where u ∈ E(Ω) then for every H ∈ E(Ω)∩MPSH(Ω) there exists
a weak solution w ∈ E(Ω, H) such that H + u ≤ w ≤ H satisfying (1), where
MPSH(Ω) denotes the set of maximal plurisubharmonic functions on Ω.

The aim of this paper is to prove the existence of weak solutions to the equa-
tion (1) on an open subset of Cn. Namely, we prove the following.

Theorem 1.1. Let Ω be an open subset in Cn and u ∈ D(Ω), v ∈ MPSH(Ω)
be such that u ≤ v in Ω. If µ ≤ (ddcu)n then there exists a solution w to (1)
satisfying u ≤ w ≤ v in Ω.

As an application of Theorem 1.1, in Section 4 of this paper we study the exis-
tence of global solutions of the complex Monge-Ampère equation in Cn. One of
remarkable results of this section is the following.
Theorem 4.3. Let µ be a non-negative Radon measure on Cn such that µ ≤
(ddclog(1 + |z|2))n on Cn. Assume that there exists r ≥ 2 such that µ(|z| = r) =
(ddclog(1 + |z|2))n(|z| = r). Then there exists w ∈ PSH(Cn) ∩ D(Cn) such that
(ddcw)n = µ.
The organization of the paper is as follows. In Section 2 we recall some notions
of pluripotential theory which is necessary for the next results of the paper. In
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Section 3 we prove Theorem 1.1. Section 4 is devoted to the proof of the existence
of global solutions of the complex Monge-Ampère equation in Cn.

2 Preliminairies

In this section, we recall some elements of pluripotential theory that will be used
throughout the paper. All this can be found in [1]-[18]. Let n be a positive in-
teger and let Ω be an open set in Cn. We denote by PSH(Ω) the family of
plurisubharmonic functions defined on Ω and PSH−(Ω) denotes the set of neg-
ative plurisubharmonic functions on Ω. We first recall the definition of the class
D(Ω) on an open set Ω in Cn (see [6]).

Definition 2.1. A plurisubharmonic function u defined on Ω belongs to D(Ω)
if there exists a nonnegative Radon measure µ on Ω such that if Ω′ b Ω is an
open subset and {uj} ⊂ PSH(Ω′) ∩ C∞(Ω′) is a sequence which decreases to u
in Ω′ then (ddcuj)

n tends weakly to µ in Ω′. The measure µ we then denote by
(ddcu)n.

Note that by results of Bedford - Taylor in [3] we have PSH(Ω) ∩ L∞loc(Ω) ⊂
D(Ω). Moreover, if n = 1 then SH(Ω) = D(Ω). Next, we recall the following
classes of plurisubharmonic functions introduced and investigated by Cegrell in
[9] for the case Ω is a bounded hyperconvex domain in Cn.

Definition 2.2. Let Ω be a bounded hyperconvex domain in Cn. We say that a
bounded, negative plurisubharmonic function ϕ on Ω belongs to E0(Ω) if {ϕ <
−ε} b Ω for all ε > 0 and

∫
Ω(ddcϕ)n < +∞.

Let F(Ω) be the family of plurisubharmonic functions ϕ defined on Ω, such
that there exists a decreasing sequence {ϕj} ⊂ E0(Ω) that converges pointwise to
ϕ on Ω as j →∞ and

sup
j

∫
Ω

(ddcϕj)
n <∞.

We denote by E(Ω) the family of plurisubharmonic functions ϕ defined on
Ω such that for every open set G b Ω there exists a plurisubharmonic function
ψ ∈ F(Ω) satisfying ψ ≥ ϕ on Ω and ψ = ϕ in G.

Definition 2.3. Let K ∈ {F , E ,D}. We denote by Ka(Ω) the subclass of K(Ω)
such that the complex Monge-Ampère measure (ddc.)n vanishes on all pluripolar
sets of Ω.

Let f ∈ E(Ω) and K ∈ {Fa, Ea,Da,F , E ,D}. Then we say that a plurisub-
harmonic function ϕ defined on Ω belongs to K(Ω, f) if there exists a function
ψ ∈ K(Ω) such that

ψ + f ≤ ϕ ≤ f in Ω.

Proposition 2.4. If Ω is a bounded hyperconvex domain in Cn then E(Ω) =
PSH−(Ω) ∩ D(Ω).

Proof. See Theorem 2.4 in [6].
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Remark 2.5. (i) If Ω is an open subset of Cn and u ∈ D(Ω) then u|B− supB u ∈
E(B) for all open ball B b Ω.

(ii) If Ω is a hyperconvex domain in Cn and u, f ∈ E(Ω) with u ≤ f and
h ∈ Fa(Ω) then max(u, f + h) ∈ Fa(Ω, f).

Next, we recall the following.

Definition 2.6. Let Ω ⊂ Cn and v ∈ PSH(Ω). v is said to be a maximal plurisub-
harmonic function if for all compact subsetK b Ω and for every plurisubharmonic
function w ∈ PSH(Ω), w ≤ v on Ω \K then w ≤ v on Ω.

The family of maximal plurisubharmonic functions on Ω is denoted byMPSH(Ω).

For results concerning to maximal plurisubharmonic functions we refer readers to
[17]. In the case Ω ⊂ Cn is a bounded hyperconvex domain and u ∈ E(Ω). Then in
[7], B locki proved that u ∈MPSH(Ω) if and only if it satisfies the homogeneous
Monge-Ampère equation (ddcu)n = 0.

Proposition 2.7. Let Ω ⊂ Ω̂ be bounded hyperconvex domains in Cn. Assume
that u ∈ F(Ω) and define

û := sup{ϕ ∈ PSH−(Ω̂) : ϕ ≤ u on Ω}.

If (ddcu)n is carried by a pluripolar set of Ω then

(ddcû)n = 1Ω(ddcu)n in Ω̂.

Proof. By Lemma 4.5 in [15] we have û ∈ F(Ω̂) and (ddcû)n ≤ 1Ω(ddcu)n in Ω̂.
Since (ddcu)n is carried by a pluripolar set of Ω, Theorem 5.11 in [9] implies that
(ddcu)n = 1{u=−∞}(dd

cu)n in Ω. Moreover, since û ≤ u on Ω, by Lemma 4.1 in
[1] we get

1Ω(ddcu)n = 1Ω∩{u=−∞}(dd
cu)n

≤ 1Ω∩{û=−∞}(dd
cû)n ≤ (ddcû)n ≤ 1Ω(ddcu)n.

This implies that

(ddcû)n = 1Ω(ddcu)n in Ω̂,

and the desired conclusion follows.

Definition 2.8. The Lelong class L = L(Cn) of plurisubharmonic functions in
Cn is given by

L = L(Cn) = {u ∈ PSH(Cn) : u(z) ≤ log(1 + |z|2) + cu for z ∈ Cn}.

3 Weak solutions to the complex Monge-Ampère equa-
tions.

In this section we prove Theorem 1.1. We need following auxiliary results.



Weak solutions to the complex Monge-Ampère equation on open subsets 5

Lemma 3.1. Let Ω be an open set in Cn and let B b Ω be an open ball. Assume
that u ∈ D(Ω) and v ∈ F(B) such that

(i) supB u < 0;
(ii) (ddcv)n is carried by a pluripolar set E ⊂ B;
(iii) (ddcu)n is carried by a pluripolar set F ⊂ Ω\E;
(iv) w := sup{ϕ ∈ PSH(Ω) : ϕ ≤ u on Ω and ϕ ≤ v on B} ∈ D(Ω).

Then, (ddcw)n = (ddcu)n + 1B(ddcv)n in Ω.

Proof. Without loss of generality we can assume that E ⊂ B ∩ {v = −∞} and
F ⊂ (Ω\E) ∩ {u = −∞}. Let {Ωj} be an increasing sequence of open sets in Cn

such that B = B(a, r) b Ωj b Ωj+1 b Ω and Ω =
∞⋃
j=1

Ωj . By the local property

of the class D(Ω) we may assume that w ∈ D(Ωj). Set uj = u|Ωj . Define

wj := sup{ϕ ∈ PSH(Ωj) : ϕ ≤ uj on Ωj and ϕ ≤ v on B}.

From w ≤ wj on Ωj then wj ∈ D(Ωj) and wj ↘ w in Ω. From [11] we have
(ddcwj)

n converges to (ddcw)n in the weak*-topology. Replacing Ω by Ωj if nec-
essary, we can assume that Ω is bounded and u is a plurisubharmonic function
on an open neighborhood of Ω. We first prove that

(2) (ddcw)n = 0 on ({w < u} ∩ Ω\B) ∪ ({w < min(u, v)} ∩ B).

Indeed, let {vj} ⊂ E0(B) ∩ C(B) be such that vj ↘ v in B and let {uj} ⊂
PSH(Ω) ∩ C(Ω) be such that uj ↘ u in Ω and supB u1 < 0. We set

wj := sup{ϕ ∈ PSH(Ω) : ϕ ≤ hj in Ω},

where

hj =

{
min(uj , vj) on B,
uj on Ω\B.

Since uj ≤ u1 < 0 = vj on ∂B so hj ∈ C(Ω). Then, wj ∈ PSH(Ω) and wj ↘ w
in Ω. Thanks to Corollary 9.2 in [3] we obtain that (ddcwj)

n = 0 on {wj < hj}.
Let j →∞, by [11] we get (2).
Next, we claim that

(3) (ddcw)n = 0 in {u > −∞} ∩ {u = w}

Indeed, let K ⊂ {u > −∞}∩{u = w} be a compact set. Since K ⊂ {w+ 1
j > u},

by Theorem 4.1 in [16] and using the hypotheses we have∫
K

(ddcw)n = lim
j→+∞

∫
K

(ddc max(w +
1

j
, u))n

≤
∫
K

(ddc max(w, u))n =

∫
K

(ddcu)n.

Moreover, since (ddcu)n is carried by a pluripolar set F , we infer∫
K

(ddcw)n ≤
∫
F∩{u>−∞}

(ddcu)n = 0.
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Hence,
∫
K(ddcw)n = 0. It follows that

(ddcw)n = 0 in {u > −∞} ∩ {u = w},

and the desired conclusion follows. Similarly, we also have

(ddcw)n = 0 in B ∩ {v > −∞} ∩ {v = w}.

Combining this with (2) and (3) we infer that

(4) (ddcw)n = 0 on ({u > −∞} ∩ Ω\B) ∪ ({min(u, v) > −∞} ∩ B).

Now, let R > 0 be such that Ω b B(0, R) and define

v̂ := sup{ϕ ∈ PSH−(B(0, R)) : ϕ ≤ v on B}.

Proposition 2.7 implies that v̂ ∈ PSH−(Ω) ∩ D(Ω) and

(ddcv̂)n = 1B(ddcv)n = 1E(ddcv)n in Ω.

We claim that

(5) (ddcw)n = (ddc(u+ v̂))n = (ddcu)n on {u = −∞}\E.

Indeed, let K ⊂ {u = −∞}\E be a compact set. Since (ddcv̂)n = 1E(ddcv)n and
K ⊂ {u = −∞} \ E then ∫

K
(ddcv̂)n = 0.

Lemma 4.1 and Lemma 4.4 in [1] imply that∫
K

(ddcu)n ≤
∫
K

(ddc(u+ v̂))n

=
n∑

j=0

(
n

j

)∫
K

(ddcu)j ∧ (ddcv̂)n−j

≤
n∑

j=0

(
n

j

)(∫
K

(ddcu)n
) j

n
(∫

K
(ddcv̂)n

)n−j
n

=

∫
K

(ddcu)n.

It follows that ∫
K

(ddc(u+ v̂))n =

∫
K

(ddcu)n.

Moreover, since u+ v̂ ≤ w ≤ u in Ω, then Theorem 4.1 in [1] implies that∫
K

(ddcu)n ≤
∫
K

(ddcw)n ≤
∫
K

(ddc(u+ v̂))n =

∫
K

(ddcu)n,

and the required conclusion follows. Similarly, we also have

(ddcw)n = (ddc(u+ v̂))n = (ddcv̂)n = (ddcv)n on (B ∩ {v = −∞})\F.
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Combining this with (4), (5) and using the hypotheses we infer

(6) (ddcw)n = (ddcu)n + 1B(ddcv)n in Ω\∂B.

Let B′ be an open ball such that B b B′ b Ω and supB′ u < 0. Put

v′ := sup{ϕ ∈ PSH−(B′) : ϕ ≤ v on B}.

By Proposition 2.7 we have v′ ∈ F(B′) and

(ddcv′)n = 1B(ddcv)n in B′.

Since w ≤ u < 0 in B′ and w ≤ v in B so w ≤ v′ on B′. This implies that

w = sup{ϕ ∈ PSH(Ω) : ϕ ≤ u on Ω and ϕ ≤ v′ on B′}.

Applying (6) we get that

(ddcw)n = (ddcu)n + 1B′(dd
cv′)n in Ω\∂B′.

Therefore,

(ddcw)n = (ddcu)n + 1B(ddcv)n in Ω.

The proof is complete.

Lemma 3.2. Let Ω be an open set in Cn and let u, v ∈ D(Ω) be such that u ≤ v
in Ω. Assume that (ddcv)n is carried by a pluripolar set of Ω and µ is a non-
negative Radon measure defined in Ω with µ ≤ 1{u>−∞}(dd

cu)n. Then, for every
open ball B b Ω, there exists w ∈ D(Ω) satisfying

(i) u ≤ w ≤ v on Ω;

(ii) (ddcw)n ≥ µ in Ω;

(iii) (ddcw)n = µ+ (ddcv)n in B.

Proof. Fix a ball B b Ω. Let B′ be an open ball such that B b B′ b Ω and
u ∈ E(B′). Without loss of generality we may assume that (ddcv)n is carried by
{v = −∞}. Define

g := (sup{ϕ ∈ PSH−(B′) : ϕ ≤ u on B′\B})∗.

and

f := sup{ϕ ∈ PSH−(B′) : ϕ ≤ min(g, v) on B′}.

Then, g ∈ E(B′)∩MPSH(B). Since u ≤ v in Ω so u ≤ f ≤ v in B′ and f = g = u
on B′\(B ∪ E) for some pluripolar set E ⊂ ∂B. By Lemma 4.1 in [1], Corollary
3.1 in [13] and using the hypotheses we have

(ddcv)n = 1{v=−∞}(dd
cv)n ≤ 1{f=−∞}(dd

cf)n

≤ (ddcf)n ≤ (ddcv)n + (ddcg)n = (ddcv)n

on B. It follows that

(ddcf)n = (ddcv)n on B.
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Now, since the measure 1{u>−∞}(dd
cu)n vanishes on all pluripolar sets of Ω

and µ ≤ 1{u>−∞}(dd
cu)n in Ω so by Lemma 5.14 in [9] there exists h ∈ Fa(B)

such that

(ddch)n = µ in B.

It is easy to see that max(u, h+ f) ∈ Fa(B, f) and

(ddcf)n ≤ µ+ (ddcv)n ≤ (ddc max(u, h+ f))n in B.

Thanks to Lemma 4.1 in [14] there is ψ ∈ Fa(B, f) such that u ≤ ψ ≤ f and

(ddcψ)n = µ+ (ddcv)n in B.

Let w be the smallest plurisubharmonic majorant of the function

η =

{
ψ in B,
u in Ω\B.

Since u ≤ ψ ≤ f ≤ g on B, we have w ∈ D(Ω) and u ≤ w ≤ v in Ω. It is easy to
see that

(7) (ddcw)n ≥ µ in Ω\B

and

(8) (ddcw)n = µ+ (ddcv)n on B.

Indeed, by the definition of w we note that w = u in the interior of Ω \ B and
w = ψ in B. Hence, we have (ddcw)n ≥ µ on the interior of Ω \ B and (8) holds.
In order to prove (ddcw)n ≥ µ on Ω \ B it suffices to prove (ddcw)n ≥ µ on ∂B.
By the definition of w it follows that w = u on ∂B \ E, where E is a pluripolar
subset of ∂B containing {u = −∞}. Let K ⊂ ∂B\E be a compact set. Since
K ⊂ {u+ 1

j > w}, by Theorem 4.1 in [16] we have

µ(K) ≤
∫
K

(ddcu)n = lim
j→+∞

∫
K

(ddc max(u+
1

j
, w))n

≤
∫
K

(ddc max(u,w))n =

∫
K

(ddcw)n.

It follows that

(ddcw)n ≥ µ on ∂B\E.

Hence,

(ddcw)n ≥ µ on ∂B.

Combining this with (7) and (8) we obtain

(ddcw)n ≥ µ in Ω.

The proof is complete.
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Proof of Theorem 1.1. Let {Bj} be a sequence of open balls such that Bj b Ω
and Ω =

⋃∞
j=1 Bj . Put B0 := ∅. We first claim that there exists a decreasing

sequence {fj} ⊂ D(Ω) such that u ≤ fj ≤ v and

(ddcfj)
n = 1

(
⋃j−1

k=0 Bk)∩{u=−∞}µ on Ω.

Indeed, let f1 := v. Then, f1 ∈ D(Ω) and (ddcf1)n = 0 in Ω. Let j ≥ 1 be an
integer number. Assume by induction that we have determined fj . We find fj+1

as follows. Let B′j be an open ball such that Bj b B′j b Ω. By Theorem 4.14 in
[1], there exists vj ∈ F(B′j) such that vj ≥ u and

(ddcvj)
n = 1

(Bj\
⋃j−1

k=0 Bk)∩{u=−∞}µ on B′j .

Set cj := supB′j v + λj where λj is choosen such that cj ≥ 0. Next, we define

fj+1 = sup{ϕ ∈ PSH(Ω) : ϕ ≤ fj − cj in Ω and ϕ ≤ vj in B′j}+ cj .

Then we have u ≤ fj+1 ≤ fj ≤ v on Ω and by Theorem 1.2 in [6] we have
fj+1 ∈ D(Ω). Lemma 3.1 implies that

(ddcfj+1)n = (ddcfj)
n + 1B′j (dd

cvj)
n = 1

(
⋃j

k=0 Bk)∩{u=−∞}µ in Ω.

This proves the claim. Put f := lim
j→∞

fj in Ω. Then, f ∈ PSH(Ω) and u ≤ f ≤ v

in Ω. By Theorem 1.2 in [6] and using the main result in [11] we infer that
f ∈ D(Ω) and

(ddcf)n = 1{u=−∞}µ in Ω.

We now set

w := sup{ϕ ∈ D(Ω) : ϕ ≤ f and (ddcϕ)n ≥ 1{u>−∞}µ}.

Because u ≤ w ≤ f ≤ v in Ω, by Theorem 1.2 in [6] we have w ∈ D(Ω). Since the
measure 1{u>−∞}µ vanishes on pluripolar sets of Ω, by Proposition 4.3 in [16]
and using the Choquet lemma we can choose a increasing sequence {ϕj} ⊂ D(Ω)
such that ϕj ↗ w a.e. in Ω and

(ddcϕj)
n ≥ 1{u>−∞}µ in Ω.

By the main result in [11] we note that (ddcϕj)
n → (ddcw)n weakly in Ω, and

hence,
(ddcw)n ≥ 1{u>−∞}µ in Ω.

Let B b Ω be an open ball. By Lemma 3.2 there exists ψ ∈ D(Ω) such that
(i) w ≤ ψ ≤ f on Ω;
(ii) (ddcψ)n ≥ 1{u>−∞}µ in Ω;
(iii) (ddcψ)n = 1{u>−∞}µ+ (ddcf)n in B.

From the definition of w it is easy to see that w = ψ in Ω, and therefore, by (iii)
we have

(ddcw)n = 1{u>−∞}µ+ (ddcf)n = µ in B,

and the desired conclusion follows.
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4 Global solutions of the complex Monge-Ampère
equation in the class D(Cn).

In this section as an application of Theorem 1.1, we study global solutions of
the complex Monge-Ampère equation in the class D(Cn). Namely, we prove the
following.

Theorem 4.1. Let u ∈ D(Cn), (ddcu)n({0}) = (2π)n, u(z) ≤ log|z| for z ∈ Cn.
Assume that µ is a non-negative Radon measure in Cn, µ({0}) = (2π)n and
µ ≤ (ddcu)n. Then there exists w ∈ D(Cn), u ≤ w ≤ log|z| for z ∈ Cn such that
(ddcw)n = µ.

Proof. Set Ω = Cn \ {0}, v(z) = log|z|, z ∈ Ω. Then v ∈ MPSH(Ω) ∩ L∞loc(Ω)
(see [17]). Hence, v ∈ D(Ω). At the same time, we have u|Ω ≤ v on Ω. From [6]
we note that u ∈ D(Ω). Put µ1 = µ|Ω. By the hypothesis, µ1 ≤ (ddcu)n on Ω.
Theorem 1.1 implies that there exists h ∈ D(Ω), u ≤ h ≤ v on Ω such that

(ddch)n = µ1 = µ|Cn\{0}.

Since u ≤ h ≤ v = log|z| on Ω then we have lim
y→0,y 6=0

h(y) = −∞. Set

w(z) =

{
h(z) if z 6= 0

−∞ if z = 0.

Then w ∈ PSH(Cn) and we have u(z) ≤ w(z) ≤ log|z| for all z ∈ Cn. By [6] this
yields that w ∈ D(Cn). Moreover, we may assume that u,w ∈ E(B(0, 1)) where
B(0, 1) is the unit ball in Cn. By Lemma 4.1 in [1] it follows that

(2π)n =

∫
{0}

(ddclog|z|)n ≤
∫
{0}

(ddcw)n ≤
∫
{0}

(ddcu)n = (2π)n.

Hence,
∫
{0}

(ddcw)n = (2π)n. Now we have

(ddcw)n = (ddcw)n|Cn\{0} + (ddcw)n({0}) = (ddch)n|Cn\{0} + (2π)n

= µ|Cn\{0} + (2π)n = µ.

The proof is complete.

From Theorem 4.1 we obtain a global solution in the class D(Cn) ∩L as follows.

Corollary 4.2. Under the hypotheses of Theorem 4.1 there exists w ∈ D(Cn)∩L
such that (ddcw)n = µ.

Proof. Indeed, it is easy to see that log|z| ≤ log(1 + |z|2) − log2 for z ∈ Cn and
the desired conclusion follows.

Next, we give the following result.

Theorem 4.3. Let µ be a non-negative Borel measure on Cn such that µ ≤
(ddclog(1 + |z|2))n on Cn. Assume that there exists r ≥ 2 such that µ(|z| = r) =
(ddclog(1 + |z|2))n(|z| = r). Then there exists w ∈ PSH(Cn) ∩ D(Cn) such that
(ddcw)n = µ.
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Proof. Without loss of generality we give the proof of Theorem 4.3 for the case
r = 2. For other cases the proof is similar. First, we choose c > 0 such that
3 log |z| ≥ log(1 + |z|2) + c for |z| ≥ 2 and

lim
x→z
|x|>2

log(1 + |x|2) + c = 3 lim
x→z
|x|>2

log|x| = log8,

at |z| = 2. Then µ ≤ (ddc(log(1 + |z|2) + c))n and log(1 + |z|2) + c ≤ 3log|z| for
|z| > 2. By Theorem 1.1 there exists u1 ∈ D(|z| > 2) such that (ddcu1)n = µ and
log(1+|z|2)+c ≤ u1 ≤ 3log|z| on |z| > 2. Let ϕ(z) = log(1+|z|2)+c, |z| = 2. Then
ϕ ∈ C(|z| = 2). In the strictly pseudoconvex domain B(0, 2) = {z ∈ Cn : |z| < 2}
consider the Dirichlet problem:

(9)


u ∈ PSH ∩ L∞(B(0, 2)),

(ddcu)n = µ in B(0, 2),

lim
x→z
|x|<2

u(x) = ϕ(z), |z| = 2.

Since there exists a subsolution v(z) = log(1 + |z|2) + c, µ ≤ (ddcv)n, lim
x→z

v(x) =

ϕ(z), |z| = 2 then by Theorem A in [18] we can find u2 ∈ PSH ∩ L∞(B(0, 2))
such that (ddcu2)n = µ on B(0, 2) and lim

x→z
|x|<2

u2(x) = ϕ(z), |z| = 2. Note that we

have lim
x→z
|x|<2

u2(x) = lim
x→z
|x|>2

u1(x) = ϕ(z) = log(1 + |z|2) + c, |z| = 2. Moreover, by the

comparison principle in [17] we have u2(z) ≥ log(1 + |z|2) + c in B(0, 2). Now set

(10) w(z) =


u2(z) if |z| < 2,

ϕ(z) = log(1 + |z|2) + c if |z| = 2,

u1(z) if |z| > 2.

Then w ∈ PSH(Cn) ∩ L∞loc(Cn) and, hence, w ∈ D(Cn). It remains to prove
(ddcw)n = µ. It is clear that (ddcw)n = µ on {|z| < 2} and {|z| > 2}. Hence,
it remains to show that (ddcw)n(|z| = 2) = µ(|z| = 2). Let K b {|z| = 2} be
arbitrary. Then for every j ≥ 1, we have K ⊂ {w + 1

j > log(1 + |z|2) + c}.
Proposition 4.2 in [4] implies that

(ddcw)(K) =

∫
K

((ddc(w +
1

j
))n = lim

j→∞

∫
K

(ddc max(w +
1

j
, log(1 + |z|2) + c))n

≤
∫
K

(ddc max(w, log(1 + |z|2) + c))n =

∫
K

(ddclog(1 + |z|2))n

= (ddclog(1 + |z|2))n(K).

Hence, (ddcw)n(K) ≤ (ddclog(1 + |z|2))n(K) for all K b {|z| = 2}. This yields
that

(11) (ddcw)n(|z| = 2) ≤ (ddclog(1 + |z|2))n(|z| = 2) = µ(|z| = 2).

On the other hand, for all K b {|z| = 2}, similarly as above, we have K ⊂
{log(1 + |z|2) + c+ 1

j > w} for j ≥ 1. Once more, using Proposition 4.2 in [4] we
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get that

µ(K) ≤
∫
K

(ddc(log(1 + |z|2) + c))n = lim
j→∞

∫
K

(ddc max(log(1 + |z|2) + c+
1

j
, w))n

≤
∫
K

(ddc max(log(1 + |z|2) + c, w))n =

∫
K

(ddcw)n = (ddcw)n(K).

Hence,

(12) µ(|z| = 2) ≤ (ddcw)n(|z| = 2).

Coupling (11) and (12) we get that µ(|z| = 2) = (ddcw)n(|z| = 2) and the desired
conclusion follows. The proof is complete.
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[1] P. Åhag, U. Cegrell, R. Czyż and P. H. Hiep, Monge-Ampère measures on
pluripolar sets, J. Math. Pures Appl., 92 (2009), 613–627.

[2] E. Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge-
Ampère operator, Invent. Math., 37 (1976), 1–44.

[3] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions.
Acta Math., 149 (1982), 1–41.

[4] E. Bedford and B. A. Taylor, Fine Topology, Šilov Boundary, and (ddc)n, J.
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