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Abstract. Let G = (V,E) be a bipartite graph over the vertex set V = {1, . . . , r}
and let J = J(G) be the cover ideal of G in the polynomial ring R = K[x1, . . . , xr].
It is known that there are integers b and t0 such that reg J t = d(J)t + b is a linear
function in t for all t > t0. In this paper, we give effective bounds for b and t0.

Introduction

Let R = K[x1, . . . , xr] be a polynomial ring over a field K and let I be a homo-
geneous ideal of R. The Castelnuovo-Mumford regularity (or regularity) of I, denote
reg(I), is an important invariant in commutative algebra and algebraic geometry. It
is celebrated result that the reg I t is a linear function in t for t large enough (see
[10, 30]), i.e. there are non-negative integers b and t0 such that

reg I t = dt+ b for all t > t0.

While the constant d was implicitly described in [30] and made more precise in [35],
the information of b and t0 is little known, that make a great attraction for researchers.
In [12], Eisenbud and Ulrich asked two following questions:

(1) What is the significance of the number b?
(2) What is a suitable bound for t0?

In general, the stability index t0 and the constant b are hard to compute. There
have been particular attempts is identifying t0 and b for certain classes ideals (see e.g.
[3, 6, 7, 8, 11, 12, 16, 17, 18, 27, 23]).

Recently, there are a lot of work using the relationship between the combinatorial
properties of graphs and the algebraic properties of ideals associated with graphs to
find bounds or compute b and t0. For instant, when I = I(G) is an edge ideal of a
graph G. Herzog, Hibi and Zheng [21] showed that if I has a linear resolution, so
does I t for all t > 1; Beyarslan, Hà and Trung [7] proved that if G is a forest then
reg(I t) = 2t + v(G)− 1, for all t > 1, where v(G) is the matching number of G; this
formula also holds for any Cameron-Walker graph G (see [4]); Alilooee and Beyarslan
and Selvaraja [2] proved that for any unicyclic graph (which is not a cycle) and any
integer t > 1, they had reg(I t) = 2t+ reg(I)− 2.
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Moving away from edge ideals, the next class of monomial ideals to consider are
cover ideals. For a finite simple graph G on the vertex set {1, . . . , r}, let J(G) ⊆ R
denote the cover ideal of G, which is defined by

J(G) := (xτ | τ is a minimal vertex cover of G).

Note that cover ideal J(G) =
⋂
{i,j}∈E(G)(xi, xj) is the Alexander dual of the edge

ideal I(G). Although the connection between the algebraic properties of the edge
ideals and the combinatorial properties of graphs has been studied extensively, not
much is known about the connection between the properties of the cover ideals. Sev-
eral results on the regularity of the ordinary powers of J(G) have been recently es-
tablised only in very special cases. For example, in [18, Corollary 3.4], Hang and
Trung proved that when G bipartite graphs, then there is a non-negative integer b 6
|V (G)|−d(J(G))−1 such that reg J(G)t = d(J(G))t+b for all t > r+2; In [28], A. Ku-
mar and R. Kumar showed that if G is a tree then reg J(G)t = d(J(G))t for all t > 1.

As in many previous works in the literature, we are interested in two questions of
Eisenbud and Ulrich for the case I = J(G), the cover ideal of a bipartite graph G.
Denote d(J(G)) to be the maximal degree of minimal monomial generators of J(G).
Our main result is stated as the following theorem.

Theorem 3.2. Let G be a bipartite graph. Then there is a non-negative integer b
with 0 6 b 6 e− d(J(G)), such that

reg J(G)t = d(J(G))t+ b for all t > max

{
m+ 1

2
, e− b− d(J(G)) + 1

}
,

where m is the length of a longest simple path in G and e = max{reg(J(H)) |
H is a subgraph of G}.

It is worth mentioning that the following consequence of our main result improves
[18, Corollary 3.4] significantly.

Corollary 3.3. Let G be a bipartite graph with r vertices. Then, there is a non-
negative integer b 6 r − d(J(G))− 1 such that

reg J(G)t = d(J(G))t+ b, for all t >
r

2
.

Our technique is based on a formula given by Takayama [34] for computing the
dimension of the K-vector space H i

m(R/I)α with α ∈ Zr in the case I is a monomial
ideal, which is a generalization of Hochster’s formula for the case I is squarefree [26,
Theorem 4.1]. By using this formula for the case I = J(G)t where G is a bipartite
graph, we are able to study the non-vanishing of H i

m(R/I)α by searching for α in a
polytope in Rr. And then we use the theory of integer programming as the key role
in this paper (see e.g. [19, 24, 25] for this approach).

The paper is organized as follows. In Section 1, we recall some basic notations and
terminology for simplicial complex, the relationship between simplicial complexes and
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cover ideals of graphs; give Takayama’s formula for computing local cohomology mod-
ules. In Section 2, we consider the integer solutions of systems of linear inequalities
with bipartite matrices. In the last section, we prove the main theorem, Theorem 3.2.

1. Preliminary

In this section, we recollect notation, terminology and basic results used in the
paper. We follow standard texts [9, 20, 32, 33]. Throughout the paper, let K be a
field, let R = K[x1, . . . , xr], r > 1 be a polynomial ring, and let m = (x1, . . . , xr) be
the maximal homogeneous ideal of R.

1.1. Regularity. Let M be a finitely generated graded R-module. For each i =
0, . . . , dimM , the ai-invariant of M is defined by

ai(M) := max{t | H i
m(M)t 6= 0},

where H i
m(M) is the i-th local cohomology module of M with support in m, with

the convention that ai(M) = −∞ if H i
m(M) = 0. Then, the Castelnuovo-Mumford

regularity (regularity for short) of M is defined by

reg(M) = max{ai(M) + i | 0 6 i 6 dimM}.

This invariant can be defined via either the minimal free resolutions or the local
cohomology modules.

Let M be a nonzero finitely generated graded R-module and let

0→
⊕
j∈Z

R(−j)βp,j(M) → · · · →
⊕
j∈Z

R(−j)β0,j(M) → 0

be the minimal free resolution of M . The Castelnuovo–Mumford regularity (or regu-
larity for short) of M is defined by

reg(M) = max{j − i | βi,j(M) 6= 0}.

Let us denote by d(M) the maximal degree of a minimal homogeneous generator
of M . The definition of the regularity implies d(M) 6 reg(M).

For any nonzero proper homogeneous ideal I of R, by looking at the minimal free
resolution, it is easy to see that reg(I) = reg(R/I) + 1, so we shall work with reg(I)
and reg(R/I) interchangeably.

1.2. Simplicial complexes and Stanley-Reisner ideals. We recall a relationship
between cover ideals of graphs and simplicial complexes. A simplicial complex on
V = {1, . . . , r} is a collection of subsets of V , called faces, such that if σ ∈ ∆ and
τ ⊆ σ then τ ∈ ∆. A face of ∆ not properly contained in another face of ∆ is called
a facet. The set of facets is denoted by F(∆).

The Stanley-Reisner ideal associated to a simplicial complex ∆ is the squarefree
monomial ideal

I∆ := (xτ | τ /∈ ∆) ⊆ R.
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Note that if I is a squarefree monomial ideal, then it is a Stanley-Reisner ideal of
the simplicial complex ∆(I) := {τ ⊆ V | xτ /∈ I}. If I is a monomial ideal (maybe
not squarefree) we also use ∆(I) to denote the simplicial complex corresponding to

the squarefree monomial ideal
√
I.

Let F(∆) be the set of facets of ∆. If F(∆) = {F1, . . . , Fm}, we write ∆ =
〈F1, . . . , Fm〉. Then, I∆ has the primary-decomposition (see [32, Theorem 1.7]):

I∆ =
⋂

F∈F(∆)

(xi | i /∈ F ).

For n > 1, the n-th symbolic power of I∆ is

I
(n)
∆ =

⋂
F∈F(∆)

(xi | i /∈ F )n.

1.3. Degree complexes. Let I be a non-zero monomial ideal. Since R/I is an Nr−
graded algebra, H i

m(R/I) is an Zr-graded module over R/I for every i. For each
degree α = (α1, . . . , αr) ∈ Zr, in order to compute dimK H

i
m(R/I)α we use a formula

given by Takayama [34, Theorem 2.2] which is a generalization of Hochster’s formula
for the case I is squarefree [26, Theorem 4.1].

Set Gα := {i | αi < 0}. For a subset F ⊆ V , we let RF := R[x−1
i | i ∈ F ]. Define

the degree complex ∆α(I) by

(1) ∆α(I) := {F ⊆ V \Gα | xα /∈ IRF∪Gα}.

Lemma 1.1. [34, Theorem 2.2] dimK H
i
m(R/I)α = dimK H̃i−|Gα|−1(∆α(I);K).

The following result of Minh and Trung is very useful for computing ∆α(I
(t)
∆ ), which

allows us to investigate reg(I
(t)
∆ ) by using the theory of convex polyhedra.

Lemma 1.2. [31, Lemma 1.3] Let ∆ be a simplicial complex and α ∈ Nr. Then,

F(∆α(I
(t)
∆ )) =

{
F ∈ F(∆) |

∑
i/∈F

αi 6 t− 1

}
.

1.4. Graphs and their cover ideals. Let G be a simple graph. We use the symbols
V (G) and E(G) to denote the vertex set and the edge set of G, respectively. A graph
H is called a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If H is a subgraph
of G and E(H) is the set of all edges of G with end points in V (H), then H is called
an induced subgraph of G.

Let p : v0, v1, . . . , vk is a sequence of vertices of G. Then,

(1) p is called a path if {vi−1, vi} ∈ E(G) for i = 1, . . . , k. In this case, we say that
p is a path from v0 to vk.

(2) p is called a simple path if it is a path and every vertex appears exactly once.
(3) p is called a cycle if k > 3 and p is a path with distinct vertices except for

v0 = vk.
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In each case, k is called the length of p. A simple path is longest if it is among the
simple paths of largest lengths of G.

The graph G is bipartite if V (G) can be partitioned into two subsets X and Y so
that every edge has one end in X and another end in Y ; such a partition (X, Y ) is
called a bipartition of the graph. Note that G is bipartite if and only if it has no cycle
of odd length (see [9, Theorem 4.7]).

A graph is connected if there is a path from any point to any other point in the graph.
A graph that is not connected is said to be disconnected. A connected component of
a graph G is a connected subgraph that is not part of any larger connected subgraph.
The components of any graph partition its vertices into disjoint sets, and are the
induced subgraphs of those sets. If a connected component of G has just one element,
then this element is called an isolated vertex of G.

Assume that E(G) = {e1, . . . , en}. The incidence matrix of G is the n × r matrix
A(G) = (aij), where aij = 0 if j /∈ ei and aij = 1 if j ∈ ei. It is well-known that G is
bipartite if and only if A(G) is totally unimodular, i.e. the determinant of every its
square submatrix is one of −1, 0, 1 (see [5, Theorem 5, page 164]).

A connected graph is a tree if it has no cycles. If a subgraph T of G with V (T ) =
V (G) is a tree, then T is called a spanning tree of G. From [9, Theorem 4.3] and [9,
Theorem 4.6], we deduce that:

Lemma 1.3. If G is a connected graph, then |E(G)| > |V (G)| − 1. The equality
occurs if and only if G is a tree.

If G is a tree, then for each pair of vertices u and v of G has a unique simple path
from u to v according to [9, Proposition 4.1]. The length this path is just the distance
between u and v, and we denoted by distG(u, v).

In the sequence we need the following fact on bipartite graphs.

Lemma 1.4. Let G be a bipartite graph with at least one edge. Assume that for each
edge {i, j} of G we have a real number aij. Then, the linear system:{

xi + xj = aij,

{i, j} ∈ E(G)

has no unique solution.

Proof. It suffices to show that the corresponding homogeneous system{
xi + xj = 0,

{i, j} ∈ E(G)

has a non-trivial solution. In order to prove this assertion, let (A,B) be a bipartition
of G. Then, for i = 1, . . . , r, put

yi =

{
1 if i ∈ A,
−1 if i ∈ B.
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It is obvious that (y1, . . . , yr) is a non-trivial solution of the homogeneous system,
and hence the lemma follows. �

A vertex cover of G is a subset of V (G) which meets every edge of G; a vertex cover
is minimal if none of its proper subsets is itself a cover. For a subset τ = {i1, . . . , it}
of V , set xτ := xi1 · · · xit . Then, the cover ideal of G is defined by

J(G) := (xτ | τ is a minimal vertex cover of G),

Note that J(G) can be written as

(2) J(G) =
⋂

{u,v}∈E(G)

(xu, xv),

and J(G) is the Stanley-Reisner ideal corresponding with the simplicial complex

(3) ∆(J(G)) = 〈V \ e | e ∈ E〉 .
When G is bipartite graph, the cover ideal J(G) is normally torsion-free, i.e.

J(G)(t) = J(G)t for all t > 1 by [15, Corollary 2.6]. Therefore, Lemma 1.2 can
be written as follows.

Lemma 1.5. Let G = (V,E) be a bipartite graph with vertex set V = {1, . . . , r} and
the edge set E. For every α = (α1, . . . , αr) ∈ Nr and t > 1, we have

∆α(J(G)t) = 〈V \ {u, v} | {u, v} ∈ E and αu + αv 6 t− 1〉 .

2. Integer polytopes

For a vector α = (α1, . . . , αr) ∈ Rr, we set |α| := α1 + · · ·+αr and for a nonempty
bounded closed subset S of Rr we set

δ(S) := max{|α| | α ∈ S}.
Let G = (V,E) be a bipartite graph on the vertex set V = {1, . . . , r}, and edge set

E. Assume that

H i
m(R/J(G)t)β 6= 0

for some i > 0, t > 1 and β = (β1, . . . , βr) ∈ Nr.
By Lemma 1.1 we have

(4) dimK H̃i−1(∆β(J(G)t);K) = dimK H
i
m(R/J(G)t)β 6= 0.

In particular, ∆β(J(G)t) is not acyclic.
Let E = {e1, . . . , en} where n > 1. Then, by Equation (3)

∆(J(G)) = 〈V \ e1, . . . , V \ en〉 .
Since ∆β(J(G)t) is not acyclic, by Lemma 1.5 we may assume that

∆β(J(G)t) = 〈V \ e1, . . . , V \ ek〉
where 1 6 k 6 n.
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For each integer t > 1, let Pt be the set of solutions in Rr of the following system:

(5)


xu + xv 6 t− 1 for {u, v} ∈ E1,

xu + xv > t for {u, v} ∈ E2,

x1 > 0, . . . , xr > 0,

where E1 = {e1, . . . , ek}, E2 = {ek+1, . . . , en}, 1 6 k 6 n. Then, β ∈ Pt. Moreover,
by Lemma 1.5 one has

∆α(J(G)s) = 〈V \ e1, . . . , V \ ek〉 = ∆β(J(G)t) whenever α ∈ Ps ∩ Nr .

In order to study the set Pt, we consider Ct to be the set of solutions in Rr of the
following system:

(6)


xu + xv 6 t for {u, v} ∈ E1,

xu + xv > t for {u, v} ∈ E2,

x1 > 0, . . . , xr > 0.

Note that if G is a bipartite graph, then G is a unimodular hypergraph by [5,
Theorem 5, page 164]. So, we have both Pt and Ct are integer convex polyhedra by
[33, Theorem 19.1], i.e. all their vertices have integral coordinates. Especially, we
have:

Lemma 2.1. C1 is a polytope with dim C1 = r. Moreover, if α = (α1, . . . , αr) ∈ Rr is
a vertex of C1, then α ∈ {0, 1}r.

Proof. By [19, Lemma 2.1], we imply that C1 is a polytope with dim C1 = r.
Let α is a vertex of C1, by [33, Formula 23 in Page 104], α is the unique solution

of a system of linear equations of the form

(7)

{
xu + xv = 1 for {u, v} ∈ S1,

xj = 0, for j ∈ S2,

where S1 ⊆ E1 ∪ E2, S2 ⊆ {1, . . . , r} and |S1|+ |S2| = r.
Note that the incidence matrix A(G) of G is totally unimodular as G is bipartite. It

follows that the matrix of the System (7) is also totally unimodular. By [33, Theorem
2.17], we have α is a {0, 1}−vector, as required. �

Remark 2.2. Since Ct = tC1, Ct is also a polytope. Observe that Pt ⊆ Ct, so Pt is a
polytope as well.

Since C1 is a polytope of dimension r, there is a vertex γ = (γ1, . . . , γr) of C1 such
that

δ(C1) = |γ| = γ1 + · · ·+ γr.

Let a := |γ| = δ(C1), we have a > 1. Note that tγ is also a vertex of Ct and
δ(Ct) = at. Since Pt ⊆ Ct, we have δ(Pt) 6 at, so we can write

δ(Pt) = at− bt for some integer bt > 0.
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Lemma 2.3. If Pt 6= ∅, then Pt+1 6= ∅ and bt > bt+1.

Proof. Let α = (α1, . . . , αr) ∈ Pt such that δ(Pt) = |α|. Since α is a solution of the
System (5), and γ is a solution of the System (6) with t = 1, by Lemma 2.1 we have
γ ∈ {0, 1}r. Let α + γ = θ = (θ1, . . . , θr), we deduce that{

θu + θv = (αu + αv) + (γu + γv) 6 t− 1 + 1 = t for {u, v} ∈ E1,

θu + θv = (αu + αv) + (γu + γv) > t+ 1 for {u, v} ∈ E2.

In other words, θ ∈ Pt+1. Therefore, Pt+1 6= ∅ and δ(Pt+1) > |α| + |γ|. Since
δ(Pt+1) = a(t+ 1)− bt+1 and |α|+ |γ| = a(t+ 1)− bt, we have bt > bt+1. �

Let m be the length of a longest simple path in G. In the following lemma, we show

that δ(Pt) is a linear function in t for all t >
m+ 1

2
.

Lemma 2.4. There exists a non-negative integer b such that

δ(Pt) = δ(C1)t− b for all t >
m+ 1

2
.

Proof. Let a = δ(C1). For t > 1 with Pt 6= ∅, represent δ(Pt) = at− bt where bt is an
integer. By Lemma 2.3 we have bt > bt+1 > · · · > 0. It follows that there is t0 > 1
such that bt = bt0 for t > t0. Let b := bt0 . Then,

δ(Pt) = at− b, for all t > t0.

By Lemma 2.3 again, we deduce that

(8) δ(Pt) 6 at− b,
whenever Pt 6= ∅.

Let s be an integer such that s > max {2r2 + b, t0}. Then, we have

δ(Ps) = as− b.
Since Ps is a polytope, then δ(Ps) = |α| for some vertex α of Ps. Note that the
polytope Ps is defined by the following system

xu + xv 6 s− 1 for {u, v} ∈ E1

xu + xv > s for {u, v} ∈ E2,

x1 > 0, . . . , xr > 0.

By [33, Formula 23 in Page 104], α is the unique solution of a system of linear
equations of the form

(9)


xu + xv = s− 1 for {u, v} ∈ S1,

xu + xv = s for {u, v} ∈ S2,

xt = 0, for t ∈ S3,

where S1 ⊆ E1, S2 ⊆ E2, S3 ⊆ [r] such that |S1|+ |S2|+ |S3| = r.
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Let H be the subgraph of G with V (H) = V (G) and E(H) = S1 ∪ S2. Let

H1, . . . , Hp

be connected components of H.
We next prove following claims:

Claim 1 : Hi is a tree and |V (Hi) ∩ S3| = 1 for each i = 1, . . . , p.

Indeed, since the System (9) has unique solution, it implies that the system

(10)


xu + xv = s− 1 for {u, v} ∈ S1 ∩ V (Hi),

xu + xv = s for {u, v} ∈ S2 ∩ V (Hi),

xt = 0, for t ∈ S3 ∩ V (Hi),

also has unique solution. In particular, the number of equations equals the number
of variables, i.e.

(11) |V (Hi)| = |E(Hi)|+ |S3 ∩ V (Hi)|.
Note that S3 ∩V (Hi) 6= ∅ by Lemma 1.4. Together this fact with the Equality (11)

and Lemma 1.3, we imply that

|E(Hi)| = |V (Hi)| − 1, |S3 ∩ V (Hi)| = 1, and Hi is a tree,

as claimed.

From Claim 1, for i = 1, . . . , p, denote the unique vertex in V (Hi)∩S3 by ui. Since
Hi is a tree, for every vertex v of Hi, there is a unique simple path in Hi from v to
ui, and we assume that this path is of the form

ui = v0, v1, . . . , vn = v,

where n = distHi(v, ui) is the distance between v and ui.
From the system (10) we have

αvj−1
+ αvj = s− εj, for j = 1, . . . , n,

where

εj =

{
1 if {vj−1, vj} ∈ E(Hi) ∩ S1

0 if {vj−1, vj} ∈ E(Hi) ∩ S2.

Let av =
∑n

k=0(−1)k+1εk where we make a convention that ε0 = 0.

Claim 2. For every vertex v of Hi, we have 0 6 av 6 ddist(v, ui)/2e and

αv =

{
av if dist(v, ui) is even,

s− av if dist(v, ui) is odd.

Indeed, for each m = 0, . . . , n, put

bm =
m∑
k=0

(−1)k+1εk.
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Then, av = bn. In order to prove the claim, it suffices to show that

0 6 b2l 6 l, and 0 6 b2l+1 6 l + 1,

and
αv2l = b2l, and αv2l+1

= s− b2l+1,

whenever the indices do not exceed n.
We proceed by induction on l. If l = 0, we have b0 = 0 and αv0 = αui = 0 since

ui ∈ S3. Note that b1 = ε1 ∈ {0, 1}, so that 0 6 b1 6 1. On the other hand, since

αv1 + αv0 = s− ε1
one has αv1 = s− ε1 = s− b1, and the case l = 0 holds.

Assume that l > 1. By the induction hypothesis, 0 6 b2l−1 6 l and α2l−1 = s−b2l−1.
From the equation α2l−1 + α2l = s− ε2l, we have

α2l = s− ε2l − (s− b2l−1) = b2l−1 − ε2l = b2l.

Since b2l−1 6 l by the induction hypothesis, we get b2l 6 l. On the other hand,
since α = (α1, . . . , αr) ∈ Ps, we have α2l > 0, and so b2l > 0.

From the equation α2l + α2l+1 = s− ε2l+1, we have

α2l+1 = s− ε2l+1 − b2l = s− (ε2l+1 + b2l) = s− b2l+1.

Note that 0 6 b2l 6 l, so 0 6 b2l+1 6 l + 1, and the claim follows.

For each t > (m+ 1)/2, we consider the integer point β(t) = (β1(t), . . . , βr(t)) ∈ Zr
where

βv(t) =

{
av if v ∈ Hi and dist(v, ui) is even,

t− av if v ∈ Hi and dist(v, ui) is odd.

Then, β(s) = α by Claim 2.

Claim 3: β(t) ∈ Pt for all t > (m+ 1)/2.

Firstly, we show that β(t) ∈ Nr. By Claim 2, it suffices to show that βv(t) > 0 if
v ∈ V (Hi) and dist(v, ui) is odd for some i = 1, . . . , p. In this case, βv(t) = t − av.
By Claim 2 again, av 6 ddistHi(v, ui)e 6 (m+ 1)/2, and thus βv(t) > 0.

Secondly, we prove that βu(t) + βv(t) 6 t− 1 for {u, v} ∈ E1. We may assume that
u ∈ V (Hi) and v ∈ V (Hj). We now consider three possible cases:

Case 1: dist(u, ui) and dist(v, uj) are even. If i = j, there are two even paths from
u and v to ui, respectively. Since {u, v} is an edge of G, we deduce that G contains
an odd cycle, which contradicts the fact that G is bipartite. Thus, i 6= j. In this case
βu(t) = au and βv(t) = av, so that

βu(t) + βv(t) = au + av 6
distHi(u, ui)

2
+

distHj(v, uj)

2
=

distHi(u, ui) + distHj(v, uj)

2
.

If we have a simple path, say p1 in Hi from ui to u, and a simple path, say p2, in Hj

from v to uj, then we have a simple path

p1, u, v, p2
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from ui to uj in G. This implies that distHi(u, ui) + distHj(v, uj) 6 m− 1. Together
with the inequality above, it gives

βu(t) + βv(t) 6
m− 1

2
6 t− 1.

Case 2: dist(u, ui) is even and dist(v, uj) is odd. In this case, by Claim 2, one has

αu + αv = s+ au − av 6 s− 1,

hence au − av 6 −1. It follows that βu(t) + βv(t) = t+ au − av 6 t− 1.
Case 3: dist(u, ui) is odd and dist(v, uj) is even. In this case the proof is similar to

the previous case.
Case 4: dist(u, ui) and dist(v, uj) are odd. In this case, by Claim 2 we have

αu + αv = 2s− au − av 6 s− 1.

But this is not true, since s > 2r and au 6 r − 1 and av 6 r − 1.
Therefore, we have proven that βu(t) + βv(t) 6 t− 1 for {u, v} ∈ E1.
Similarly, we can verify βu(t) + βv(t) > t for {u, v} ∈ E2.
In summary, we have β(t) ∈ Pt for t > (m+ 1)/2, and the claim follows.

Claim 4: |β(t)| = at− b.
Indeed, by Claim 2 we have

|α| = gs+ h

where g is the number vertex v such that v ∈ Hi with distHi(v, ui) is odd for some
i, and h is the sum of all av for which v ∈ Hi with distHi(v, ui) is even for some i
minus the sum of all au for which u ∈ Hj with distHj(v, uj) is odd for some j. It is
obvious that 0 6 g 6 r and |h| 6 r2. On the other hand, |α| = as − b, and hence
as− b = gs+ h, or equivalently

(a− g)s = h+ b.

Note that, s > 2r2 + b > |h| + b. Together with the equality above, it forces a = g
and h = −b. By the definition of β(t), we obtain |β(t)| = gt+ h = at− b, as claimed.

We now turn to prove the lemma. For any t > (m + 1)/2, by Claim 3, we have
β(t) ∈ Pt, and so δ(Pt) > |β(t)|. Together with Claim 4, it yields δ(Pt) > at− b.

On the other hand, because Pt 6= ∅, we have δ(Pt) 6 at − b by (8). Hence,
δ(Pt) = at− b for all t > (m+ 1)/2, and the proof is complete. �

3. Regularity of powers of cover ideals

Let G be a bipartite graph. In this section we will give a bound for t0 such that
reg J(G)t is a linear function in t for t > t0. We start with the following lemma.

Lemma 3.1. For every s > (m+ 1)/2, there are non-negative integers a and b such
that

(1) reg Js = a(s− 1) + b.
(2) b 6 max{reg J(H) | H is a subgraph of G}.
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(3) reg J t > a(t− 1) + b for every t > (m+ 1)/2.

Proof. If E(G) has just one edge, then we have reg J(G)s = s for all s > 1. The
lemma holds true in this case, so we assume that E(G) has at least two edges.

For simplicity, we set J = J(G). For any s > (m+ 1)/2, assume that

reg(R/Js) = ai(R/J
s) + i, for some 0 6 i 6 dim(R/J),

and

ai(R/J
s) = |α| where α ∈ Zr such that H i

m(R/Js)α 6= 0.

By Lemma 1.1, we have

(12) dimK H̃i−|Gα|−1(∆α(Js);K) = dimK H
i
m(R/Js)α 6= 0.

In particular, ∆α(Js) is not acyclic.
If Gα = [r], then ∆α(Js) is either {∅} or a void complex. Because it is not acyclic,

∆α(Js) = {∅}. By Formula (1) we deduce that Js is an m-primary ideal of R. This
imply that G consists of exactly one edge, a contradiction.

Therefore, we may assume that Gα = {n + 1, . . . , r} for some 1 6 n 6 r. Note
that, if we consider the point

β = (α1, . . . , αn,−1, . . . ,−1) ∈ Zr .

Then, ∆α(Js) = ∆β(Js) by Formula (1). Together with Lemma 1.1 and Formula (12)
we get

H i
m(R/Js)β 6= 0.

In particular, ai(R/J
s) > |β|. Obviously, αj 6 βj for j = n+1, . . . , r, so that αj = −1

for j = n+ 1, . . . , r. Thus, ai(R/J
s) = |α′| − |Gα| where α′ = (α1, . . . , αn) ∈ Nn, and

thus

(13) reg(R/Js) = |α′|+ i− |Gα|.

Let S = K[x1, . . . , xn] and let G′ be the graph on the vertex set V ′ = {1, . . . , n}
with the edge set E ′ = {e ∈ E | e ⊆ V ′}. By Formula (1) we obtain:

(14) JRGα ∩ S = J(G′) =: J ′.

By using Formulae (1) and (14) we get

∆α′(J
′k) = ∆α(Jk) for any k > 1,

and thus ∆α′(J
′k) is not acyclic.

Then, by Equation (3) we have

∆(J ′) = 〈V ′ \ e | e ∈ E ′〉 .

By Lemma 1.5 we can partition E ′ = E1 ∪ E2 such that

∆α′(J
′s) = 〈V ′ \ e | e ∈ E1〉 .
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For each integer t > 1, let Pt be the set of solutions in Rn of the following system:
xu + xv 6 t− 1 for {u, v} ∈ E1,

xu + xv > t for {u, v} ∈ E2,

x1 > 0, . . . , xn > 0.

Then α′ ∈ Ps.
Recall the the associated polytope Ct of Pt is defined by

xu + xv 6 t for {u, v} ∈ E1,

xu + xv > t for {u, v} ∈ E2,

x1 > 0, . . . , xn > 0.

Let a = δ(C1). We now prove that

δ(Pt) 6 a(t− 1), whenever Pt 6= ∅.
Indeed, let β′ = (β1, . . . , βn) be a vertex of Pt such that δ(Pt) = |β′|. Let

σ = (σ1, . . . , σn) =
1

t− 1
β′ ∈ Rn .

By Lemma 1.2 again, we obtain{
σu + σv = 1

t−1
(βu + βv) 6 1 for {u, v} ∈ E1,

σu + σv = 1
t−1

(βu + βv) > t
t−1

> 1 for {u, v} ∈ E2.

Clearly, all coordinates of σ are non-negative, so that σ ∈ C1. In particular, |σ| 6
δ(C1) = a, hence

δ(Pt) = |β′| = |σ|(t− 1) 6 a(t− 1),

and the assertion follows.
Together with Lemma 2.4, it implies that there is a non-negative integer f such

that for all t > (m+ 1)/2 we have

(15) δ(Pt) = a(t− 1)− f.
Next we observe that for an integer point β′ = (β1, . . . , βn) ∈ Pt ∩ Nn, let

β = (β1, . . . , βn,−1, . . . ,−1) ∈ Zr .

Then,

∆β(J t) = ∆β′(J
′t) = ∆α′(J

′s) = ∆α(Js).

Together with the Equation (12) and Lemma 1.1, it yields

dimK H
i
m(R/J t)β = dimK H

i
m(R/Js)α 6= 0.

In particular, ai(R/J
t) > |β| = |β′| − |Gα|. It follows that for all t > (m + 1)/2 we

have

(16) reg(R/J t) > δ(Pt) + i− |Gα| = a(t− 1) + i− |Gα| − f.
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Since α′ ∈ Ps, from (13), (15) and (16) we get

(17) reg(R/Js) = δ(Ps) + i− |Gα| = a(s− 1) + i− |Gα| − f.

Note that for any non-zero homogeneous ideal I of R, we have reg(I) = reg(R/I)+1.
Thus, from (16) and (17), it remains to prove that b 6 e where b = i− |Gα| − f + 1
and e = max{reg(J(H)) | H is a subgraph of G}. By the same argument as the last
part in the proof of Theorem 2.3 [22] we obtain i−|Gα|+1 6 e. It follows that b 6 e,
and the proof is complete. �

We now in position to prove the main result of this paper.

Theorem 3.2. Let G be a bipartite graph. Then there is a non-negative integer b
with 0 6 b 6 e− d(J(G)), such that

reg J(G)t = d(J(G))t+ b for all t > max

{
m+ 1

2
, e− b− d(J(G)) + 1

}
,

where m is the length of a longest simple path in G and e = max{reg(J(H)) |
H is a subgraph of G}.

Proof. For simplicity, let J = J(G) and d = d(J). We will prove the theorem in the
following equivalent form: there is a non-negative integer b with d 6 b 6 e, such that

reg J(G)t = d(t− 1) + b for all t > max

{
m+ 1

2
, e− b+ 1

}
.

We now prove this assertion. It is well-known that there are integers b > d and
s0 > 1 such that

(18) reg(Js) = d(s− 1) + b for all s > s0.

Since J is torsion-free, by [22, Theorem 2.3] we get b 6 e, and note also that
e 6 r − 1.

We now claim that

(19) reg(Js) > d(s− 1) + b for all s > (m+ 1)/2.

Indeed, let t > max{s0, r + 1}. By Lemma 3.1 again, there are two non-negative
integers d1 and b1 with b1 6 e such that

reg(J t) = d1(t− 1) + b1,

and

reg(Js) > d1(s− 1) + b1 for all s > (m+ 1)/2.

Thus, it suffices to show that d = d1 and b = b1. From the equalities

reg(J t) = d(t− 1) + b = d1(t− 1) + b1,

we have (d− d1)(t− 1) = (b1 − b). Since |b1 − b| 6 max{b, b1} 6 e and t− 1 > r > e,
it follows that d = d1 and hence b = b1, as claimed.
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Now, for any t > max{(m+1)/2, e−b+1}. We will prove that reg(J t) = d(t−1)+b.
Indeed, by Lemma 3.1 again, there are integers δ > 0 and c 6 e such that

(20) reg(J t) = δ(t− 1) + c.

and

(21) reg(Js) > δ(s− 1) + c for all s > (m+ 1)/2.

From Equation (18) and Inequality (21) we deduce that δ 6 d. We now consider
two cases:

Case 1: δ = d. From Equation (18) and Inequality (21) we get b > c. On the other
hand, from Inequality (19) and Equation (20), we get b 6 c. Therefore, b = c. By
Equation (20) we obtain reg(J t) = d(t− 1) + b.
Case 2: δ < d. From Inequalities (19) and Equation (20), we have

reg(J t) = δ(t− 1) + c > d(t− 1) + b,

and so (d− δ)(t− 1) 6 c− b. It follows that t− 1 6 c− b. By the definition of t, we
deduce that t = c− b+ 1 and hence d− δ = 1. In this case we have

reg J t = δ(t− 1) + c = d(t− 1) + b,

and the proof of the theorem is complete. �

The following corollary improves [18, Corollary 3.4] significantly.

Corollary 3.3. Let G be a bipartite graph with r vertices. Then, there is a non-
negative integer b 6 r − d(J(G))− 1 such that

reg J(G)t = d(J(G))t+ b, for all t >
r

2
.

Proof. By Theorem 3.2, there is a non-negative integer b with 0 6 b 6 e − d(J(G)),
such that

reg J(G)t = d(J(G))t+ b for all t > max

{
m+ 1

2
, e− b− d(J(G)) + 1

}
,

where m is the length of a longest simple path in G and e = max{reg(J(H)) |
H is a subgraph of G}.

For any graph H with V (H) ⊆ {1, . . . , r} and E(H) 6= ∅, we have

reg(J(H)) = reg(R/J(H)) + 1 6 dim(R/J(H)) + 1 = r − 1.

Thus, e 6 r − 1, and thus b 6 r − 1− d(J(G)).
It remains to show that

max

{
m+ 1

2
, e− b− d(J(G)) + 1

}
6
r

2
.

In order to prove this, let (X, Y ) be a bipartition of G. Then both X and Y are
minimal vertex covers of G. Because d(J(G)) is the maximal cardinal of minimal
vertex covers of G, we have

d(J(G)) > max{|X|, |Y |} > r/2.
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Therefore, e− b− d(J(G)) + 1 6 r − 1− d(J(G)) + 1 6 r − r/2 = r/2.
Finally, observe that m 6 r − 1, thus (m+ 1)/2 6 r/2, and therefore

max

{
m+ 1

2
, e− b− d(J(G)) + 1

}
6
r

2
,

and the corollary follows. �

Remark 3.4. The bound of b in Theorem 3.2 is sharp (see [13]).
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