
Some properties of h-extendible domains in Cn+1

NINH VAN THU1,2 AND NGUYEN QUANG DIEU3,2

Abstract. The purpose of this article is twofold. The first aim is to char-
acterize h-extendibility of smoothly bounded pseudoconvex domains in Cn+1

by their noncompact automorphism groups. Our second goal is to show that

if the squeezing function tends to 1 or the Fridman invariant tends to 0 at an
h-extendible boundary point of a smooth pseudoconvex domain in Cn+1, then

this point must be strongly pseudoconvex.

1. Introduction

Let Ω be a domain in Cn and let us denote by Aut(Ω) the group of biholomorphic
self-maps of Ω with the compact-open topology. It is proved by H. Cartan (see
[Nar71]) that if Ω is a bounded domain in Cn and the Aut(Ω) is noncompact then
there exist a point x ∈ Ω, a point p ∈ ∂Ω, and automorphisms ϕj ∈ Aut(Ω) such
that ϕj(x)→ p. In this circumstance, we call p a boundary orbit accumulation point.
Moreover, if ∂Ω enjoys some sort of convexity at p then ϕj converges uniformly on
compact sets of Ω to p.

It is known that the local geometry of the so-called “boundary orbit accumulation
point” p in turn gives global information about the characterization of model of the
domain. We refer the reader to the recent survey [IK99] and the references therein
for the development in related subjects. For instance, B. Wong and J. P. Rosay
(see [Won77], [Ros79]) proved the following remarkable theorem.
Theorem (Wong-Rosay). Any bounded domain Ω b Cn with a C2 strongly
pseudoconvex boundary orbit accumulation point is biholomorphic to the unit ball
in Cn.

After that, by using the scaling technique, introduced by S. Pinchuk [Pin91], E.
Bedford and S. Pinchuk [BP91], F. Berteloot [Ber94] proved several results about
the characterization of the complex ellipsoids and models. In [DN09], Do Duc Thai
and the first author showed that if Ω is pseudoconvex finite type and smooth of class
C∞ in some neighborhood of a boundary orbit accumulation point, ξ0 ∈ ∂Ω, and
the Levi form has corank at most one at ξ0, then Ω is biholomorphically equivalent
to a model

MH = {(z1, · · · , zn, w) ∈ Cn × C : Re(w) +H(z1, z̄1) +

n∑
k=1

|zk|2 < 0},

where H is a homogeneous subharmonic polynomial with ∆H 6≡ 0.
To give a statement of our result, we recall that a smooth pseudoconvex boundary

point p ∈ ∂Ω is called h-extendible [Yu94, Yu95] (or semiregular [DH94]) if Catlin’s
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multitype and D’Angelo multitype at p coincide. It is well-known that the class of h-
extendible points includes pseudoconvex finite points in C2, strongly pseudoconvex
points in Cn, and convex finite type points Cn. In particular, any pseudoconvex
finite type boundary point in Cn with corank of the Levi form at most one is
h-extendible.

The first aim in this paper is to prove the following theorem, which gives a
characterization of h-extendible domains with noncompact automorphism groups.

Theorem 1.1. Assume that Ω is a pseudoconvex domain in Cn+1 with C∞-smooth
boundary ∂Ω. Let ξ0 ∈ ∂Ω be h-extendible with Catlin’s finite multitype (1,m1, . . . ,mn)
and let Λ = (1/m1, . . . , 1/mn). Suppose that there exists a sequence {ϕj} ⊂ Aut(Ω)
such that ηj := ϕj(a) converges Λ-nontangentially to ξ0 for some a ∈ Ω (cf. Defi-
nition 3.4). Then there exists a biholomorphic mapping σ : Ω → MP . Here MP is
a domain of the form

MP := {(z, w) ∈ Cn × C : Re(w) + P (z) < 0} ,
where P is a Λ-homogeneous plurisubharmonic real-valued polynomial which con-
tains no pluriharmonic monomials (cf. Definition 3.2). Moreover, the map σ sat-
isfies the following properties:
(a) σ(a) = (0′,−1).

(b) There exist sequences {ξj} ⊂ ∂Ω and {ξ̃j} ⊂ ∂MP such that ξj → ξ0 as j →∞
and that σ extends continuously to a homeomorphism near ξj and ξ̃j .

Remark 1.1. Recently, F. Rong and B. Zhang [RZ16] gave a characterization of
h-extendible model in which the sequence {ηj} ⊂ Ω converges nontangentially to
an h-extendible boundary point ξ0 ∈ ∂Ω. Their proof is based on the Pinchuk
scaling method. However, the equation (3.6) in page 905 of [RZ16], which plays
a crucial role to ensure the normality of the scaling sequence, is unclear to us.
Fortunately, by using the attraction property of analytic discs based deeply on the
existence of a plurisubharmonic peak function at the origin of the above model MP ,
the normality of the scaling sequence is eventually verified (see Proposition 4.3),
and then the proof of Theorem 1.1 follows. As a consequence, the above-mentioned
result of F. Rong and B. Zhang is obtained.
2. Notice that we do not know if the sequence {ξ̃j} can be chosen to be bounded
even when ∂Ω is algebraic. If this is the case then by using results in [Ber95] or
[CP01] we can prove that σ extends holomorphically through ξ0.

Now we move to the definition of squeezing function of a domain. Let Ω be a
domain in Cn and p ∈ Ω. For a holomorphic embedding f : Ω→ Bn := B(0; 1) with
f(p) = 0, we set

sΩ,f (p) := sup {r > 0: B(0; r) ⊂ f(Ω)} ,
where Bn(z; r) ⊂ Cn denotes the ball of radius r with center at z. Then the
squeezing function sΩ : Ω→ R is defined in [DGZ12] as

sΩ(p) := sup
f
{sΩ,f (p)} .

Note that 0 < sΩ(z) ≤ 1 for any z ∈ Ω and the squeezing function is clearly
invariant under biholomorphic mappings.

Next, let us recall the Fridman invariant. Let M be a Kobayashi hyperbolic
complex manifold of dimension n and let BM (p, r) be the Kobayashi ball around
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p of radius r > 0. Let R be the set of all r > 0 such that there is an injective
holomorphic map f : Bn → M with BM (p, r) ⊂ f(Bn). Note that R is non-empty
(cf. [MV19]). Then the Fridman invariant is defined by

hM (p) = inf
r∈R

1

r
.

In recent works [DGZ16, DFW14, KZ16] the authors proved that if p is a strongly
pseudoconvex boundary point, then lim

Ω3z→p∈∂Ω
sΩ(z) = 1. Conversely to this result,

J. E. Fornæss and F. E. Wold posed the following problem (see [FW18, Problem
4.1]).

Problem. If Ω is a bounded pseudoconvex domain with smooth boundary, and if
lim

Ω3z→p∈∂Ω
sΩ(z) = 1, then is the boundary of Ω strongly pseudoconvex at p?

The main results around this problem are due to A. Zimmer [Zim18a, Zim18b], J.
E. Fornæss and F. E. Wold [FW18], S. Joo and K.-T. Kim [JK18], P. Mahajan and
K. Verma [MV19]. More precisely, in [Zim18a, Zim18b] A. Zimmer proved that the
answer is affirmative if the domain is bounded convex with C2,α-smooth boundary.
In [FW18], J. E. Fornæss and F. E. Wold constructed a counter-example to this
problem, that is, they constructed a bounded convex C2-smooth domain Ω ⊂ Cn
which is not strongly pseudoconvex, but

lim
Ω3z→∂Ω

sΩ(z) = 1.

Now let us consider a sequence {ηj} ⊂ Ω converging to an h-extendible bound-
ary point ξ0 ∈ ∂Ω. Suppose that Ω is pseudoconvex of finite type near ξ0 and
lim
j→∞

sΩ(ηj) = 1 or lim
j→∞

hΩ(ηj) = 0. It is known that if the sequence {ηj} ⊂ Ω

converges to ξ0 along the inner normal line to ∂Ω at ξ0, then ξ0 must be strongly
pseudoconvex (see [JK18] for n = 2 and [MV19] for general case). Moreover, this
result was obtained in [Nik18] for the case that {ηj} ⊂ Ω converges nontangentially
to ξ0.

The second aim in this paper is to prove the following theorem.

Theorem 1.2. Let ξ0 be an h-extendible boundary point of a C∞-smooth, bounded
pseudoconvex domain Ω in Cn+1. Assume that lim

j→∞
sΩ(ηj) = 1 or lim

j→∞
hΩ(ηj) = 0

for some sequence {ηj} ⊂ Ω converging Λ-nontangentially to ξ0. Then ξ0 is a
strongly pseudoconvex point.

The organization of this paper is as follows: In Sections 2 and 3, we recall some
basic definitions and results needed later. In Section 4, we verify the normality of
the scaling sequence and then we give a proof of Theorem 1.1. Finally, the proof of
Theorem 1.2 is given in Section 5.

2. The normality of sequences of biholomorphisms

First of all, we recall the following definition (see [GK87] or [DN09]).

Definition 2.1. Let {Ωi}∞i=1 be a sequence of open sets in a complex manifold
M and Ω0 be an open set of M . The sequence {Ωi}∞i=1 is said to converge to Ω0

(written lim Ωi = Ω0) if and only if

(i) For any compact set K ⊂ Ω0, there is an i0 = i0(K) such that i ≥ i0
implies that K ⊂ Ωi; and
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(ii) If K is a compact set which is contained in Ωi for all sufficiently large i,
then K ⊂ Ω0.

Next, we need the following proposition, which is a generalization of the theorem
of H. Cartan (see [GK87, DT04, DN09]).

Proposition 2.2. Let {Ai}∞i=1 and {Ωi}∞i=1 be sequences of domains in a complex
manifold M with limAi = A0 and lim Ωi = Ω0 for some (uniquely determined)
domains A0, Ω0 in M . Suppose that {fi : Ai → Ωi} is a sequence of biholomorphic
maps. Suppose also that the sequence {fi : Ai → M} converges uniformly on
compact subsets of A0 to a holomorphic map F : A0 →M and the sequence {gi :=
f−1
i : Ωi → M} converges uniformly on compact subsets of Ω0 to a holomorphic

map G : Ω0 →M . Then either of the following assertions holds.

(i) The sequence {fi} is compactly divergent, i.e., for each compact set K ⊂ Ω0

and each compact set L ⊂ Ω0, there exists an integer i0 such that fi(K) ∩
L = ∅ for i ≥ i0; or

(ii) There exists a subsequence {fij} ⊂ {fi} such that the sequence {fij} con-
verges uniformly on compact subsets of A0 to a biholomorphic map F :
A0 → Ω0.

In addition, we prepare the following proposition (see [Ber94, Proposition 2.1]
or [DN09, Proposition 2.2]).

Proposition 2.3. Let M be a domain in a complex manifold X of dimension n
and ξ0 ∈ ∂M . Assume that ∂M is pseudoconvex and of finite type near ξ0.

(a) Let Ω be a domain in a complex manifold Y of dimension m. Then every
sequence {ϕj} ⊂ Hol(Ω,M) converges unifomly on compact subsets of Ω to
ξ0 if and only if limϕj(a) = ξ0 for some a ∈ Ω.

(b) Assume, moreover, that there exists a sequence {ϕj} ⊂ Aut(M) such that
limϕj(a) = ξ0 for some a ∈M . Then M is taut.

Remark 2.1. By Proposition 2.3 and by the hypothesis of Theorem 1.1, for each
compact subset K b Ω and each neighborhood U of ξ0, there exists an integer j0
such that ϕj(K) ⊂ Ω ∩ U for all j ≥ j0. Moreover, Ω is taut.

3. Catlin’s multitype and the h-extendibility

3.1. Catlin’s multitype. For the convenience of the exposition, let us recall Catlin’s
multitype (for more details, we refer to [Cat84, Yu92] and the references therein).
Let Ω be a domain in Cn and ρ be a defining function for Ω near z0 ∈ ∂Ω. Let us
denote by Γn the set of all n-tuples of numbers µ = (µ1, . . . , µn) such that

(i) 1 ≤ µ1 ≤ · · · ≤ µn ≤ +∞;
(ii) For each j, either µj = +∞ or there is a set of non-negative integers

k1, . . . , kj with kj > 0 such that

j∑
s=1

ks
µs

= 1.

A weight µ ∈ Γn is called distinguished if there exist holomorphic coordinates
(z1, . . . , zn) about z0 with z0 maps to the origin such that

DαD
β
ρ(z0) = 0 whenever

n∑
i=1

αi + βi
µi

< 1.



Some properties of h-extendible domains 5

Here Dα and D
β

denote the partial differential operators

∂|α|

∂zα1
1 · · · ∂z

αn
n

and
∂|β|

∂z̄β1

1 · · · ∂z̄
βn
n

,

respectively.

Definition 3.1. The multitype M(z0) is defined to be the smallest weight M =
(m1, . . . ,mn) in Γn (smallest in the lexicographic sense) such thatM≥ µ for every
distinguished weight µ.

3.2. The h-extendibility. In what follows, we call a multiindex (λ1, λ2, . . . , λn)
a multiweight if 1 ≥ λ1 ≥ · · · ≥ λn. Now let us recall the following definitions (cf.
[Yu94, Yu95]).

Definition 3.2. Let f(z) be a function on Cn and let Λ = (λ1, λ2, . . . , λn) be a
multiweight. For any real number t ≥ 0, set

πt(z) = (tλ1z1, t
λ2z2, . . . , t

λnzn).

We say that f is Λ-homogeneous with weight α if f(πt(z)) = tαf(z) for every t ≥ 0
and z ∈ Cn. In case α = 1, then f is simply called Λ-homogeneous.

For a multiweight Λ, the following function

σ(z) = σΛ(z) :=

n∑
j=1

|zj |1/λj

is Λ-homogeneous. Moreover, for a multiweight Λ and a real-valued Λ-homogeneous
function P , we define a homogeneous model DΛ,P as follows:

DΛ,P = {(z, w) ∈ Cn × C : Re(w) + P (z) < 0} .

Definition 3.3. Let DΛ,P be a homogeneous model. Then DΛ,P is called h-
extendible if there exists a Λ-homogeneous C1 function a(z) on Cn \ {0} satisfying
the following conditions:

(i) a(z) > 0 whenever z 6= 0;
(ii) P (z)− a(z) is plurisubharmonic on Cn.

We will call a(z) a bumping function.

Remark 3.1. In this paper, our model DΛ,P is always assumed to be of finite
type. So, by [Yu94, Theorem 2.1] the bumping function a(z) must be C∞ on
Cn \ {0} and P (z) − a(z) is strictly plurisubharmonic on Cn \ {0}. Moreover,
Λ = (1/m1, . . . , 1/mn), where (1,m1, . . . ,mn) is the multitype of DΛ,P at 0. For
several equivalent conditions to the h-extendibility, we refer the reader to [Yu94].

Remark 3.2. Let a(z) be a bumping function. Then there is a constant C > 0 such
that

Cσ(z) ≤ a(z) ≤ C−1σ(z), ∀ z ∈ Cn.

By a pointed domain (Ω, p) in Cn+1 we mean that Ω is a smooth pseudoconvex
domain in Cn+1 with p ∈ ∂Ω. Let ρ be a local defining function for Ω near p
and let the multitype M(p) = (1,m1, . . . ,mn) be finite. Moreover, since Ω is
pseudoconvex, the integers m1, . . . ,mn are all even.
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By the definition of multitype, there are distinguished coordinates (z, w) =
(z1, . . . , zn, w) such that p = 0 and ρ(z, w) can be expanded near 0 as follows:

ρ(z, w) = Re(w) + P (z) +R(z, w),

where P is a (1/m1, . . . , 1/mn)-homogeneous plurisubharmonic polynomial that
contains no pluriharmonic terms, R is smooth and satisfies

|R(z, w)| ≤ C

|w|+ n∑
j=1

|zj |mj
γ

,

for some constant γ > 1 and C > 0.
In what follows, the weight of any multiindex K = (k1, . . . , kn) ∈ Nn with respect

to Λ = (1/m1, . . . , 1/mn) is given by

wt(K) =

n∑
j=1

kj
mj

.

We note that wt(K + L) = wt(K) + wt(L) for any K,L ∈ Nn. In addition, . and
& denote inequality up to a positive constant. Moreover, we will use ≈ for the
combination of . and &.

Definition 3.4. We call MP = {(z, w) ∈ Cn×C : Re(w)+P (z) < 0} an associated
model for (Ω, p). If the pointed domain (Ω, p) has an h-extendible associated model,
we say that (Ω, p) is h-extendible. In this circumstance, we say that a sequence
{ηj = (αj , βj)} ⊂ Ω converges Λ-nontangentially to p if |Im(βj)| . |dist(ηj , ∂Ω)|
and σ(αj) . |dist(ηj , ∂Ω)|, where

σ(z) =

n∑
k=1

|zk|mk .

Here and in what follows, dist(z, ∂Ω) denotes the Euclidean distance from z to ∂Ω.

Remark 3.3. It is well-known that {ηj} ⊂ Ω converges nontangentially to p if
|Im(βj)| . |dist(ηj , ∂Ω)| and |αjk| . |dist(ηj , ∂Ω)| for every 1 ≤ k ≤ n, where
αj = (αj1, . . . , αjn). Nevertheless, such sequence converges Λ-nontangentially to p
if |Im(βj)| . |dist(ηj , ∂Ω)| and |αjk|mj . |dist(ηj , ∂Ω)| for every 1 ≤ k ≤ n.

We also need the following definition (cf. [Yu95]).

Definition 3.5. Let Λ = (λ1, . . . , λn) be a fixed n-tuple of positive numbers and
µ > 0. We denote by O(µ,Λ) the set of smooth functions f defined near the origin
of Cn such that

DαD
β
f(0) = 0 whenever

n∑
j=1

(αj + βj)λj ≤ µ.

If n = 1 and Λ = (1) then we use O(µ) to denote the functions vanishing to order
at least µ at the origin.

Now let us recall the following proposition, whose proof easily follows from the
Taylor expansion (see [Yu95, Proposition 4.9]).

Proposition 3.6. (i) If f ∈ O(µ,Λ) then ∂f
∂zj

and ∂f
∂z̄j

are in O(µ−λj ,Λ) for

j = 1, . . . , n.



Some properties of h-extendible domains 7

(ii) Suppose that fi, 1 ≤ i ≤ N , are functions with fi ∈ O(µi,Λ). Then

N∏
i=1

fi ∈ O(µ,Λ), where µ =

N∑
i=1

µi.

(iii) If f ∈ O(µ,Λ), then there are constants C, δ > 0 such that |f(z)| ≤
C(σΛ(z))µ+δ for all z in a small neighborhood of 0.

By Proposition 3.6, one easily obtains the following corollary.

Corollary 3.7. If f ∈ O(µ,Λ), then there are constants C, δ > 0 such that

|DpD
q
f(z)| ≤ C(σΛ(z))µ−wt(p)−wt(q)+δ for every multi-indices p, q ∈ Nn with

wt(p) + wt(q) < µ and for all z in a small neighborhood of 0.

4. Proof of Theorem 1.1

This section is devoted to a proof of Theorem 1.1. Throughout this section,
the domain Ω and the boundary point ξ0 ∈ ∂Ω are assumed satisfy the hy-
pothesis of Theorem 1.1. Let ρ be a local defining function for Ω near ξ and
let the multitype M(p) = (1,m1, . . . ,mn) be finite. Especially, because of the
pseudoconvexity of Ω, the integers m1, . . . ,mn are all even. Let us denote by
Λ = (1/m1, . . . , 1/mn). By the definition of multitype, there are distinguished co-
ordinates (z̃, w̃) = (z̃1, . . . , z̃n, w̃) such that ξ0 = 0 and ρ(z̃, w̃) can be expanded
near 0 as follows:

ρ(z̃, w̃) = Re(w̃) + P (z̃) +Q(z̃, w̃),

where P is a Λ-homogeneous plurisubharmonic polynomial that contains no pluri-
harmonic monomials, Q is smooth and satisfies

|Q(z̃, w̃)| ≤ C

|w̃|+ n∑
j=1

|z̃j |mj
γ

,

for some constant γ > 1 and C > 0.
By hypothesis of Theorem 1.1, there exist a sequence {ϕj} ⊂ Aut(Ω) and a

point a ∈ Ω such that ηj := ϕj(a) converges Λ-nontangentially to ξ0. Let us write
ηj = (αj , βj) = (αj1, . . . , αjn, βj). Then one has

(a) |Im(βj)| . |dist(ηj , ∂Ω)|;
(b) |αjk|mk . |dist(ηj , ∂Ω)| for 1 ≤ k ≤ n.

By following the proofs of Lemmas 4.10, 4.11 in [Yu95], after a change of variables{
z = z̃;

w = w̃ + b1(z̃)w̃ + b2(z̃)w̃2 + b3(z̃),

where b1, b2, b3 are smooth functions of z̃ satisfying bj = O(|z̃|2), j = 1, 2, 3, there
are local holomorphic coordinates (z, w) in which ξ0 = 0 and Ω can be described
near 0 as follows:

Ω = {ρ(z, w) = Re(w) + P (z) +R1(z) +R2(Imw) + (Imw)R(z) < 0} .

Here P is a Λ-homogeneous plurisubharmonic real-valued polynomial containing no
pluriharmonic terms, R1 ∈ O(1,Λ), R ∈ O(1/2,Λ), and R2 ∈ O(2). We would like
to emphasize that in the new coordinates the sequence {ηj} still has the properties
(a) and (b).
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For any sequence {ηj = (αj , βj)} of points converging Λ-nontangentially to
the origin in U0 ∩ {ρ < 0} =: U−0 , we associate with a sequence of points η′j =
(α1j , · · · , αnj , aj + εj + ibj), where εj > 0 and βj = aj + ibj , such that η′j = (α′j , β

′
j)

is in the hypersurface {ρ = 0} for every j ∈ N∗. We note that εj ≈ dist(ηj , ∂Ω).
Now let us consider the sequences of dilations ∆εj and translations Lη′j , defined

respectively by

∆εj (z1, . . . , zn, w) =

(
z1

ε
1/m1

j

, . . . ,
zn

ε
1/mn
j

,
w

εj

)
and

Lηj (z, w) = (z, w)− ηj = (z − αj , w − βj).
Under the change of variables (z̃, w̃) := ∆εj ◦ Lηj (z, w), i.e.,{

w − βj = εjw̃

zk − αjk = ε
1/mk
j z̃k, k = 1, . . . , n,

one sees that ∆εj ◦Lη′j (αj , βj) = (0, · · · , 0,−1) for every j ∈ N∗. Moreover, by using

Taylor’s theorem, the hypersurface ∆εj ◦Lη′j ({ρ = 0}) is defined by an equation of

the form

0 = ε−1
j ρ

(
L−1
ηj ◦ (∆εj )

−1
(z̃, w̃)

)
= Re(w̃) +R′2(bj)Im(w̃) + Im(w̃)R(αj) + ε−1

j o(εj) + P (z̃)

+ 2Re
∑
|p|>0
wt(p)≤1

DpP (αj)

p!
ε
wt(p)−1
j (z̃)p +

∑
|p|,|q|>0
wt(p+q)<1

DpD
q
P (αj)

p!q!
ε
wt(p+q)−1
j (z̃)p(z̃)q

+ 2Re
∑
|p|>0
wt(p)≤1

DpR1(αj)

p!
ε
wt(p)−1
j (z̃)p +

∑
|p|,|q|>0
wt(p+q)≤1

DpD
q
R1(α)

p!q!
ε
wt(p+q)−1
j (z̃)p(z̃)q

+ ε−1
j bj

(
2Re

∑
|p|>0
wt(p)≤1

DpR(αj)

p!
ε
wt(p)
j (z̃)p +

∑
|p|,|q|>0
wt(p+q)≤1

DpD
q
R(αj)

p!q!
ε
wt(p+q)
j (z̃)p(z̃)q

)
.

Since {(αj , βj)}j is a sequence of points converging Λ-nontangentially to the
origin in U−0 , without loss of generality, we may assume that

lim
j→∞

π1/εj (αj) = α ∈ Cn,

where πt(z) = (t1/m1z1, . . . , t
1/mnzn) for t ≥ 0. Hence, by Proposition 3.6 and

Corollary 3.7 one has

(i) lim
j→∞

DpP (αj)
p! ε

wt(p)−1
j = lim

j→∞

DpP (π1/εj
(αj))

p! = DpP (α)
p! ;

(i) lim
j→∞

DpR1(αj)
p! ε

wt(p)−1
j = lim

j→∞
DpR(αj)

p! ε
wt(p)
j = 0 whenever wt(p) ≤ 1;

(ii) lim
j→∞

DpD
q
P (αj)

p!q! ε
wt(p+q)−1
j = lim

j→∞

DpD
q
P (π1/εj

(αj))

p!q! = lim
j→∞

DpD
q
P (α)

p!q! when-

ever wt(p+ q) < 1;

(iii) lim
j→∞

DpD
q
R1(αj)
p!q! ε

wt(p+q)−1
j = lim

j→∞
DpD

q
R(αj)

p!q! ε
wt(p+q)
j = 0 whenever wt(p)+

wt(q) ≤ 1;



Some properties of h-extendible domains 9

(iv) lim
j→∞

R′2(bj) = lim
j→∞

R(αj) = 0.

Therefore, after taking a subsequence if necessary, we may assume that the
sequence of domains Ωj := ∆εj ◦ Lη′j (U

−
0 ) converges normally to the following

model

MP,α := {(z̃, w̃) ∈ Cn × C : Re(w̃) + P (z̃ + α)− P (α) < 0} ,
which is obviously biholomorphically equivalent to the model MP .

Without loss of generality, in what follows we always assume that {Ωj} converges
to MP .

Now we need the following lemma which precises [Ber95, Lemme de localisation]
(see also [Ga99, Lemma 2.1.1]).

Lemma 4.1 (Localization lemma). Let D be a domain in Cn and ζ0 ∈ ∂D. Suppose
that there exists a function ϕ which is continuous on D ∩ {|z − ζ0| ≤ R} such that
(i) ϕ is plurisubharmonic on D ∩ {|z − ζ0| < R}.
(ii) ϕ > 0 on D ∩ {|z − ζ0| ≤ r} (r < R).
(iii) ϕ < 0 on D ∩ {r′ ≤ |z − ζ0| ≤ R′} (r < r′ < R′ < R).
Let U := D ∩ {|z− ζ0| < r

6}, V := D ∩ {|z− ζ0| < r
5}. Then, there exists a constant

τ0 ∈ (0, 1) such that every holomorphic maps f : Bk → D, where Bk is the unit ball
in Ck, satisfies

f(0) ∈ U ⇒ f(Bk(0, τ0)) ⊂ V,
where Bk(a, τ0) := {z ∈ Ck : |z − a| < τ0} is the open ball of radius τ0 with center
at a.

Proof. We follow closely the proof of the localization lemma given in [Ber95], which
in turns is based on Theorem 3 in [Si81]. Using a patching technique as in [Ber95],
we can construct a bounded negative plurisubharmonic function ϕ̃ on D such that
ϕ̃ − |z|2 is plurisubharmonic on D ∩ {|z − ζ0| < r}. Then, by an ingenious argu-
ment using the maximum principle we obtain the following lower bound for the
infinitesimal Kobayashi metric

FD(z, v) ≥
√

2

r
e
M
2 ϕ̃(z)‖v‖,∀v ∈ Cn,∀z ∈ D ∩ {|z − ζ0| <

r

4
}.

Now suppose the lemma is false, then there exists a sequence of holomorphic maps
fj : Bk → D and aj → 0, aj ∈ Bk with fj(0) ∈ V but fj(aj) 6∈ U. By the decreasing
property of the Kobayashi pseudo-distance we obtain

dD(fj(0), fj(aj)) ≤ dBk(0, aj)→ 0 as j →∞.

On the other hand, we can find bj ∈ D ∩ {|z − ζ0| = r
5} such that

dD(fj(0), fj(aj)) +
1

j
≥ dD(fj(0), bj).

For a real smooth curve γ ⊂ D joining fj(0) and bj we have

kD(fj(0), bj) ≥
∫ 1

0

FD(γ(t), γ′(t)) ≥
√

2

r
e
M
2 inf
z∈D

ϕ̃(z)
‖fj(0)− bj‖.

It follows that lim
j→∞

kD(fj(0), bj) > 0. Putting all these estimates together we obtain

a contradiction. �
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We need the following technical lemma which plays a key role in the proof of
Theorem 1.1.

Lemma 4.2. Let {Ωj} be a sequence of domains in Cn+1 converging to MP . Let
K be a compact subset of MP . Then there exists a compact subset L of MP , an
index j(K) ≥ 1, and τ ∈ (0, 1) having the following properties: If g : Bk → Ωj is
holomorphic for j ≥ j(K) and g(0) ∈ K then g(Bk(0, τ)) ⊂ L.

Proof. We split the proof into two steps.

Step 1. We show that there exist neighborhoods Ũ , Ũ ′ of the origin and τ0 > 0

such that: For j large enough, if f : Bk → Ωj is holomorphic and f(0) ∈ Ũ ′ then

f(Bkτ0) ⊂ Ũ . For this purpose, we note that there exists a plurisubharmonic peak
function for MP at (0′, 0) (see [Yu94]). Thus we may find 0 < r < r′ < R′ < R, a
plurisubharmonic function ϕ on MP which is continuous on MP such that ϕ > 0
on MP ∩ {|z| < r} and ϕ < 0 on MP ∩ {r′ < |z| < R′}.

By setting ε0 := r
7 , since the sequence {Ωj} converges to MP as j →∞, we can

find j0 ≥ 1 and a large open ball Br around ξ0 := (0, ε0) such that for j ≥ j0 we
have

Ωj ⊂ Ω̃r := MP,r ∪ (Cn+1 \Br),
where MP,r := {(z, w) : Re(w) + P (z) < ε0}. Now consider the following neighbor-
hoods of (0, 0)

Ũ := {|z − ξ0| <
r

5
}, Ũ ′ := {|z − ξ0| <

r

6
}.

By applying Lemma 1 to Ω̃r, the peaking function ψ(z, w) := ϕ(z, w− ε0) and the
datum r′, r, R′, R we obtain τ0 > 0 satisfying the conclusion of Step 1.
Step 2. We argue by contradiction. If the lemma is false then we can find a sequence
Bk 3 ξj → 0, holomorphic maps gj : Bk → Ωj such that

gj(0) ∈ K ⊂MP but gj(ξj)→ ∂MP ∪ {∞}. (1)

The key step in deriving a contradiction is to show that {gj} is locally uniformly

near the origin. For this, choose λ0 > 0 so big that ∆λ0(K) ⊂ Ũ ′. Then by Step 1
we obtain

(∆λ0 ◦ gj)(Bkτ0) ⊂ Ũ ,∀j.

Hence for every j we have gj(Bkτ0) ⊂
(
∆λ0

)−1
(Ũ), a bounded open subset of Cn+1.

Now, by Montel’s theorem, after passing to a subsequence we may assume that gj
converges uniformly on compact sets of Bkτ0 to a holomorphic map g : Bkτ0 → Cn+1.
It follows that

lim
j→∞

gj(0) = g(0) = lim
j→∞

gj(ξj).

We obtain a contradiction to (1). Hence we get a constant τ > 0 that satisfies both
conditions in Step 1 and Step 2. �

The main step in the proof of Theorem 1 is included in the following result. We
also use this proposition crucially in the next section.

Proposition 4.3. Let ω be a domain in Ck, a ∈ ω and σj : ω → Ωj be a sequence of
holomorphic mappings such that {σj(a)} bMP . Then {σj} contains a subsequence
that converges locally uniformly to a holomorphic map σ : ω →MP .
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Proof. Choose r > 0 so small such that Bk(a, r) b ω. Set

ga,j(z) := σj

(
r(z +

a

r
)
)
j ≥ 1.

Then ga,j : Bk → Ωj and satisfies ga,j(0) = σj(a) is contained in a fixed compact
subset K of MP . It follows, in view of Lemma 3, that σj(Bk(a, τr)) is included in
some compact subset L of MP for j large enough. Now we let ω′ be the collection
of x ∈ ω such that there exists a neighborhood U of x such that σj(U) is contained
in a compact subset of MP for all j large enough. Then ω′ is an open subset of
ω and a ∈ ω′. We claim that ω′ = ω. If this is not so, then we can find a point
x0 ∈ ω ∩ ∂ω′. Choose x1 ∈ ω′ closed to x0 and r′ > 0 so small that:

x0 ∈ Bk(x1, τr
′) ⊂ Bk(x1, r

′) b ω.

By considering the new sequence

σ′j(z) = σj

(
r′(z +

x1

r′
)
)
, z ∈ Bk.

We may apply Lemma 3 again to infer that σj(Bk(x1, τr
′)) is contained in some

compact set of MP for j large enough. This implies that x0 ∈ ω′. We reach a
contradiction. Thus ω′ = ω as claimed.

Finally, in view of Montel’s theorem, after passing to a subsequence, we may
assume that σj uniformly converges on compact sets of ω to a holomorphic map
σ : ω → Cn. By the above reasoning we see that σ(ω) ⊂MP . The desired conclusion
follows. �

We are now ready to give a proof of Theorem 1.1.

Proof of Theorem 1.1. Assume that (Ω, ξ0) is h-extendible. It means that the
model MP is also h-extendible. By the hypothesis, the sequence {ηj := ϕj(a)} con-
verges Λ-nontangentially to ξ0 = (0′, 0). Then one can find a sequence {εj} ⊂ R+

converging to 0+ such that the sequence of points η′j = ηj + (0′, εj) is in the
hypersurface {ρ = 0} for every j ≥ 1. Let us define Tj := ∆εj ◦ Lη′j and

σj := Tj ◦ ϕj : ϕ−1
j (U−0 ) → Ωj . Then one sees that Tj(ηj) = (0′,−1) and {σj}

is a sequence of biholomorphic mappings satisfying

σj(a) = b := (0′,−1), j ≥ 1.

Thus, by Proposition 4.3, after passing to a subsequence, we may assume that σj
converges locally uniformly to a holomorphic map σ : Ω → MP which satisfies
σ(a) = b.

On the other hand, since Ω is taut, the sequence σ−1
j : Ωj → ϕ−1

j (U−0 ) ⊂ Ω is also

normal. Since σ−1
j (b) = a ∈ Ω, we may also assume, after switching a subsequence

that σ−1
j converges locally uniformly to a holomorphic map σ∗ : MP → Ω. It

then follows from Proposition 2.2 that σ∗ is the inverse of σ and so σ maps Ω
biholomorphically onto MP . It is then obvious that σ(a) = lim

j→∞
σj(a) = (0′,−1).

Thus, we have shown the assertion (a).
For (b), we claim that there exists a sequence ξj → ξ0 such that

lim
x→ξj

|σ(x)| <∞ ∀j.
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If the claim fails then we may find an open ball B around ξ0 such that

lim
x→ξ
|σ(x)| =∞ ∀ξ ∈ B ∩ ∂Ω.

Then we choose a bounded holomorphic function f on MP such that f 6≡ 0 and

lim
|z|→∞,z∈MP

f(z) = 0.

Indeed, it suffices to take N = 1 in the proof of Theorem 3.4 in [Yu94] to obtain

the desired function f . It follows that f̂ := f ◦σ is bounded holomorphic on Ω and
satisfies

lim
x→ξ

f̂(x) = 0 ∀ξ ∈ B ∩ ∂Ω.

Suppose that f̂ 6≡ 0 on Ω. Then S := {x ∈ Ω : f̂(x) = 0} is a complex hypersurface
of Ω. Thus we can find a point x0 ∈ Ω \ S that is so close to ∂Ω such that for
some ξ0 ∈ B ∩ ∂Ω the open segment connecting ξ0 and x0 stays in Ω. Let l be
the complex line joining x0 and ξ0 and Ωl be the connected component of l ∩ Ω

that contains x0. Then f̂ |l is a bounded holomorphic function on Ωl that tends to
0 at an open piece of ∂Ωl. By applying the two constant theorem to the bounded

subharmonic function log |f̂ |l| we infer that log |f̂ |l| must be identically −∞ on Ωl.

In particular f̂(x0) = 0, which is absurd. Hence f̂ ≡ 0 on Ω, which is impossible
since σ is biholomorphic. Thus our claim is valid.

On the other hand, since Ω is of finite type at ξ0, we may achieve that Ω is of finite
type at every point ξj . Furthermore, one can also find sequences Ω 3 {xk,j} → ξj
such that σ(xk,j) → ξ̃j ∈ ∂MP as k → ∞. Now we can apply Proposition 3 in
[Ber95] to reach the conclusion (b). The proof is thereby complete. �

5. Proof of Theorem 1.2

Throughout this section, let Ω be a domain and ξ0 ∈ ∂Ω be as in the hypothesis
of Theorem 1.2. Let ρ be a local smooth defining function for Ω near ξ0. After a
change of coordinates, we can find the coordinate functions (z1, . . . , zn, w) defined
on a neighborhood U0 of ξ0 such that ξ0 = 0 and Ω can be described locally near
0 as

Ω = {ρ(z, w) = Re(w) + P (z) +R1(z) +R2(Imw) + (Imw)R(z) < 0} . (2)

Here P is a Λ-homogeneous plurisubharmonic real-valued polynomial containing
no pluriharmonic monomials, R1 ∈ O(1,Λ), R ∈ O(1/2,Λ), and R2 ∈ O(2). Let us
fix a small neighborhood U0 of 0 and consider any point η = (α, β) ∈ U0. Now we
define an anisotropic dilation ∆ε and a translation Lη, respectively, by

∆ε(z1, . . . , zn, w) =
( z1

ε1/m1
, . . . ,

zn
ε1/mn

,
w

ε

)
and

Lη(z, w) = (z, w)− η = (z − α,w − β).

Let {ηj} be a sequence in Ω converging Λ-nontangentially to ξ0 = 0. Without loss of
generality, we may assume that ηj = (αj , βj) ∈ U−0 := U0∩{ρ < 0} for all j. For this
sequence {ηj}, one associates with a sequence of points η′j = (α1j , . . . , αnj , βj + εj),
εj > 0, η′j in the hypersurface {ρ = 0}. Let us consider the sequences of dilations
∆εj and translations Lη′j . Then ∆εj ◦ Lη′j (ηj) = (0, . . . , 0,−1) and moreover, by
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Lemma 1, after taking a subsequence, one can deduce that ∆εj ◦Lη′j (U
−
0 ) converges

to the following model

MP := {ρ̂ := Re(w) + P (z) < 0} ,
where P (z) is the real Λ-homogeneous polynomial given in (2).

Now we are ready to give a proof of Theorem 1.2. To do this, we split the proof
into two cases as follows:
Case 1: lim

j→∞
sΩ(ηj) = 1.

In this case, let us set δj = 2(1 − sΩ(ηj)) for all j. Then by our assumption,
for each j there exists an injective holomorphic map fj : Ω → Bn+1 such that
fj(ηj) = (0, . . . , 0) and Bn+1(0; 1 − δj) ⊂ fj(Ω). By Proposition 2.3, one sees
that fj(Ω ∩ U0) converges to Bn+1. So, Proposition 4.3 shows that the sequence

Tj◦f−1
j : fj(Ω∩U0)→ Tj(Ω∩U0) is normal and its limits are holomorphic mappings

from Bn+1 to MP , where Tj := ∆εj ◦ Lη′j for every j ∈ N∗. Moreover, by Montel’s

theorem the sequence fj ◦ T−1
j : Tj(Ω ∩ U0) → fj(Ω ∩ U0) ⊂ Bn+1 is also normal.

We note that since Tj ◦ f−1
j (0) = (0′,−1) ∈ MP , it follows that the sequence

Tj◦f−1
j is not compactly divergent. Therefore, by Proposition 2.2, after taking some

subsequence we may assume that Tj ◦ f−1
j converges uniformly on every compact

subset of Bn+1 to a biholomorphism from Bn+1 onto MP .
Observe that the unit ball Bn+1 is biholomorphic to the Siegel half-space

U := {(z, w) ∈ Cn : Re(w) + |z1|2 + |z2|2 + · · ·+ |zn|2 < 0}.
Hence, we may assume that there exists a biholomorphism ψ : MP → U .

As in the end of the proof of Theorem 1, we can find a bounded holomorphic
function φ on U which is continuous on U , φ 6≡ 0 and tends to 0 at infinity. (Actually
in this concrete situation we may write down explicitly such a function φ.) We
claim that there exists t0 ∈ R such that lim

x→0
x<0

|ψ(0′, x + it0)| < +∞. Indeed, if

this would not be the case, the function φ ◦ ψ would equal to 0 on the half-plane
{Re(w) < 0, z = 0} and this is impossible since φ 6≡ 0. Therefore, we may assume
that there exists a sequence xk < 0 such that limxk = 0 and limψ(0′, xk + it0) =
p0 ∈ ∂U . Hence, it is proved in [CP01, Theorem 2.1] that under these circumstances
ψ extends holomorphically to a neighborhood of (0′, it0). Since the Levi form is
preserved under local biholomorphisms around a boundary point, it follows that MP

is strongly pseudoconvex at (0′, it0) ∈ ∂MP . This yields that m1 = · · · = mn = 2
and P (z) = |z1|2 + · · ·+ |zn|2, and thus Ω is strongly pseudoconvex at ξ0, as desired.
Case 2: lim

j→∞
hΩ(ηj) = 0.

Since the point ξ0 is a local peak point (cf. [Yu94]), it follows that the Fridman in-
variant can be localized near ξ0, that is, lim

j→∞
hU0∩Ω(ηj) = 0 (cf. [MV12, Proposition

3.4]). Moreover, by our assumption, there exist a sequence of positive real numbers
Rj → +∞ and a sequence of biholomorphic embeddings gj : Bn+1 → U0 ∩ Ω such
that gj(0) = ηj and BU0∩Ω(ηj , Rj) ⊂ gj(Bn+1).

Consider the holomorphic maps

Gj := Tj ◦ gj : Bn+1 → Ωj ,

where Tj := ∆εj ◦ Lη′j for every j ∈ N∗. We note that Gj(0
′, 0) = (0′,−1) for

every j ∈ N∗. Then Proposition 4.3 implies that the sequence {Gj} is normal and
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its limits are holomorphic mappings from Bn+1 to MP . Moreover, by Montel’s
theorem the sequence G−1

j : Ωj → Bn+1 is also normal. Therefore, by Proposition

2.2, after taking some subsequence if necessary we may assume that {Gj} converges
uniformly on every compact subset of Bn+1 to a biholomorphism G from Bn+1 onto
MP . Using the same argument as in the proof of Theorem 1.2 for the squeezing
function, we conclude that Ω is strongly pseudoconvex at ξ0, as desired.

Altogether, the proof of Theorem 1.2 is finally complete. �
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