
VIASM Lectures on

Statistical Machine Learning
for High Dimensional Data
John Lafferty and Larry Wasserman

University of Chicago &
Carnegie Mellon University



Outline

1 Regression
I predicting Y from X

2 Structure and Sparsity
I finding and using hidden structure

3 Nonparametric Methods
I using statistical models with weak assumptions

4 Latent Variable Models
I making use of hidden variables

2



Lecture 2

Structure and Sparsity
Finding hidden structure in data
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Topics

• Undirected graphical models

• High dimensional covariance matrices

• Sparse coding
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Undirected Graphs

Let X = (X1, . . . ,Xp). A graph G = (V ,E) has vertices V , edges E .
Independence graph has one vertex for each Xj .

��
��

��
��

��
��

X Y Z

means that
X q Z

∣∣∣ Y

V = {X ,Y ,Z} and E = {(X ,Y ), (Y ,Z )}.
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Markov Property

A probability distribution P satisfies the global Markov property with
respect to a graph G if:

for any disjoint vertex subsets A, B, and C such that C separates A
and B,

XA q XB

∣∣∣ XC .
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Example

1 2 3 4 5

6 7 8

C = {3, 7} separates A = {1, 2} and B = {4, 8}. Hence:

{X1, X2}! {X4, X8}

∣

∣

∣

∣

∣

{X3, X7}.

1

C = {3,7} separates A = {1,2} and B = {4,8}. Hence,

{X1,X2} q {X4,X8}
∣∣∣ {X3,X7}
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Example

A 2-dimensional grid graph.

The blue node is independent of the red nodes given the white nodes.
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Example: Protein networks (Maslov 2002)
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Distributions Encoded by a Graph

• I(G) = all independence statements implied by the graph G.

• I(P) = all independence statements implied by P.

• P(G) = {P : I(G) ⊆ I(P)}.

• If P ∈ P(G) we say that P is Markov to G.

• The graph G represents the class of distributions P(G).

• Goal: Given X 1, . . . ,X n ∼ P estimate G.
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Gaussian Case

• If X ∼ N(µ,Σ) then there is no edge between Xi and Xj if and
only if

Ωij = 0

where Ω = Σ−1.

• Given
X 1, . . . ,X n ∼ N(µ,Σ).

• For n > p, let
Ω̂ = Σ̂−1

and test
H0 : Ωij = 0 versus H1 : Ωij 6= 0.
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Gaussian Case: p > n

Two approaches:

• parallel lasso (Meinshausen and Bühlmann)

• graphical lasso (glasso; Banerjee et al, Hastie et al.)

Parallel Lasso:

1 For each j = 1, . . . ,p (in parallel): Regress Xj on all other
variables using the lasso.

2 Put an edge between Xi and Xj if each appears in the regression
of the other.

12



Glasso (Graphical Lasso)

The glasso minimizes:

−`(Ω) + λ
∑
j 6=k

|Ωjk |

where
`(Ω) =

1
2

(log |Ω| − tr(ΩS))

is the Gaussian loglikelihood (maximized over µ).

There is a simple blockwise gradient descent algorithm for minimizing
this function. It is very similar to the previous algorithm.

R packages: glasso and huge
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Graphs on the S&P 500

• Data from Yahoo! Finance (finance.yahoo.com).

• Daily closing prices for 452 stocks in the S&P 500 between 2003
and 2008 (before onset of the “financial crisis”).

• Log returns Xtj = log
(
St ,j/St−1,j

)
.

• Winsorized to trim outliers.

• In following graphs, each node is a stock, and color indicates
GICS industry.

Consumer Discretionary Consumer Staples
Energy Financials
Health Care Industrials
Information Technology Materials
Telecommunications Services Utilities
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S&P 500: Graphical Lasso
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S&P 500: Parallel Lasso
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Example Neighborhood

Yahoo Inc. (Information Technology):

• Amazon.com Inc. (Consumer Discretionary)

• eBay Inc. (Information Technology)

• NetApp (Information Technology)
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Example Neighborhood

Target Corp. (Consumer Discretionary):

• Big Lots, Inc. (Consumer Discretionary)

• Costco Co. (Consumer Staples)

• Family Dollar Stores (Consumer Discretionary)

• Kohl’s Corp. (Consumer Discretionary)

• Lowe’s Cos. (Consumer Discretionary)

• Macy’s Inc. (Consumer Discretionary)

• Wal-Mart Stores (Consumer Staples)
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Parallel vs. Graphical
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Choosing λ

Can use:

1 Cross-validation
2 BIC = log-likelihood - (p/2) log n
3 AIC = log-likelihood - p

where p = number of parameters.
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Discrete Graphical Models

Let G = (V ,E) be an undirected graph on m = |V | vertices

• (Hammersley, Clifford) A positive distribution p over random
variables Z1, . . . ,Zn that satisfies the Markov properties of graph
G can be represented as

p(Z ) ∝
∏
c∈C

ψc(Zc)

where C is the set of cliques in the graph G.
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Discrete Graphical Models

• Positive distributions can be represented by an exponential
family,

p(Z ;β∗) ∝ exp

(∑
c∈C

β∗cφc(Zc)

)

• Special case: Ising Model (binary Gaussian)

p(Z ;β∗) ∝ exp

∑
i∈V

β∗i Zi +
∑

(i,j)∈E

β∗ij ZiZj

 .

Here, the set of cliques C = {V ∪ E}, and the potential functions
are {Zi , i ∈ V} ∪ {ZiZj , (i , j) ∈ E}.
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Graph Estimation

• Given n i.i.d. samples from an Ising distribution,
{Z s, s = 1, . . . ,n}, identify underlying graph structure.

• Multiple examples are observed:
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Local Distributions

• Consider Ising model p(Z ;β∗) ∝ exp
{∑

(i,j)∈E β
∗
ij ZiZj

}
.

• Conditioned on (z2, . . . , zp), variable Z1 ∈ {−1,+1} has
probability mass function given by a logistic function,

P(Z1 = 1 | z2, . . . , zp) =
1

1 + exp

( ∑
j∈N (1)

β∗1jzj

) .
24



Parallel Logistic Regressions

Approach of Ravikumar, Wainwright and Lafferty (Ann. Stat., 2010):

• Inspired by Meinshausen & Bühlmann (2006) for Gaussian case

• Recovering graph structure equivalent to recovering
neighborhood structure N (i) for every i ∈ V

• Strategy: perform `1 regularized logistic regression of each node
Zi on Z\i = {Zj , j 6= i} to estimate N̂ (i).

• Error probability P
(
N̂ (i) 6= N (i)

)
must decay exponentially fast.

25



S&P 500: Ising Model (Price up or down?)
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S&P 500: Parallel Lasso
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Ising vs. Parallel Lasso
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Voting Data

Example of Banerjee, El Gahoui, and d’Asepremont (JMLR, 2008).
Voting records of US Senate, 2006-2008

BANERJEE, EL GHAOUI, AND D’ASPREMONT

Figure 16: US Senate, 109th Congress (2004-2006). The graph displays the solution to (12) ob-
tained using the log determinant relaxation to the log partition function of Wainwright
and Jordan (2006). Democratic senators are represented by round nodes and Republican
senators are represented by square nodes.

Each of the 542 samples is bill that was put to a vote. The votes are recorded as -1 for no and 1 for
yes.

There are manymissing values in this data set, corresponding to missed votes. Since our analysis
depends on data values taken solely from {−1,1}, it was necessary to impute values to these. For
this experiment, we replaced all missing votes with noes (-1). We chose the penalty parameter λ(α)
according to (17), using a significance level of α = 0.05. Figure 16 shows the resulting graphical
model, rendered using Cytoscape. Red nodes correspond to Republican senators, and blue nodes
correspond to Democratic senators.

We can make some tentative observations by browsing the network of senators. As neighbors
most Democrats have only other Democrats and Republicans have only other Republicans. Senator
Chafee (R, RI) has only Democrats as his neighbors, an observation that supports media statements
made by and about Chafee during those years. Senator Allen (R, VA) unites two otherwise separate
groups of Republicans and also provides a connection to the large cluster of Democrats through Ben
Nelson (D, NE), which also supports media statements made about him prior to his 2006 re-election
campaign. Thus, although we obtained this graphical model via a relaxation of the log partition
function, the resulting picture is supported by conventional wisdom. Figure 17 shows a subgraph
consisting of neighbors of degree three or lower of Senator Allen.

Finally, we estimated the instability of these results using 10-fold cross validation, as described
in Section 6.6. The resulting estimate of the instability is 0.00376, suggesting that our estimate of
the graphical model is fairly stable.
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Statistical Scaling Behavior

Maximum degree d of the p variables. Sample size n must satisfy

Ising model: n ≥ d3 log p

Graphical lasso: n ≥ d2 log p

Parallel lasso: n ≥ d log p

Lower bound: n ≥ d log p

• Each method makes different incoherence assumptions.

• Intuitively, correlations between unrelated variables not too large.
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Topics

• Undirected graphical models

• High dimensional covariance matrices

• Sparse coding
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High Dimensional Covariance Matrices

Let X = (X1, . . . ,Xp) (for example, p stocks). Suppose we want to
estimate Σ, the covariance matrix of X . Here Σ = [σjk ] where
σjk = Cov(Xj ,Xk ).

The data are n random vectors X 1, . . . ,X n ∈ Rp. Let

S =
1
n

n∑
i=1

(X i − X )(X i − X )T

be the sample covariance matrix, where X = (X 1, . . . ,X p)T and

X j =
1
n

n∑
i=1

X i
j

is the mean of the j th variable. Let sjk denote the (j , k) element of S.
If p < n, then S is a good estimator of Σ.
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Bounds on Sample Covariance

Results of Vershynin show that for sub-Gaussian families F

sup
F
‖Σ̂− Σ‖2 = OP

(√
p
n

)

where S = Σ̂ = 1
n
∑

i=1 XiX T
i is the sample covariance.
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What if p > n?

If p > n then S is a poor estimator of Σ. But suppose that Σ is
sparse: most σjk are small.

Define the threshold estimator Σ̂t . The (j , k) element of Σ̂t is

σ̂jk =

{
sjk if |sjk | ≥ t
0 if |sjk | < t .

Bickel and Levina (2008) show that, if Σ is sparse, then Σ̂t is a good
estimator of Σ. (It is not positive-semi-definite (PSD) but can be made
PSD by doing a SVD and getting rid of negative singular values.)
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Bounds on Thresholded Covariance

Bickel and Levina show that

‖Σ̂t − Σ‖2 = OP

(
c0(p)t1−q + c0(p)t−q

√
log p

n

)

for the class of covariance matrices

Uq =

Σ : max
i
σii ≤ M, max

i

p∑
j=1

|σij |q ≤ c0(p)


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How To Choose the Threshold

1 Split the data into two halves giving sample covariance matrices
S1,S2.

2 Threshold S1 to get Σ̂t ,1.
3 Repeat N times:

(Σ̂t ,1,1,S2,1), . . . , (Σ̂t ,1,s,S2,s), . . . , (Σ̂t ,1,N ,S2,N).

4 Let

R̂(t) =
1
N

N∑
s=1

∥∥Σ̂t ,1,s − S2,s
∥∥2

F

where ‖A‖2F =
∑

j,k A2
jk = trace(AAT ) is the Frobenius norm.

5 Choose t to minimize R̂(t).
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Example

We take n = 100, p = 200 and

X 1, . . . ,X n ∼ N(0,Σ)

where σjk = ρ|i−j| and ρ = 0.2.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

10
00

12
00

14
00

16
00

Threshold

R
is

k
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Example

We find that

‖Σ− S‖2F = 420 ‖Σ− Σ̂t‖2F = 20

‖Σ− S‖2 = 4.7 ‖Σ− Σ̂t‖2 = 0.6

Σ − S Σ − Σ̂
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Factor Models

Covariance under a factor model:

Y = Bf + ε

Y ∈ Rp, B ∈ Rp×k , for k known factors fj . So

Σ = B cov(f ) BT + I.

Natural estimate is the plugin estimator

Σ̂n = B̂n ĉov(f ) B̂T
n + I.

where B̂n are estimated regression coefficients. Fan, Fan and Lv
(2008) study this in the high dimensional setting.
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Topics

• Undirected graphical models

• High dimensional covariance matrices

• Sparse coding
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Sparse Coding

Motivation: understand neural coding (Olshausen and Field, 1996).

original image sparse representation

Codewords/patch 8.14, RSS 0.1894
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Sparse Coding

Mathematical formulation of dictionary learning:

min
α,X

G∑
g=1

{
1

2n

∥∥∥y (i) − Xα(i)
∥∥∥2

2
+ λ

∥∥∥α(i)
∥∥∥

1

}
such that ‖Xj‖2 ≤ 1
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Sparse Coding for Natural Images
Reconstruction

Original patch RSS = 0.0906
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Properties

• Provides high dimensional, nonlinear representation
• Sparsity enables codewords to specialize, isolate “features”
• Overcomplete basis, adapted to data automatically
• Frequentist form of topic modeling, soft VQ
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Sparse Coding for Computer Vision

source: Kai Yu

Error: 4.54% Error: 3.75% Error: 2.64%

• Best accuracy when learned codewords are like digits
• Advanced versions are state-of-art for object classification
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Sparse Coding for Multivariate Regression

• Intuition of sparse coding extends to multivariate regression with
grouped data (e.g., time series over different blocks of time).

• Estimate a regression matrix for each group.

• Each estimate is a sparse combination of a common dictionary of
low-rank matrices.

• Low-rank dictionary elements are estimated by pooling across
groups.
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Problem Formulation

• Data fall into G groups, indexed by g = 1, . . . ,G

• Covariate X (g)
i ∈ Rp and response Y (g)

i ∈ Rq, model

Y (g)
i = B∗(g)X (g)

i + ε
(g)
i

• Goal: estimate B∗(g) ∈ Rq×p with

B̂(g) =
K∑

k=1

α̂
(g)
k Dk

where each Dk is low rank, α̂(g) = (α̂
(g)
1 , . . . , α̂

(g)
K ) is sparse
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Interlude: Low-Rank Matrices

• 2× 2 symmetric matrices:

X =

(
x y
y z

)
• By scaling, can assume |x + z| = 1.

X has rank one iff x2 + 2y2 + z2 = 1

• Union of two ellipses in R3.

• Convex hull is a cylinder.
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Recall: Sparse Vectors and `1 Relaxation

sparse vectors convex hull
‖X‖0 ≤ t ‖X‖1 ≤ t

�

�

�

�

�

�

�

�
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Low-Rank Matrices and Convex Relaxation

low rank matrices convex hull
rank(X ) ≤ t ‖X‖∗ ≤ t
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Nuclear Norm Regularization

Nuclear norm ‖X‖∗ of p × q matrix X

‖X‖∗ =

min(p,q)∑
j=1

σj(X )

Sum of singular values. (a.k.a. trace norm or Ky-Fan norm)

Generalization to matrices of `1 norm for vectors.
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Nuclear Norm Regularization

Algorithms for nuclear norm minimization are a lot like iterative soft
thresholding for lasso problems.

To project a matrix B onto the nuclear norm ball ‖X‖∗ ≤ t :

• Compute the SVD:
B = U diag(σ) V T

• Soft threshold the singular values:

B ← U diag(Softλ(σ)) V T
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Conditional Sparse Coding

• Objective function:

f (α,D) =
1
G

G∑
g=1

{
1
n
∥∥Y (g) −

( K∑
k=1

α
(g)
k Dk

)
X (g)

∥∥2
F + λ‖α(g)‖1

}

minimized over Dk ∈ C(τ),

C(τ) =
{

D ∈ Rq×p : ‖D‖∗ ≤ τ and ‖D‖2 ≤ 1
}

• Dictionary entries Dk are shared across groups; nuclear norm
constraint forces them to be low rank
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Conditional Sparse Coding

Input: Data {(Y (g),X (g)}g=1,...,G, parameters λ and τ

1. Initialize dictionary {D1, ...,DK} as random rank one matrices

2. Alternate following steps until convergence of f (α,D):

a. Encoding step: {α(g)} ← arg minα(g) f (α,D)
b. Learning step: {Dk} ← arg minDk∈C(τ) f (α,D)

f (α,D) =
1
G

G∑
g=1

{
1
n
∥∥Y (g) −

( K∑
k=1

α
(g)
k Dk

)
X (g)

∥∥2
F + λ‖α(g)‖1

}
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Related Methods

• Low-rank regression: Yuan et al. (2007), Negahban and
Wainwright (2011)

• Multi-task learning: Evgeniou and Pontil (2004), Maurer and
Pontil (2010)
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Example with Equities Data

• 29 companies in single industry sector, from 2002 to 2007

• One day log returns, Yt = log St/St−1, Xt lagged values

• Grouped in 35 day periods

30 days back 50 days back 90 days back Sparse Coding

Correlation -0.000433 0.0527 0.0513 0.0795

Predictive R2 -0.0231 -0.0011 0.00218 0.0042
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Sparse Coding for Covariance Estimation

• Sparse code the group sample covariance matrices

Ŝ(g)
n =

1
n

n∑
i=1

Y (g)
i Y (g)T

i

• Objective function:

f (α, β,D) =
1
G

G∑
g=1

{
1
n
∥∥Ŝ(g)

n − diag(β)−
K∑

k=1

α
(g)
k Dk

∥∥2
F + λ‖α(g)‖1

}

minimized over Dk ∈ C(τ),

C(τ) = {D � 0, ‖D‖∗ ≤ τ and ‖D‖2 ≤ 1}

• Optimization over α(g) by solving semidefinite program or
nonnegative lasso
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“Read the Mind” with fMRI

• Subject sees one of 60 words, each associated with a semantic
vector; fMRI measures neural activity.

• Can we predict the semantic vector based on the neural activity?

Multivariate Regression

Y︸︷︷︸
q×n

= B︸︷︷︸
q×p

X︸︷︷︸
p×n

+ ε

p: dimension of neural activity (∼ 400)
q: dimension of semantic vector (∼ 200)
n: sample size (∼ 60)

58



“Read the Mind” with fMRI

• Subject sees one of 60 words, each associated with a semantic
vector; fMRI measures neural activity.

• Can we predict the semantic vector based on the neural activity?

Multivariate Regression

Y︸︷︷︸
q×n

= B︸︷︷︸
q×p

X︸︷︷︸
p×n

+ ε

p: dimension of neural activity (∼ 400)
q: dimension of semantic vector (∼ 200)
n: sample size (∼ 60)

58



Mind Reading

Many different subjects; we have a data set for each subject.
Everyone’s brain works differently—but not completely differently.

Data is grouped
For groups g = 1, ...,G

Y (1) = B(1)X (1) + ε(1)

Y (2) = B(2)X (2) + ε(2)

...

Y (G) = B(G)X (G) + ε(G)

• Slight generalization of multi-task learning
• Many other applications
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Experiments

• Alternating optimization relatively well-behaved.

• Improved mind-reading accuracy statistically significantly on 4
subjects. Degraded on 1 subject.

• Learned coefficients indeed sparse.

Subj A B C D E F G H I
Dictionary 0.8833 0.8667 0.9000 0.9333 0.8333 0.7500 0.9000 0.7833 0.6667
Separate 0.9500 0.7000 0.9167 0.8167 0.8167 0.7667 0.8000 0.6667 0.6333

Confidence 0.6- 0.92+ 0.05- 0.86+ 0.03+ 0.02- 0.70+ 0.65+ 0.07+
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Theory

We analyze risk consistency, in worst case under weak assumptions.
We analyze output of non-convex procedure with initial
randomization.

• With random initial dictionary, need to learn sets of dense
coefficients

• Achieve good performance if learned coefficients of learned
dictionary are sparse
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Summary

• Undirected graphs represent conditional independence
assumptions.

• Two methods for Gaussian graphical models: Parallel lasso and
graphical lasso.

• Discrete graphical models are more difficult; parallel sparse
logistic regression can be effective.

• Thresholding sample covariance can estimate sparse covariance
matrices in high dimensions.

• Sparse coding efficiently represents high dimensional signals or
regression models.
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