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Abstract

This paper devoted to study of time-fractional elliptic equations driven a multiplicative noise.
By combining the eigenfunction expansion method for symmetry elliptic operators, the variation
of constant formula for strong solutions to scalar stochastic fractional differential equations, Ito’s
formula and establishing a new weighted norm associated with a Lyapunov–Perron operator
defined from this representation of solutions, we show the asymptotic behaviour of solutions to
these systems in mean square sense. As a consequence, we also prove existence, uniqueness and
the convergence rate of their solutions.
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1 Introduction

Calculus (derivative and integral) is an ideal tool to describe evolutionary processes. Typically, each
evolutionary process is represented by a system of differential equations. By studying (qualitative
or quantitative) solutions of equations, one can know the current state as well as predict the past
or future posture of the process. However, common phenomena in life are history dependent. For
these phenomena, extrapolating its posture at a future time from the past depends on both local
observation and the whole past. Moreover, dependence in general is not the same at all times.
Fractional calculus (fractional derivative and fractional integral) is one of the theories that came
up to meet those requirements.

Fractional differential equations (equations contains fractional derivatives) are of great interest in
the last four decades due to its application in describing real-world problems, such as in signal
processing, in financial mathematics, in biotechnology, in image processing, in control theory, and
in mathematical psychology where fractional-order systems may be used to model the behaviour
of human beings, specifically, the way in which a person reacts to external influences depends on
the experience he or she has made in the past.

∗httuan@math.ac.vn, Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc
Viet, 10307 Ha Noi, Viet Nam
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The time-fractional diffusion equations have been introduced in Physics by Nigmatullin [N86] to
describe super slow diffusion process in a porous medium with the structure type of fractal geometry
(for example the Koch’s tree). On the probabilistic point of view, Metzler and Klafter [MK2000]
have pointed out that a time-fractional diffusion equation generates a non-Markovian diffusion
process with a long memory. Roman and Alemany [RA94] have considered continuous-time random
walks on fractals and observed that the average probability density of random walks on fractals
obeys a diffusion equation with a fractional time derivative asymptotically. Moreover, a time-
fractional diffusion equation also is used to model a relaxation phenomena in complex viscoelastic
materials, see, e.g., [GCR92].

The existence of solutions to time-fractional partial differential equations has been studied by
many authors. In [EK04], using Fourier transform, the authors have built a fundamental solution
for elliptic equations with smooth coefficient. By Galerkin method and the Yoshida approxima-
tion sequence, in [Z09] Zacher has proposed a way to prove existence of certain weak solutions to
abstract evolutionary integro-differential equations in Hilbert spaces. Using the operator theory
in functional analysis and the eigenfunction expansion method for symmetry elliptic operators, in
[SY11] Sakamoto and Yamamoto have proved the existence and uniqueness of the weak solution
for a fractional diffusion-wave equation. Recently, using a De Giorgi–Nash type estimation, in
[ACV16] and [Z13], the authors established the existence and Holder continuity of very weak so-
lutions for fractional parabolic equations. By proposing a definition of the Caputo derivative on a
finite interval in fractional Sobolev spaces, Gorenflo, Luchko and Yamamoto [GLY15] have investi-
gated solutions (in the distribution sense) to time-fractional diffusion equations from the operator
theoretic viewpoint.

In contrast to existence theory of solutions to deterministic fractional partial differential equations,
there are very few researches on stochastic fractional partial differential equations. Using the
integration by parts, Ito’s formula and the Parseval’s identity, an L2-theory for stochastic time-
fractional partial differential equations is presented in [CKK15] by Chen and co-authors. By a
choosing a framework for infinite dimensional stochastic integration, in [BGK15] Baeumer, Geissert
and Kovacs have showed the unique mild solution to a class of semi-linear Volterra stochastic
evolution equations is mean-p Holder continuous. In [CHN19], Chen, Hu and Nualart have studied
nonlinear stochastic time-fractional slow and fast diffusion equations. They have proven the non-
negativity of the fundamental solution, existence and uniqueness of solutions together with the
moment bounds of these solutions. In some cases, they have obtain the sample path regularity of
the solutions. Based on monotonicity techniques, in [LRS18] the authors have developed a method
to solve (stochastic) evolution equations on Gelfand triples with time-fractional derivative.

To our knowledge, until now, almost no research on the asymptotic behavior of solutions to stochas-
tic fractional partial differential equations has been published. Motivated by this fact, this paper
is devoted to study the stability in mean square sense for time-fractional elliptic equations driven
a multiplicative white noise. The paper is organised as follows. In Section 2, we recall a framework
of stochastic fractional differential equations. In Section 3, we first introduce a definition of mild
solution. Then we prove a theorem on existence and uniqueness and the main result of the paper
on the asymptotic behavior of solution (Theorem 8).
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2 Fractional calculus and stochastic fractional differential equa-
tions

We briefly recall an abstract framework of fractional calculus and stochastic fractional differential
equations.

Let α ∈ (0, 1], [a, b] ⊂ R and x : [a, b] → R be a measurable function such that
∫ b
a |x(τ)| dτ < ∞.

The Riemann–Liouville integral operator of order α is defined by

(Iαa+x)(t) :=
1

Γ(α)

∫ t

a
(t− τ)α−1x(τ) dτ,

where Γ(·) is the Gamma function. The Riemann–Liouville fractional derivative RLDα
a+x of x on

[0, T ] is defined by
RLDα

a+x(t) := (DI1−αa+ x)(t), for almost t ∈ [0, T ],

where D = d
dt is the usual derivative. The Caputo fractional derivative of x on [0, T ] is defined by

CDα
0+x(t) =RLDα

a+(x(t)− x(0)) for almost t ∈ [0, T ].

The Caputo fractional derivative of a d-dimensional vector function x(t) = (x1(t), . . . , xd(t))
T is

defined component-wise as

(CDα
a+x)(t) := (CDα

a+x1(t), . . . ,
CDα

a+xd(t))
T.

Let A ∈ Rd×d and f : [0,∞) → Rd is a continuous vector-valued function. As showed in [P99, p.
140], the equation with the fractional order α ∈ (0, 1)

CDα
0+x(t) = Ax(t) + f(t), t > 0,

x(0) = x0 ∈ Rd,

has a unique solution x on [0,∞) which have the presentation

x(t) = Eα(tαA)x0 +

∫ t

0
(t− τ)α−1Eα,α((t− τ)αA)f(τ)dτ, t ≥ 0,

where Eα,β : Rd×d → Rd×d is the Mittag-Leffler function defined by

Eα,β(A) :=

∞∑
k=0

Ak

Γ(αk + β)
.

For more details on Mittag-Leffler functions, we refer the reader to the monograph [P99].

Next, we discuss on a fractional stochastic differential equation of order α ∈ (12 , 1) in the following
form

CDα
0+X(t) = AX(t) + b(t,X(t)) + σ(t,X(t))

dWt

dt
, t > 0, (1)

where Wt is a standard scalar Brownian motion on an underlying complete filtered probability
space (Ω,F ,F := {Ft}t∈[0,∞),P) and b, σ : [0,∞) × Rd → Rd are measurable functions satisfying
the following conditions.
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(H1) There exists L > 0 such that for all x, y ∈ Rd, t ∈ [0,∞)

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ L‖x− y‖.

(H2) σ(·, 0) is essentially bounded, i.e.,

‖σ(·, 0)‖∞ := ess supτ∈[0,∞)‖σ(τ, 0)‖ <∞

almost sure and b(·, 0) is L2-locally integrable, i.e., for any T > 0∫ T

0
‖b(τ, 0)‖2 dτ <∞.

For each t ∈ [0,∞), let Xt := L2(Ω,Ft,P) be the space of all mean square integrable functions
f : Ω → Rd with ‖f‖ms :=

√
E‖f‖2. A process ξ : [0,∞) → L2(Ω,F ,P) is said to be F-adapted if

ξ(t) ∈ Xt for all t ≥ 0. We now restate the notion of classical solution to (1), see e.g., [ADH19, p.
209] and [DHKT].

Definition 1 (Classical solution of stochastic time-fractional differential equation). For each η ∈
X0, an F-adapted process X is called a solution of (1) with the initial condition X(0) = η if for
every t ∈ [0,∞) it satisfies

X(t) = η +
1

Γ(α)

∫ t

0
(t− τ)α−1(AX(τ) + b(τ,X(τ)))dτ+

1

Γ(α)

∫ t

0
(t− τ)α−1σ(τ,X(τ))dWτ . (2)

It was proved in [DHKT] that for any η ∈ X0, there exists a unique solution ϕ(t, η) of (2). The
following result gives a special presentation of ϕ(t, η).

Theorem 2 (A variation of constant formula for stochastic time-fractional differential equation).
Let η ∈ X0 arbitrary. Then the classical solution ϕ(t, η) to (1) with the initial condition ϕ(0, η) = η
has the form

ϕ(t, η) = Eα(tαA)η +

t∫
0

(t− τ)α−1Eα,α((t− τ)αA)b(τ, ϕ(τ, η)) dτ

+

t∫
0

(t− τ)α−1Eα,α((t− τ)αA)σ(ϕ(τ, η)) dWτ , t ≥ 0.

Proof. See [ADH19, Theorem 2.3].

As an application of the preceding theorem, we obtain an explicit representation of the solution to
stochastic linear inhomogeneous fractional differential equations.
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Corollary 3. Consider the system (1) with the initial data X(0) = η. Assume that the coefficient
functions b and σ only depend on the time variable t. Then the explicit solution to the problem

CDα
0+X(t) = AX(t) + b(t) + σ(t)

dWt

dt
, t > 0,

X(0) = η,

as

ϕ(t, η) = Eα(tαA)η +

t∫
0

(t− τ)α−1Eα,α((t− τ)αA)b(τ) dτ

+

t∫
0

(t− τ)α−1Eα,α((t− τ)αA)σ(τ) dWτ , t ≥ 0.

Remark 4. In this paper, we consider stochastic fractional differential equations driven by a scalar
Brownian motion. The solution of these equations is defined as square integrable processes. Thus,
from the Ito’s formula, we see that it makes sense when the fractional order of these equations
belongs to the interval (12 , 1).

3 Asymptotic behavior in mean square sense of solutions to time-
fractional elliptic equations driven a multiplicative white noise

Let U be a bounded domain in Rd with the boundary ∂U ∈ C1. We consider the equation of the
order α ∈ (1/2, 1)

∂αu(t, x)

∂tα
=

d∑
i,j=1

∂xi(aij(x)∂xju(t, x)) + c(x)u(t, x)

+ βu(t, x) + γu(t, x)
dWt

dt
, (3)

where

(a1) β, γ are arbitrary coefficients, u(t, x) ∈ R with t ∈ R+, x ∈ Ū ;

(a2) aij ∈ C1(Ū), aij = aji for all 1 ≤ i, j ≤ d and there exists θ > 0 such that
∑d

i,j=1 aij(x)ξiξj ≥
θ‖ξ‖2 for all x ∈ Ū , ξ ∈ Rd;

(a3) c ∈ C(Ū), c(x) ≤ 0 for all x ∈ Ū ;

(a4) (Wt)t∈[0,∞) is a standard scalar Brownian motion on an underlying complete filtered proba-
bility space (Ω,F ,F := {Ft}t∈[0,∞),P).
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Assume that the initial condition
u(0, ·) = f ∈ L2(U) (4)

is F0-measurable and the Dirichlet condition as

u(t, x) = 0, t ≥ 0, x ∈ ∂U. (5)

Let {ej}∞j=1 be the orthonormal basis of the elliptic operator L defined by

Lu = −

 d∑
i,j=1

∂xi(aij∂xju) + c(x)u


in the space L2(U) with respect to eigenvalues 0 < λ1 < λ2 ≤ · · · ≤ λn ≤ . . . , λn →∞ as n→∞
(see e.g., [E98, p. 335]). Suppose that {u(t)}t≥0 is a solution to the system (3), (4) and (5) and
denote yj := 〈u, ej〉L2(U), 1 ≤ j <∞ with the basis {ej}∞j=1. Then yj satisfies the equation

CDα
0+yj(t) = (−λj + β)yj(t) + γyj(t)dWt, t > 0

with the initial condition yj(0) = 〈f, ej〉L2(U). By virtue of Corollary 3, we have

yj(t) = Eα(−(λj − β)tα)fj + γ

∫ t

0
(t− s)α−1Eα,α(−(λj − β)(t− s)α)yj(s)dws, t ≥ 0.

This suggests us to establish a definition of solution as below. On the L2(U), we introduce two
families of operators {S(t)}t≥0 and {R(t)}t>0 defined by

S(t)v :=
∞∑
j=1

Eα((−λj + β)tα)〈v, ej〉L2(U)ej , t ≥ 0, v ∈ L2(U),

and

R(t)v :=
∞∑
j=1

tα−1Eα,α((−λj + β)tα)〈v, ej〉L2(U)ej , t > 0, v ∈ L2(U).

Definition 5 (Mild solution of fractional stochastic elliptic equation). Let T > 0 be arbitrary.
An L2(U)-valued process {u(t)}t∈[0,T ] is called a mild solution of the problem (3), (4), (5) on the
interval [0, T ] if

u(t) = S(t)f + γ

∫ t

0
R(t− s)u(s)dWs, t ∈ [0, T ],

where the integral
∫ t
0 R(t− s)u(s)dWs is defined by〈∫ t

0
R(t− s)u(s)dWs, x

〉
L2(U)

=

∫ t

0
〈R(t− s)u(s), x〉L2(U)dWs

for all x ∈ L2(U), t ≥ 0.
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This definition is a stochastic version of the deterministic case motivated by the variation of constant
formula, see e.g., [KTT20, Definition 2.1].

Now denote by HT the space of all L2(U)-valued processes {u(t)}t∈[0,T ] which are predictable and
satisfy

sup
t∈[0,T ]

E‖u(t)‖2L2(U) <∞.

It is obvious that HT is a Banach space with the norm

‖u‖HT
:=
√

sup
t∈[0,T ]

E‖u(t)‖2
L2(U)

.

The following theorem show a result on existence and uniqueness of mild solution to the problem
(3) with the initial conditions (4), (5).

Theorem 6 (Existence and uniqueness of mild solution to fractional stochastic elliptic equation).
Suppose that β < λ1. The system (3), (4), (5) has a unique mild solution in HT .

Proof. On the space HT we establish an operator Tf by

Tfu(t) = S(t)f + γ

∫ t

0
R(t− s)u(s)dWs, t ∈ (0, T ],

and Tfu(0) = f . First, we prove that this operator is well-defined. Indeed, for any t ≥ 0,

‖S(t)f‖2L2(U) =
∞∑
j=1

〈S(t)f, ej〉2L2(U)

=
∞∑
j=1

Eα((−λj + β)tα)2〈f, ej〉2L2(U)

≤ sup
t≥0

Eα((−λ1 + β)tα)2‖f‖2L2(U), (6)

and ∥∥∥∥∫ t

0
R(t− s)u(s)dWs

∥∥∥∥2
L2(U)

=
∞∑
j=1

〈∫ t

0
R(t− s)u(s)dWs, ej

〉2
L2(U)

=

∞∑
j=1

(∫ t

0
(t− s)α−1Eα,α((−λj + β)(t− s)α)〈u(s), ej〉L2(U)dWs

)2

. (7)
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Hence from (7), we have

E
∥∥∥∥∫ t

0
R(t− s)u(s)dWs

∥∥∥∥2
L2(U)

=
∞∑
j=1

E(

∫ t

0
(t− s)α−1Eα,α((−λj + β)(t− s)α)〈u(s), ej〉L2(U)dWs)

2

=

∞∑
j=1

(t− s)2α−2Eα,α((−λj + β)(t− s)α)2E〈u(s), ej〉2L2(U)ds

≤
∫ t

0
(t− s)2α−2Eα,α((−λ1 + β)(t− s)α)2E‖u(s)‖2L2(U)ds

≤
∫ ∞
0

s2α−2Eα,α((−λ1 + β)sα)2ds sup
t∈[0,T ]

E‖u(t)‖2L2(U),

which together with (6) implies that

‖Tfu‖HT
= sup

t∈[0,T ]
E‖Tfu(t)‖2L2(U) <∞.

Note that for any ρ > 0, the norm ‖ · ‖HT
and the norm ‖ · ‖HT ,w defined by ‖u‖HT ,w :=√

supt∈[0,T ] exp (−ρt)E‖u(t)‖2
L2(U)

are equivalent. Next, we show that the operator Tf is contractive

on HT with respect to the norm ‖ · ‖HT ,w. For any u, v ∈ HT , t ∈ [0, T ], we obtain the estimates

exp (−ρt)E‖Tfu(t)− Tfv(t)‖2L2(U)

≤ γ2
∫ t

0
exp (−ρ(t− s))(t− s)2α−2Eα,α((−λ1 + β)(t− s)α)2

exp (−ρs)E‖u(s)− v(s)‖2L2(U)ds

≤ γ2 sup
t≥0

Eα,α((−λ1 + β)tα)2
∫ t

0
exp (−ρs)s2α−2ds

sup
t∈[0,T ]

exp (−ρt)E‖u(t)− v(t)‖2L2(U)

≤
γ2 supt≥0Eα,α((−λ1 + β)tα)2Γ(2α− 1)

ρ2α−1

sup
t∈[0,T ]

exp (−ρt)E‖u(t)− v(t)‖2L2(U)

=
γ2 supt≥0Eα,α((−λ1 + β)tα)2Γ(2α− 1)

ρ2α−1
‖u− v‖2HT ,w

. (8)

Due to the estimate (8), we obtain

‖Tfu− Tfv‖2HT ,w
≤
γ2 supt≥0Eα,α((−λ1 + β)tα)2Γ(2α− 1)

ρ2α−1
‖u− v‖2HT ,w

.

Thus, for ρ > 0 large enough, for example,

γ2 supt≥0Eα,α((−λ1 + β)tα)2Γ(2α− 1)

ρ2α−1
< 1,
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then Tf is contractive in HT . The proof is complete.

Remark 7. The proof of Theorem 6 is true with any T > 0 arbitrarily. Thus, the problem (3), (4),
(5) has the unique global mild solution on the [0,∞).

By combining the eigenfunction expansion method for symmetric elliptic operators and stability of
solutions to stochastic fractional differential equations, we show the asymptotic behavior in mean
square sense of solutions to the time-fractional stochastic elliptic equation (3) with the initial data
(4) and (5) in the following result.

Theorem 8 (Asymptotic behavior in mean square sense of the mild solution to fractional stochatic
elliptic equation). Consider the system (3), (4) and (5). Assume that β < λ1. Then it has a unique
global mild solution u on [0,∞). Moreover, the following statements holds.

(i) For

γ2
∫ ∞
0

s2α−2Eα,α(−(λ1 − β)sα)2ds < 1 (9)

and any δ ∈ (0, 1), we have
sup
t≥0

tδE‖u(t)‖2L2(U) <∞.

(ii) For

γ2
∫ ∞
0

s2α−2Eα,α(−(λ1 − β)sα)2ds > 1, (10)

there exists f such that
lim
t→∞

E‖u(t)‖2L2(U) 9 0.

Remark 9. The equation (3) can be thought as an stochastic perturbed model of the time-fractional
elliptic equation

∂αu(t, x)

∂tα
=

d∑
i,j=1

∂xi(aij(x)∂xju(t, x)) + c(x)u(t, x), t > 0. (11)

Theorem 8(i) shows that under small perturbations, for example β < λ1 and γ satisfies (9), the
asymptotic stability (in mean square sense) of (11) is guaranteed. However, if the noise is large
(e.g., the condition (10) is satisfied), its stability will be broken.

Remark 10. For α ∈ (0, 1), λ < 0, from [CDST14, Lemma 3] or [CHN19, Lemma 5.1 (a)], we see
that ∫ ∞

0
s2α−2Eα,α(λsα)2ds <∞.

Proof of Theorem 2. From Remark 7 we see that the problem (3), (4) and (5) has a unique mild
solution on [0,∞). Let {u(t)}t≥0 be this solution and yj := 〈u, ej〉L2(U), 1 ≤ j <∞.

(i) To complete the proof of this part, we only show that

sup
t≥0

tδ‖y1(t)‖2ms <∞. (12)
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On the space of bounded and continuous functions Cb([0,∞),R) we establish a functional as below.
For any ξ ∈ Cb([0,∞),R), we define

‖ξ‖w := sup
t∈[0,∞)

α(t)|ξ(t)|,

where

α(t) =

{
T δ, t ∈ [0, T ],

tδ, t ≥ T,
with T is positive coefficient and chosen later. The set Cw([0,∞),R) := {ξ ∈ Cb([0,∞),R) :
‖ξ‖w < ∞} is a Banach space with the norm ‖ · ‖w. Put a = −λ1 + β, η = Ey1(0)2. For any
ξ ∈ Cw([0,∞),R), let

Tηξ(t) := Eα(atα)2η + γ2
∫ t

0
(t− τ)2α−2Eα,α(a(t− τ)α)2ξ(τ) dτ, t ≥ 0.

This operator is contractive. Indeed, for any ξ, ξ̂ ∈ Cw([0,∞),R), we have

Tηξ(t)− Tη ξ̂(t) = γ2
∫ t

0
(t− τ)2α−2Eα,α(a(t− τ)α)2(ξ(τ)− ξ̂(τ)) dτ

for all t ∈ [0,∞). Consider the case where t ∈ [0, T ]. In this case

α(t)|Tηξ(t)− Tη ξ̂(t)| ≤ T δγ2
∫ t

0
(t− τ)2α−2Eα,α(a(t− τ)α)2|ξ(τ)− ξ̂(τ)|dτ

≤ γ2
∫ t

0
(t− τ)2α−2Eα,α(a(t− τ)α)2α(τ)|ξ(τ)− ξ̂(τ)|dτ

≤ γ2
∫ ∞
0

s2α−2Eα,α(asα)2ds‖ξ − ξ̂‖w. (13)

Next, for t > T , then

α(t)|Tηξ(t)− Tη ξ̂(t)| ≤ tδγ2
∫ t

0
(t− τ)2α−2Eα,α(a(t− τ)α)2|ξ(τ)− ξ̂(τ)|dτ

≤ tδγ2
∫ t

0
(t− τ)2α−2Eα,α(a(t− τ)α)2τ−δdτ‖ξ − ξ̂‖w. (14)

Note that on the interval [0, t/2],

tδ
∫ t/2

0
(t− τ)2α−2Eα,α(a(t− τ)α)2τ−δ dτ

≤ tδ
∫ t/2

0

C

(t− τ)2+2α
τ−δdτ

≤ Ctδ

(t/2)2α+2

∫ t/2

0
τ−δdτ

≤ C22α+δ+1

(1− δ)t2α+1

≤ C22α+δ+1

(1− δ)T 2α+1
, (15)
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on the interval [t/2, t−M ],

tδ
∫ t−M

t/2
(t− τ)2α−2Eα,α(a(t− τ)α)2τ−δdτ

≤ tδ

(t/2)δ

∫ t−M

t/2

C

(t− τ)2α+2
dτ

≤ C2δ

(2α+ 1)M2α+1
, (16)

and on [t−M, t],

tδ
∫ t

t−M
(t− τ)2α−2Eα,α(a(t− τ)α)2τ−δdτ

≤ tδ

(t−M)δ

∫ t

t−M
(t− τ)2α−2Eα,α(a(t− τ)α)2dτ

≤ tδ

(t−M)δ

∫ ∞
0

s2α−2Eα,α(asα)2ds. (17)

From (15), (16), (17) and (9) choosing M > 0 and T > 2M such that for any t > T

γ2C22α+δ+1

(1− δ)T 2α+1
+

Cγ22δ

(2α+ 1)M2α+1
+

γ2tδ

(t−M)δ

∫ ∞
0

s2α−2Eα,α(asα)2ds < 1.

This combines with (13) and (14) showing that Tη is contractive on the space Cw([0,∞),R). On
the other hand, it is easy to see that Tη is bounded in Cw([0,∞),R). Hence, by Banach fixed point
theorem, there exists a unique fixed point ξ∗ in Cw([0,∞),R) which is also the fixed point of this
operator in Cb([0,∞),R). This implies the estimate (12).

(ii) Without loss of generality, choosing the initial data f such that yj(0) = 〈f, ej〉L2(U) ∈ X0 \ {0}.
To complete the proof of this part we will prove that

‖yj(t)‖ms 9 0 (18)

as t→∞. Indeed, suppose that (18) is not true, that is

lim
t→∞

Eyj(t)2 = 0.

Put h(t) = Eyj(t)2, t ≥ 0. It is worth noting that h(t) > 0 for all t ≥ 0. By this fact there exists
an increasing monotone consequence {tk}∞k=1 such that 0 < t1 < t2 < ... < tk →∞ and

0 < h(tk) = min
s∈[0,tk]

h(s), k = 1, 2, . . .

11



Thus for any k = 1, 2, . . . , we have

h(tk) = Eα((−λj + β)tαk )2Eyj(0)2 + γ2
∫ tk

0
(tk − s)2α−2Eα,α((−λj + β)(tk − s)α)2h(s)ds

≥ Eα((−λj + β)tαk )2Eyj(0)2 + γ2
∫ tk

0
(tk − s)2α−2Eα,α((−λj + β)(tk − s)α)2ds h(tk)

≥ Eα((−λj + β)tαk )2Eyj(0)2 + γ2
∫ tk

0
s2α−2Eα,α((−λj + β)sα)2ds h(tk)

≥ γ2
∫ tk

0
s2α−2Eα,α((−λj + β)sα)2ds h(tk).

This together with (10) that

γ2
∫ tk

0
s2α−2Eα,α((−λj + β)sα)2ds > 1

for k large enough leads to
h(tk) > h(tk),

a contradiction. The proof is complete.
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