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About machine learning
How knowledge is created?

Chuo6n chuon bay thip thi mwa
Bay cao thi ning bay vira thi rAim

Mua hé dang ning, c6 ga trang thi mwa.
Co ga moc lang, ca lang dwoc nuwéc.

Kién den tha trirng 1én cao
Thé nao cling c6 mwa rao rat to

Chu6n chuén can ron, bdn ngay biét boi

Deduction: Given f(x) and x;, infer f(x;)
Induction: Given {x;}, infer f(x)




About machine learning
Facial types of Apsaras

= Angkor Wat contains the most
unique gallery of ~2,000 women
depicted by detailed full body
portraits

= What facial types are represented
in these portraits?
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Jain, ECML 2006; Kent Davis, “Biometrics of the Godedess”, DatAsia, Aug 2008
S. Marchal, “Costumes et Parures Khmers: D’apres les devata D’Angkor-Vat”, 1927
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About machine learning
Definition

= Muc dich cia hoc may la viéc xay
dwng cac hé may tinh c6 kha nang
thich rng va hoc tw kinh nghiém
(Tom Dieterich).

= Mot chwong trinh may tinh dwoc noi
la hoc tw kinh nghiém E cho mét 1ép
cac nhiém vu T v&i d do hiéu suat P,
néu hiéu suat cta né véi nhiém vu T,
danh gia bang P, c6 thé ting 1én cung
kinh nghiém
(T. Mitchell Machine Learning book)

= Khoa hoc vé viéc lam cho may c6 kha (from Eric Xing lecture notes)
nang hoc va tao ra tri thirc twr div liéu.

* Three main Al targets: Automatic Reasoning, Language understanding, Learning
 Finding hypothesis f in the hypothesis space F by narrowing the search with constraints (bias)



About machine learning
Improve T with respect to P based on E

mo—- mYu  mus

o —3

: Playing checkers
: Percentage of games won against an arbitrary opponent
: Playing practice games against itself

Recognizing hand-written words
Percentage of words correctly classified
Database of human-labeled images of handwritten words

: Driving on four-lane highways using vision sensors
: Average distance traveled before a human-judged error
: A sequence of images and steering commands recorded while

observing a human driver.

: Categorize email messages as spam or legitimate.
: Percentage of email messages correctly classified.
E:

Database of emails, some with human-given labels

From Raymond Mooney’s talk



About machine learning
Many possible applications

= Disease prediction

» Autonomous driving

= Financial risk analysis

m Speech processing

= Earth disaster prediction
= Knowing your customers
» Drug design

= Information retrieval

= Machine translation
» Water structure
= etc.




About machine learning
Powerful tool for modeling

Model: Simplified description or Simulation: The imitation of
abstraction of a reality (mo ta don gian some real thing, state of
héa hoac triru twong héa mot thuc thé). affairs, or process.
Modeling: The process of creating

models.

Modeling

-> . . UOMEUTATIONAL SCIENCE
q Simulation \ZDrBicL sciuices. Sconomics

Data Analysis

DNA model figured out in
1953 by Watson and Crick

Model Selection

Computational science: Using math and computing to solve problems in sciences


D:/MyDocuments/downloadpapers/dnvu/STAR-FluidParticleRendeing.mp4

About machine learning
Generative model vs. discriminative model

Generative model Discriminative model

M6 hinh xac suat lién quan tat ca M6 hinh chi cho cac bién muc

cac bién, cho viéc sinh ra ngau tiéu phu thudc cé diéu kién vao

nhién dir liéu quan sat, dac biét khi cac bién dwoc quan sat duorc.

c6 cac bién an. Chi cho phép 14y mau

DPinh ra mo6t phan bo xac suat lién (sampling) cic bién muc tiéu,

két trén cac quan sat va cac day phu thudc cé diéu kién vao cac

nhan. dai lwong quan sat duwoc.

Dung dé N6i chung khong cho phép dién
o M6 hinh di liéu truc tiép ta cac quan hé phirc tap giira

cac bién quan sat dwoc va bién
muc tiéu, va khong ap dung
dwoc trong hoc khong giam sat.

o Buwdc trung gian dé tao ra mot
ham mat do xac suit cé diéu
kién.



About machine learning
Generative vs. discriminative methods

Training classifiers involves estimating f: X 2 Y, or P(Y|X).
Examples: P(apple | red A round), P(noun | “ca”

Generative classifiers Discriminative classifiers
o Assume some functional form o Assume some functional form
for P(X|Y), P(Y) for P(Y|X)
0 Estimate parameters of o Estimate parameters of P(Y|X)
P(X]Y), P(Y) directly from directly from training data

training data, and use Bayes

SVM, logisti ion,
rule to calculate P(Y|X = x,) - ogistic regression

traditional neural networks,

o HMM, Markov random fields, nearest neighbors, boosting,
Gaussian mixture models, MEMM, conditional random
Naive Bayes, LDA, etc. fields, etc.

(ca: fish, to bet)



About machine learning
Machine learning and data mining

Machine learning Data mining

" To build computer systems " To find new and useful
that learn as well as human knowledge from large
does. datasets .

" ICML since 1982 (23th ICML " ACM SIGKDD since 1995,
in 2006), ECML since 1989. PKDD and PAKDD since

= ECML/PKDD since 2001. 1997 IEEE ICDM and

SIAM DM since 2000, etc.

® ACML starts Nov. 2009.

Co-chair of Steering Committee of PAKDD, member of Steering Committee of ACML 11



About machine learning
Some quotes

“A breakthrough in machine learning would be worth
ten Microsofts” (Bill Gates, Chairman, Microsoft)

“Machine learning is the next Internet”
(Tony Tether, Director, DARPA)

Machine learning is the hot new thing”
(John Hennessy, President, Stanford)

“Web rankings today are mostly a matter of machine learning”
(Prabhakar Raghavan, Dir. Research, Yahoo)

“Machine learning is going to result in a real revolution”
(Greg Papadopoulos, CTO, Sun)

“Machine learning is today’s discontinuity”
(Jerry Yang, CEO, Yahoo)

Pedro Domingos’ ML slides

12



About machine learning
Two main views: data and learning tasks

Types and size of data Learning tasks & methods
= Flat data tables = Supervised learning
= Relational databases o Decision trees

Neural networks
Rule induction
Support vector machines
etc.
= Unsupervised learning
o Clustering

= Temporal & spatial data
" Transactional databases
" Multimedia data

= Materials science data
= Biological data

O O O O

. ,
] x:;u(;’;tiata Kilo 102 o Modeling and density estimation
Mega | 10 o etc.

= etc. Giga | 10° = Reinforcement learning
Tera | 10%2 o Q-learning
Peta | 10%° o Adaptive dynamic programming
Exa | 108 o etc.

13



About machine learning
Complexly structured data

A portion of the DNA sequence with
length of 1,6 million characters

... TACATTAGTTATTACATTGAGAAACTTTATAATTAAA

AAAGATTCATGTAAATTTCTTATTTGTTTATTTAGAGG
[TTTAAATTTAATTTCTAAGGGTTTGCTGGTTTCATT

GTTAGAATATTTAACTTAATCAAATTATTTGAATTAAAT
TAGGATTAATTAGGTAAGCTAACAAATAAGTTAAATTT
TTAAATTTAAGGAGATAAAAATACTACTCTGTTTTATTA
TGGAAAGAAAGATTTAAATACTAAAGGGTTTATATATA
TGAAGTAGTTACCCTTAGAAAAATATGGTATAGAAAGC
TTAAATATTAAGAGTGATGAAGTATATTATGT...

Immense text

%




About machine learning
Huge volume and high dimensionality

ﬂ ‘ a The LIBRARY of CONGRESS

Printed materials in the Library of
Congress = 10 TeraBytes

W

Large Hadron Human Genomics

Collider, = 7000 PetaBytes 200 of
(PetaBytes/day) 1GB / person London’s &
brain at the Traffic
micron level Cams
= 1 PetaByte (8TB/day)
Kilo 103
1 book=1
Mega | 108
MegaByte | uu—— _ J All worldwide
PARADIGM Giga | 10° information in
Tera | 1012 ;ne year =
ﬂ e Peta | 1015 Frabyies
ﬁ Family photo = Exa 1018
k»—&\ 2 586 KiloBytes

Adapted from Berman, San Diego Supercomputer Center (SDSC)

15



About machine learning
New generation of supercomputers

® China’s supercomputers Tianhe-1A: 7,168
NVIDIA® Tesla™ M2050 GPUs and 14,336 CPUs,
2,507 peta flops, 2010.

® Japan’s “K computer” 800 computer racks
ultrafast CPUs, 10 peta flop (2012, RIKEN’s
Advanced Institute for Computational Science)

" |BM’s computers BlueGene and BlueWaters,
20 peta flop (2012, Lawrence Livermore National IBM BlueGene
Laboratory).

http://www.fujitsu.com/global/news/pr/archives/month/2010/20100928-01.html (28.9.2010)
http://www.hightechnewstoday.com/nov-2010-high-tech-news/38-nov-23-2010-high-tech-news.shtml (23 Nov. 2010) 16
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Development of machine learning

Successful applications

Symbolic concept induction IR & ranking

MIML
Active & online learning Transfer learning

: . Data minin
Multi strategy learning g

Minsky criticism NN, GA, EBL, CBL

Kernel methods .
Abduction, Analogy Sparse learning

Pattern Recognition emerged

Revival of non-symbolic learning Bayesian methods

PAC learning ILP Semi-supervised learning Deep learning

- - Dimensionality reduction
Math discovery AM Experimental comparisons

Probabilistic graphical models
Statistical learning

Unsupervised learning Ensemble methods Nonparametric Bayesian

Supervised learning
Neural modeling

Rote learning Reinforcement learning Structured prediction

1950 1960 1970
ICML (1982) ECML (1989) KDD (1995) PAKDD (1997) ACML (2009)
N J AL AN A\ /
Y g g g N
enthusiasm dark age renaissance maturity fast development

18



From 900 submissions to ICML 2012 J8{& learning

66 Reinforcement Learning
Ry Superv1.sed Learning nduction _
51 Clustering N IR & ranking
46 Kernel Methods egy learning Data mining MIML
40 Optimization Algorithms Active & online learnin

g .
39 Feature Selection and Dimensionality Reduction — Eei:i® Transfer learning
33 Learning Theory Kernel methods
33 Graphical Models logy

33 Applications evival of non-symbolic learning

29 Probabilistic Models . ised | ) | .
29 NN & Deep Learning Semi-supervised learning  Deep learning

26 Transfer and Multi-Task Learning
25 Onl.lne Learnllng Probabilistic graphical models
25 Active Learning ing Statistical learning

22 Semi-Supervised Learning : Nonparametric Bayesian
20 Statistical Methods Ensemble methods

20 Sparsity and Compressed Sensing nt learning Structured prediction

19 Ensemble Methods

18 Structured Outlput Predictiqn — 1990 2000 2010

18 Recommendation and Matrix Factorization CML (1989) KDD (1995) PAKDD (1997) ACML (2008)

18 Latent-Variable Models and Topic Models

17 Graph-Based Learning Methods /- ~" < ~ ~

16 Nonparametric Bayesian Inference e maturity fast development

Successful applications

Sparse learning

Bayesian methods

al comparisons Dimensionality reduction

15 Unsupervised Learning and Outlier Detection

19



Relations among recent directions

Learning
to rank

Topic
Modeling

Unsupervised
learning

Transfer
learning

Deep
learning

Ensemble
learning

Semi-
supervised
learning

Kernel
methods

Reinforcement

Dimensionality
reduction

Nonparametric

Bayesian

learning

Graphical
models

Bayesian
methods

Multi-Instance
Multi-label

Supervised
learning

Sparse
learning

20



Supervised vs. unsupervised learning

Given: (x4, v,), (X5, ¥5), -+ (X ¥,)
- X; is description of an object, phenomenon, etc.

- y; is some property of x,, if not available learning is unsupervised
Find: a function f(x) that characterizes {x;} or that f(x;) = y;

Unsupervised data Supervised data

#tails . color #nuclei | #tails class

healthy

healthy
healthy

healthy
cancerous

cancerous
cancerous
cancerous

21



Reinforcement learning

Concerned with how an agent ought to take
actions in an environment so as to maximize
some cumulative reward. (... mt tdc nhan phdi thuc
hién cdc hanh dong trong mét méi trwong sao cho

dat dwoc cwc dai cdc phdn thwdng tich liiy)

= The basic reinforcement learning model
consists of:

o a set of environment states S;

0 aset of actions A;

o rules of transitioning between states;
Q

rules that determine the scalar
immediate reward of a transition;

o rules that describe what the agent
observes.

22



Active learning and online learning

Online active learning

Active learning

A type of supervised learning, samples
and selects instances whose labels would
prove to be most informative additions
to the training set. (... [dy mau va chon
phadn tir cé nhdn véi nhiéu théng tin cho
tdp hudn luyén)

Labeling the training data is not only
time-consuming sometimes but also
very expensive.

Learning algorithms can actively
query the user/teacher for labels.

Lazy learning vs. Eager learning

Online learning

Learns one instance at a time with
the goal of predicting labels for
instances. (& moi thoi diém chi
hoc mot phdn tir nham dodn nhdn
cdc phan tir).

Instances could describe the
current conditions of the stock
market, and an online
algorithm predicts tomorrow’s
value of a particular stock.

Key characteristic is after
prediction, the true value of

® the stock is known and can be

used to refine the method.
23



Ensemble learning

Ensemble methods employ multiple learners and combine their predictions
to achieve higher performance than that of a single learner. (... diing nhiéu
bé hoc dé dat két qud tot hon viéc dung mét bd hoc)

0 Boosting: Make examples currently misclassified more important
o Bagging: Use different subsets of the training data for each model

Training Data

Some unknown distribution

o Y ‘\
M Y .
i)

/, Model 5
Model 2 © 1

g ), /' Model 3 g
3 = f A.Ja}f,‘ L ) d \ @\ .....

\

" ﬁ’i&ﬁ byl k

Model 1 ¢

A\ ’

e

Model Combiner

Final Model

24




Transfer learning

Aims to develop methods to transfer knowledge learned in one or more source
tasks and use it to improve learning in a related target task. (truyén tri thirc
dd hoc dworc tir nhiéu nhiém vu khdc dé hoc tét hon viéc dang cdn hoc)

Given Learn > Self-taught
/1 Casel < Learning
D .
Data ' . . No labeled data in a source domain ~ :
. H T T e e e e e e e et
Target Task -
Inductive Transfer
Source-Task / \ Learning
Knowledge | [ e D, greasersanasesnasennany
EECTCT TP TP PET TR TP Ty FEEYTTY E . E E Source and :
i Labeled data are :Bag(eslgltjjrg:tgoar;ea?r:/allable \ i targettasksare : Multi-task
: availableinatarget : T T - Case2 [ leant 3 i
: : : R : Learning
1.90maIn e ; i simultaneously 3
Sesssnsnsnnnnnnnnnnnnnt
seerrrerrererrrarnaaa, . P RRA . .
Transfer : Labeled data are : : Assumption: :
Learning i available only in a Ly Transductive — different > Domain
1 source domain : Transfer Learnin é‘ domains but — d H
LaQrEcoma, . g L single sk : Adaptation
é No labeled data in ; FELE T TR T Ty T PR Y P ETERY PR .
: both source and : + Assumption: single domain  :
: target domain : ‘ and single task :\
Unsupervised Sample Selection Bias
Transfer Learning /Covariance Shift

Induction: Given {x;}, infer f(x)
Transduction: Given {x,}, infer x; from x; 25



Learning to rank

The goal is to automatically rank matching documents according to their
relevance to a given search query from training data. (hoc tir dir liéu hudn luyén
dé tw dong xép thir tw cdc tai liéu tim dwoc lién quan té&i mét cdu héi cho trwéece).

= Pointwise approach:

Example | DocID | Query | st | s

. . sg || Judgment
Transform ranking to regression o 7 x| 11T Relevant
. . . ) 3 penguin | ( Non-relevant
or classification (score) ®; | 238 | system | 0| 1 [ Relevant
by 238 | penguin | 0 | O || Non-relevant
. ) b5 1741 ke'rnel 1 1 || Relevant
= PalrWISe approaCh: j:; _ E(I)‘;.I;. :::::: _ (I)> l])‘ Ili;(‘:::l:‘ll]tt'\'dnt
Transform ranking to pairwise
el . . . Qh QM
classification (which is better) il . d D=1d,d, -, dy|
d1.2 dm.Z

m Listwise approach:
Directly optimize the value of dl'_”l
each of the above evaluation |
measures, averaged over all
queries in the training data.

dm+1.1 f(qm-H 4 dm+1.1)
dm+l.2 f(qmﬂ 2 dm+1.2 )

m+1.,. f(q1n+1 H derl.n,,,H )

Example from Stanford lectures 26



Multi-instance multi-label learning

MIML is the framework where an example is described by multiple instances
and associated with multiple class labels. (mét lwoc do bai todn khi moi déi
twong dwoc mo td bang nhiéu thé hién va thudc vé nhiéu lép).

instance = = — — — ‘— -

7’
object 7
' PR
/’ -
= - - < abel >
instance f= = — — — ‘V <7 -
NSO
S N deeees
N
N

(c) Multi-label learning

Multi-label learning vs. multi-~class learning

instance N
AN Tom Dieterich
...... object
RO et al., 1997
. ~ N
- -
...... - -, <
rd
7
instance |~

(b) Multi-instance learning

instance N
...... N object 7/
= A /7 - -
. LN -
instance | — — _*_;‘: R
------ - SO ~
- S Zhi~-Hua Zhou
instance |~ \ et al., 2008

(d) Multi-instance multi-label | earning

27



Deep learning

A subfield of machine learning that is based
on algorithms for learning multiple levels of

Feature representation

representation in order to model complex 3rd layer
: . n N aa “Objects”

relationships among data. (hoc nhiéu cap do

biéu dién dé mé hinh cdc quan hé phirc tap

trong dir liéu) 2nd layer

“Object parts”
» Higher-level features and concepts are

thus defined in terms of lower-level ones, };Z'ayf'r
and such a hierarchy of features is called a g3
deep architecture. —

= Key: Deep architecture, deep
representation, multi levels of latent
variables, etc.

28



Semi-supervised learning

A class of machine learning techniques that make use of both labeled and

unlabeled data for training - typically a small amount of labeled data with a
large amount of unlabeled data. (diing ca dir liéu c6 nhdn va khéng nhdn dé
hudn luyén, tiéu biéu khi it di¥ liéu c6 nhdn nhwng nhiéu dir liéu khéng nhdn)

I o 1 2 B 4 s B o 1 2 3 4 s

Classes of SSL. methods
Generative models
Low-density separation
Graph-based methods
Change of representation

view 2

vvvvv

Cluster
Assumption

Manifold
assumption

Independent
views

Low Density
Separation,
eg, S3VMs

Graph-based
methods
(nearest
neighbor

graphs)

Co-training

29



Challenges in semi-supervised learning

Real SSL tasks: Which tasks can be dramatically improved by SSL?

New SSL assumptions? E.g., assumptions on unlabeled data: label
dissimilarity, order preference

Efficiency on huge unlabeled datasets

Safe SSL:

O no pain, no gain

o no model assumption, no gain

o wrong model assumption, no gain, a lot of pain

—> develop SSL techniques that do not make assumptions beyond those
implicitly or explicitly made by the classification scheme employed?

Xiaojin Zhu tutorial

30



Structured prediction

#rlslcje

An umbrella term for machine learning and D
regression techniques that involve predicting
structured objects. (lién quan viéc dodn nhdn cdc b FacCe

ddéi twong co cdu triic).
Examples

Multi-class labeling
Protein structure prediction

Noun phrase co-reference clustering . ;
Learning parameters of graphical models @

o O O O

y S
J NP‘/ \‘VP

X
J The dog chased the cat >
/ \ ./ \NP

Det

31



Structured prediction
Example: Labeling sequence data problem

X is a random variable over data sequences

Y is a random variable over label sequences whose labels are assumed to
range over a finite label alphabet A

Problem: Learn how to give labels from a closed set Y to a data sequence X

X4 X5 X3
X: Thinking is being
Y: noun verb noun

Y1 Y- Y3

- POS tagging, phrase types, etc. (NLP),

- Named entity recognition (IE) 2 Ll
. . KARIIRYFYNAKAGLCQTFCRAKRNNFKSAED

) MOdehng prOteln Sequences (CB) Y nnnnnnnnnTTEEEnnnnnnnnTEE tnnnnnn

- Image segmentation, object recognition (PR)

- Recognition of words from continuous acoustic signals.

Pham, T.H., Satou, K., Ho, T.B. (2005). Support vector machines for prediction and analysis of beta and gamma turns in proteins,
Journal of Bioinformatics and Computational Biology (JBCB), Vol. 3, No. 2, 343-358
Le, N.T., Ho, T.B., Ho, B.H. (2010). Sequence-~dependent histone variant positioning signatures, BMC Genomics, Vol. 11 (§4)



Structured prediction
Some challenges

Given {(x;, y;}i=, drawn from an unknown joint probability distribution
P on X XY, we develop an algorithm to generate a scoring function
F:X XY — R which measures how good a label y is for a given input x.

Given X, predict the label y = argmax F (X,y). F is generally considered
yeY

are linearized models, thus F(x,y) = (w*, ¢(x,y)), e.g, in POS tagging,

_ (1ifsuffix(x;) = "ing" and y; = VBG
P(x,y) {O otherwise

A major concern for the implementation of most structured prediction

algorithms is the issue of tractability. If each y; can take k possible values

i.e. |Yi| =k, the total number of possible labels for a sequence of length L
is k. Find optimal y is intractable.

VBG = Verb, Auxiliary be, present part

33



Social network analysis

Social media describes the online tools that people use

to share content, profiles, opinions, insights, experiences, &}
perspectives and media itself, thus facilitating Picture from Matthew Pirret’ssides
conversations and interaction online between people.
These tools include blogs, microblogs, facebook,
bookmarks, networks, communities, wikis, etc.

Social networks: Platforms providing rich interaction
mechanisms, such as Facebook or MySpace, that allow
people to collaborate in a manner and scale which was
previously impossible (interdisciplinary study).

Social network study: structure analysis, understanding
social phenomenon, information propagation &
diffusion, prediction (information, social), general
dynamics, modeling (social, business, algorithmic, etc.)

Hue (from red=0 to blue=max) indicates
each node's betweenness centrality.

Figures from wikipedia 34



Social network analysis
Some challenges

Structural analysis: Focus on relations and patterns of relations requires
methods/concepts different from traditional statistic and data analysis
(e.g., graphical model, dependencies?)

Centrality and prominence: Key issue in social network analysis is the
identification of the most important or prominent actors (nodes). Many
notions: degree, closeness, betweeness, rank of the actors.

Influence: The capacity or power of persons or things to be a compelling
force on or produce effects on the actions, behaviour, opinions, etc., of
others (e.g., author topic models, twiter mining, etc.)

Knowledge challenge: Enabling users to share knowledge with their
community (e.g., cope with spam, privacy and security).

Collaborative production (e.g., Wikipedia and Free Software):
collaborative content creation, decentralized decision making, etc.

Stefano Leonardi, Research Challenges in Social Networks 35



Sparse modeling

Selection (and, moreover, construction) of a
small set of highly predictive variables in high-
dimensional datasets. (chon va tao ra mot tdp
nhé cdc bién c6 kha ndng dw dodn cao tir dir
liéu nhiéu chiéu).

Rapidly developing area on the intersection
of statistics, machine learning and signal
processing.

Typically when data are of high-
dimensional, small-sample

0 10,000-100,000 variables (voxels)

0 100s of samples(time points)

Sparse SVMs, sparse Gaussian processes,
sparse Bayesian methods, sparse regression,
sparse Q-learning, sparse topic models, etc.

Lecture 5, VIASM-SML and lecture of Prof. Lafferty

Data
X = fMRI voxels,

Y = mental state

Predictive Model

y = f()
Small number + happy +
of Predictive | =) * T
Variables ? ~ sad

Find small number of most relevant
voxels (brain areas)?

36



Dimensionality reduction

The process of reducing the number of random variables under
consideration, and can be divided into feature selection and feature
extraction. (qud trinh rit gon s6 bién ngdu nhién dang quan tdm, gém lwa
chon bién va tao bién maéi).

104 .,
[:‘ &:‘ K
o) %ﬁ"ﬂt Pz
e - g'\’{ i
| J‘jt N
Yy v
10,4 2%
Yo0; : 20 0 2 4
Data Points (Swiss roll) 4-NN Graph 2D Embedding Result

Lecture 2, VIASM-SML

37



Kernel methods
Learning from non-vectorial data

= Current
a0 Most learning algorithms work on flat, fixed length feature vectors
o Each new data type requires a new learning algorithm

o Difficult to handle strings, gene/protein sequences, natural
language parse trees, graph structures, pictures, plots, ...

= Key Challenges
0 One data-interface for multiple learning methods

0 One learning method for multiple data types

Lecture 3, VIASM-SML



Kernel methods
Data representations

/ -~~~ =0 (8) = (aategagtcac, atggacgtet, tgcactact)
"x_l E , . - :._ |
I .J:S :' I|
A ® . '
VAR AGPR N /1 0.5 0.3
", < _ - K: ! D - 5 l I:] - 6
B vw0.3 0.6 1

X is the set of all oligonucleotides, S consists of three oligonucleoides.
Traditionally, each oligonucleotide is represented by a sequence of letters.

In kernel methods, S is represented as a matrix of pairwise similarity

between its elements.

39



Kernel methods
The basic ideas

Input space X Feature space F
X, X . inverse map ¢
W b(x) i
@) o O >

N L ko) =eber) |
) <

kernel function k: % > & kernel-based algorithm on K
(computation done on kernel matrix)

P X=R* >H ="

(X, %) = (X5 X5, X12 +X22)

Cdc phwong phdp dwa trén bién déi div liéu bang cdc ham kernel sang mot khdong
gian m¢@i nhiéu chiéu hon nhwng & doé co thé diing cdc phwong phdp tuyén tinh.



Kernel methods
Some challenges

The choice of kernel function. In general, there is no way of choosing or
constructing a kernel that is optimal for a given problem.

The complexity of kernel algorithms. Kernel methods access the
feature space via the input samples and need to store all the relevant
input samples.

Examples: Store all support vectors or size of the kernel matrices
grows quadratically with sample size = scalability of kernel methods.

Incorporating priors knowledge and invariances in to kernel functions
are some of the challenges in kernel methods.

L1 regularization may allow some coefficients to be zore = hot topic

Multiple kernel learning (MKL) is initially (2004, Lanckriet) of high
computational cost 2 Many subsequent work, still ongoing, has not
been a practical tool yet.

John Langford, Yahoo Research 41



Probabilistic graphical models

Also called graphical model and is a way of describing/representing

a reality by probabilistic relationships between random variables

(observed and unobserved ones). (Cdch mét td va biéu dién cdc hé théng phirc
tap bang cdc quan hé xdc sudt giira cdc bién ngdu nhién (bién hién va dn).

Marriage of graph theory and probability theory in a powerful formalism for
multivariate statistical modeling.

Directed graphical models (Bayesian networks)

and undirected graphical models (Markov networks).

Fundamental: modularity (a complex system = combining simpler parts).
A general framework of:

0 Bayesian networks: HMM, NB,
Kalman filters, mixture model...

0 Markov networks: CRF, MaxEnt,
LDA, Hopfield net, Markov chain...

Initial set of factors Reduced to context Reduced to context
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Probabilistic graphical models
The main issues

Representation: How a graphical model models a reality? Which forms?

0 Graph describing realities by nodes representing variables and arcs
their relations: directed and undirected graphical models

Learning: How we build graphical models?

o The structure and parameters of each conditional probabilistic depen-
dency (known or unknown structure fully or partially observability)

Inference: How can we use observed variables on these models to
computer the posterior distributions of subsets of other variables?

0 Variable elimination, dynamic programming, approximation,
inference in dynamic Bayesian networks.

Applications: How to use graphical models to model some reality, to
learn it from observed data and to infer on it to answer the questions?

Daphne Koller & Nir Friedman, Probabilistic Graphical Models, Principles and Techniques, MIT Press, 2009 43



Probabilistic graphical models
Graph theory and Probability theory

A directed graphical model
consists of a collection of prob.
distributions that factorize as
(pa, = set of parent nodes of x;):

(X1, oo, Xpy) = 1_[ p (xx|pag)

k=1.m

A undirected graphical model
consists of a collection of
probability distributions that
factorize as

1
pCas, s tm) = | | e Gx)
CeC
C = {maximal cliques of graph},
Y. is the compatibility function.

Characterize prob. distributions as
conditional independencies among
subsets of random variables.

For undirected graphical models,
conditional independence is
identified with reachability notion.

A, B, C = disjoint subsets of vertices.

Say X, is independent of X given X,
if there is no path from a vertex in A
to a vertex in B when we remove the
vertices C from the graph.

Consider all A, B, C = all cond.
independence assertions.
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Probabilistic graphical models
Topic models: Roadmap to text meaning

Topics Documents foplc r.l s ikt
assignments
gene 6.604
e o Seeking Life’s Bare (Genetic) Necessities
\:’»x‘l"‘il"kl\\. ”.‘.m: \.‘u,\l:m‘i ‘ l that fa o pecially i
n iy 1 5 A X '
:—’7 .82 ; s s be o than ﬁ\
; J I ‘\. I ﬂ
documents topics 3 ‘\ he :
documents
€ — "
) C — 5 ) S o
2 b3 2
S

Normalized co-.
occurrence matrix

= Key idea: documents are mixtures of latent topics, where a topic is a
probability distribution over words.

s Hidden variables, generative processes, and statistical inference are the
foundation of probabilistic modeling of topics.

Blei, D., Ng, A., Jordan, M., Latent Dirichlet Allocation, JMLR, 2003 45



Non-parametric Bayesian learning

Traditional model selection: (1) Compare models that vary in complexity
by measuring how well they fit the data, (2) Complexity penalty

Bayesian nonparametric (BNP) approach is to fit a single model that can
adapts its complexity to the data. Example: Do not fixing the number of
clusters but estimates how many clusters are needed to model the
observed data.

Two common models ’a’ ;? /-%\ 5\ :?—@' -

O::em o (%) ﬁ@j @ @7 @)
a0 BNP mixture models (Chinese ? & e
restaurant process mixture) infers the e JNONONONIO
a0 R ONSORNORNCO NS
number of clusters from the data. il ﬁﬁ ?T
R sl
o Latent factor models decompose observed e '
@

data into a linear combination of latent factors
(provide dimensionality reduction when # factor < # dimension).

Gershman and Blei, A tutorial on Bayesian nonparametric models, J. of Mathematical Psychology, 2012
Non-parametric statistics: non assumption about probability distribution or non-fixed structure of model. 46



Non-parametric Bayesian learning

The basic computational problem in BNP modeling (as in most of
Bayesian statistics) is computing the posterior.

The most widely used posterior inference methods in Bayesian
nonparametric models are Markov Chain Monte Carlo (MCMC)
methods. The idea MCM methods is to define a Markov chain on the
hidden variables that has the posterior as its equilibrium distribution
(Andrieu et al., 2003).

An alternative approach to approximating the posterior is variational
inference (Jordan et al., 1999), which is based on the idea of
approximating the posterior with a simpler family of distributions and
searching for the member of that family that is closest to it.

Limitations: hierarchical structure, time series models, spatial models,
supervised learning.
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Trends in machine learning (Google scholar)

December 16, 2005

Machine learning
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Content

Basis of machine learning
Recent directions and some challenges

Machine learning in other sciences

“Les attentes le plus vives concernent des secteurs ou
les mathématiques se frottent aux autres disciplines”.
(Rien n’arréte les mathématiques, J. CNRS, 5.2010)

“nhirng mong doi I&n nhat ndm & céc linh vwc co sy
thdm nhap cua toan hoc vao khoa hoc khac”.

Cédric Villani (Fields medal 2010)
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Machine learning and language processing

Essence of NLP

Lexical / Morphological Analysis
Word segmentation
Tagging
Chunking
Syntactic Analysis

Grammatical Relation Finding
Named Entity Recognition

Word Sense Disambiguation

Semantic Analysis
Reference Resolution

Discourse Analysis

text

\

y

The woman will give Mary a book
l POS tagging

The/Det woman/NN will/MD give/VB
Mary/NNP a/Det book/NN

l chunking

[The/Det woman/NN],, [will/MD give/VB],;
[Mary/NNP],» [a/Det book/NN],;

RN
’ .
N
‘ ’ l
\
7 .
\
\

, , relation finding
[The woman] [will give] [Mary] [a book]

meaning
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Machine learning and language processing
Archeology of NLP

Trainable parsers
1990s—-2000s: Statistical learning

o algorithms, evaluation, corpora

1980s: Standard resources and tasks
a Penn Treebank, WordNet, MUC Web since 1990

1970s: Kernel (vector) spaces
o clustering, information retrieval (IR)

1960s: Representation Transformation
o Finite state machines (FSM) and Augmented transition networks (ATNs)

1960s: Representation—beyond the word level
o lexical features, tree structures, networks

From Levy, COLING 2004 51



Machine learning and language processing
More statistical machine learning in NLP

= Manual software
development of
robust NLP systems is

1992 ACL 1994 ACL 1996 ACL very difficult and

4% 29% time-consuming.
(8/34 (16/41)

= Most current
state-of-the-art NLP
1999 ACL 2001 NAACL 2005 ACL systems are
constructed by using
machine learning
methods trained on
large supervised

[l some ML/Stat [[Jno ML/Stat corpora.

60% 87%
(41/6 (27/31)

96%
(74/77)

From Marie Claire’s talk, ECML/PKDD 2005 52



Machine learning and language processing
Information retrieval (IR)

Narrow-sense: Information Retrieval is finding material (usually
documents) of an unstructured nature (usually text) that satisfies an
information need from within large collections (usually on computers).

Broad-sense:

LEARNING
o General problem: how to manage text TO RANK
information? MULTI-LABEL

. . . CLASSIFICATION
o How to find useful information?

(information retrieval), €.g. Google DIMENSIONALITY
o _ REDUCTION
o How to organize information?
(text classification), e.g., automatically TOPIC
assign email to different folders MODELING
o How to discover knowledge from text? WEB
(text mining), e.g., discover correlation SEARCH
of events.

53



Machine learning and language processing
Statistical machine translation

Viethnamese- English

Learning parallel English
corpora ? Bilingual Text

Text

Statistical Analysis Statistical Analysis

. Died the old man too fast

Ong gia di nhanh qua ===  The old man too fast died  =mmp
The old man died too fast
Old man died the too fast

Learning
translation and \ Translati L
5 ranslation anguage
language models? Model Model

Decoding Algorithm

The old man
died too fast

argmax P(e|v) = argmax P(v|e)P(e)
e e




Machine learning and language processing
Some challenges

(Semi)Automate the construction of corpora to be use in statistical
algorithms by machine learning.

Employ and develop advanced statistical machine learning methods to
effectively solve problems in language processing: structured
prediction, transfer learning, topic modeling, ranking, etc.

Combine domain knowledge of each language (Vietnamese) into
general statistical learning methods.

Ambiguity, scale, and sparsity are the main challenges for statistical
techniques for language processing.

Usage: Know which methods are appropriate for each task in language
processing.
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Machine learning and molecular medicine
Mathematics for biology in the 21st century

= Understanding molecules (phan tir)

= Understanding cells (t€ bao)

= Understanding organisms (vit s6ng)

= Understanding populations (quan thé)

= Understanding communities and ecosystems MATHEMATICS B ogY

(cong dong, hé sinh thai)

As math for physics
in the zoth century National Academy of Sciences.

The National Academies Press,
2005
http://www.nap.edu/catalog.php?re
cord_id=11315

Toan hoc trong khoa hoc may tinh va khoa hoc vé sw s6ng (Tia Sang, 9.2010)
http://www.tiasang.com.vn/Default.aspx?tabid=111&CategorylD=2&News=3434 56



Machine learning and molecular medicine
Molecular medicine

genome ,-isé %
&
. - - S O
\ v - ' cell

h MIMOSOMM

Genes contain

" T instructions
X ‘ ‘ % for making
DN»\ 2
( \ proteins
c i‘
2 » e

Proteins act alone
or in complexes 1o

»!
SHIFT IN perform many cellular

functions
MEDICINE From Genes to Proteins
RESEARCH

3000

Metabolomics

ad A
R

\ ﬁ'y V), ,

\,\ ; s Genomics

Proteomics

|

Molecular medicine is ggse n -?luww "sed on
learning from omics data i




Machine learning and molecular medicine
Relations between disease and symptoms

Learning

‘ Processed [ Learning |[
data algorithm
| Preprocessing |

Inference

Gene C @ Gene C @

arget>

The values of Gene C : - Probability for the target
and Gene B are given. Belief propagation is computed.




Machine learning and molecular medicine

Discovering biological network (reconstruction)
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Machine learning and molecular medicine
Liver disease study

Project’s goal (2010-2013)

Develop methods to exploit omics data for creating new and
significant knowledge on pathology and therapy of liver diseases.

RNAI _[TTTT
'y 11T LTI
g D |
> 7-8% hepatitic A L™ pathogenesis
5 (F4) epatitis
8’_ Cirrhosis HCC k/) & therapy?
O # o
T " 1.3% | (2 g N Epigenetic
- NSS5A
L 1.2% (F1) Factor
X% 1973 ... 2419 | fQ/ Interplay
o (FO) Chronic
(Acute Hepatitis) Hepatitis
> Research objective and approaches

Time



Machine learning and molecular medicine

RNA interference (RNAi) and hepatitis

dsRMN A
G e |

Cell Metmbtans siRMA unwinding

DNA 2 mRNA 2 Protein

— Activated
RISC

Association with
target mRMN&

e ||

Target mRMOS
¥ e cleawvage

e S ENIE= — e Targ =k R M~
—ee A MtizEns=

Fire, A., Mello, C., Nobel Prize 2006

RNAI (siRNA and
miRNA) is post-
transcriptional gene
silencing (PTGS)
mechanism.

Chemically synthesized
siRNAs can mimic the
native siRNAs produced
by RNAi but having
different ability.

Problem: Selection of
potent siRNAs for
silencing hepatitis
viruses?



Machine learning and molecular medicine
RNA interference (RNAi) and hepatitis

Which siRNA have high knockdown efficacy from 274.877.906.994
siRNA sequences of 19 characters from {A, C, G, U}?

Empirical siRNA design rules Machine learning approach
Position/Nu | A (Qiu, 2009; Takasaki 2009; Alistair 2008, etc.)
cleotide

training regression

C>A>G A>U>C U>C>G dita model
A>C=G A>U>C A>U>G C>G>U ACGCCGU 0.65 design| | numerical ( o \

vavuaco0ss ~{'ue' /7 hemer T

GGCUACC 0.90 - svm

AUUAUUC 0.34 «| SOlver

CUAUGGA 0.51 .

AAGCGUA 0.47 string s

UACCGGU 0.55 kernel il

m Learn a function f(.) that scores the knockdown efficacy of given stRNAs?
m Generate siRNA with highest knockdown efficacy?



Machine learning and molecular medicine
Graphical models in bioinformatics

Genomics: Modeling
of DNA sequences:

Apply knowledge of
microbial functioncl

gene finding by ’ ] (=] “ l 2 ccpabilities
HMM, splice site Rt e

prediction by BN. n\ WES //

.
LORE /S -

\ocovel INOVAT PR HES o

rNEA Ly UNCONV M S ()éﬁ

’ ¥ U.S. DEPARTMEN , CEX
FUNCTIONS

“ IN MICROBIAL! >

Preteomics: Protein T - | communinies
contact maps k i

%y ) \
. . . 2 ,0” Q. i o,
prediction or protein R : Lo
s S, COMPUTATIONAL
L el s CAPABILITIES
f01d reCOgnlthn by o DNAF"?‘”?"“:‘.’,‘ <--" ()Y}[/é TO UNDERSTAND
0 contain instructions SBERT ey COMPLEX
s on how and when PROTEIN BIOLOGICAL
BN . to build proteins o MACHINES SYSTEMS

Many profein
machines interact

Systems biology:

. . 5 0 // e
Complex interactions y To cavey out heir Elfacrenize cene
specific roles, they often work together in the cell os protein machines. REGULATORY NETWORKS

in biological systems

Pedro Larranaga et al., Machine learning in bioinformatics, Briefing in Bioinformatics, 2006
Tran, D.H., Pham, T.H., Satou, K., Ho, T.B. (2006). Conditional Random Fields for Predicting and Analyzing
Histone Occupancy, Acetylation and Methylation Areas in DNA Sequences. 63



Machine learning and molecular medicine
Some challenges

New problems raise new questions

Large scale problems especially so

o Biological data mining, such as HIV
vaccine design

o DNA, chemical properties, 3D
structures, and functional properties
- need to be fused

o Environmental data mining
o Mining for solving the energy crisis

Network reconstruction (graphical
models, Bayesian nonparametric models,
etc.)

Nguyen, T.P., Ho, T.B. (2011). Detecting Disease Genes Based on Semi-Supervised Learning and Protein-Protein Interaction Networks,
Artificial Intelligence in Medicine, Vol. 54, 63-71
Nguyen, T.P., Ho, T.B. (2008). An Integrative Domain-Based Approach to Predicting PPI, Biointormatics and Comput.Biology, Vol. 6, Issue 6



Take home message

Statistical machine learning has greatly changed machine learning.
It opened opportunities to solve complicated learning problems.
However it is difficult and need big effort to learn.

Machine learning systems can always get better, learn more, work
faster and in ever more ways.
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Program of Statistical Machine Learning

Ho Tu Bao, Nguyén Xuan Long, John Lafferty,
18-22 June 30 July-3 August 6-10 June 2012
1. An overview of 1. Finite and hierarchical 1. Sparsity in regression
machine learning, mixture models 2. Graphical model
recent directions 2. Dirichlet, stick-breaking structure learning
2. Regression and Chinese restaurant 3. Nonparametric
3. Kernel methods and processes inference
SVM 3. Infinite mixture models 4. Topic models
4. Dimensionality 4. Nonparametric Bayes:
reduction Hierarchical methods
5. Graphical model and 5. Nonparametric Bayes:
topic modeling Asymptotic theory

Discussion through the project period, especially 12-18 August 2012
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Lecture schedule

18/6 L1 Machine learning: Recent directions, some challenges
and what it can do for other sciences

19/6 L2 Model assessment and selection in regresion
20/6 L3 Kernel methods and support vector machines
21/6 L4 Dimensionality reduction and manifold learning

22/6 L5 Graphical models and topic models

inger Texts in Statistics

Alan Julian Izenman

PROBABILISTIC GRAPHICAL MODELS

Modern Multivariate
Statistical Techniques

Regression, Classification, and
Manifold Learning
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Michael I. Jordan's students & postdoc (58)

Francis Bach, Prof.,, ENS: graphical models, sparse methods, kernel-based learning
Yoshua Bengio, Prof., U. Montréal: Deep learning, ML for understanding Al

David Blei, A. Prof., Princeton U.: PGM, topic models, BNM

Zoubin Ghahramani, Prof.,, U. Cambridge: Gaussian, BNM, inference, PGM, SSL, ...
Gert Lanckriet, A. Prof., U. San Diego: Computer music, Opt & ML, MKL, bioinfo.
XuanLong, Ass Prof., U. Michigan: SML & Opt., BNM, distributed stat. inference,...

Andrew Ng, A.Prof., Stanford U.: Unsup. Learning, Deep Learning, Robitics,...

Lawrence Saul, Prof, U San Diego: App. of ML to computer systems & security
Ben Taskar, Ass Prof, U Penn.: Determinantal point processes, Structured Pred.
Yee-Whye Teh, Lect, U. Col. London: HDP (919), BNM, Bayesian tech, Appro. Infer.

Martin Wainwright, Prof., U. Berkeley: PGM, stat. signal & image, coding &
compres.

Yair Weiss, Professor, Hebrew University

Daniel Wolpert, Prof, U. Cambridge: Motor neuroscience
Eric Xing, A. Prof, CMU: ML and biology, PGM,...

l
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