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Statistics and machine learning 

Statistics 
 Long history, fruitful 

 Aims to analyze datasets 

 Early focused on numerical data 

 Multivariate analysis = linear 
methods on small to medium-
sized data sets + batch 
processing. 

 1970s: interactive computing + 
exploratory data analysis (EDA) 

 Computing power & data storage 
 machine learning and data 
mining (aka EDA extension). 

 Statisticians interested in ML   

Machine learning 
 Newer, fast development 

 Aims to exploit datasets to learn 

 Early focused on symbolic data 

 Tends closely to data mining 
(more practical exploitation of 

large datasets 

 Increasing employs statistical 
methods 

 More practical with computing 
power 

 ML people: need to learn 
statistics!  
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Introduction 
Model and modeling 
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 Model:   

 Mô tả khái quát hoặc trừu tượng hóa của một thực thể                       
(simplified description or abstraction of a reality). 

 Modeling: Quá trình tạo ra một mô hình. 

 Mathematical modeling: Description of a system using mathematical 
concepts and language 

 Linear vs. nonlinear; deterministic vs. probabilistic; static vs. 
dynamic; discrete vs. continuous; deductive, inductive, or floating. 

 A method for model assessment and selection 

 Model selection: Select the most appropriate model  

 Given the problem target and the data  Choose appropriate 
methods and parameter settings for the most appropriate model. 

 No free lunch theorem. 
 



Introduction 
History 

 The earliest form of regression was the method of least squares which 
was published by Legendre in 1805 and by Gauss in 1809. 

 The term “regression” coined by Francis Galton in the 19th century to 
describe a biological phenomenon which was extended by Udny Yule 
and Karl Pearson to a more general statistical context (1897, 1903). 

 In 1950s, 1960s, economists used electromechanical desk calculators 
to calculate regressions. Before 1970, it sometimes took up to 24 hours 
to receive the result from one regression. 

 Regression methods continue to be an area of active research. In recent 
decades, new methods have been developed for robust regression in , 
time series, images, graphs, or other complex data objects, 
nonparametric regression, Bayesian methods for regression, etc.  
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Introduction 
Regression and model 

 Given 𝐗𝑖, 𝐘𝑖 , 𝑖 = 1, … , 𝑛  where each 𝐗𝑖  is a vector of  r random 

variables 𝐗 = (𝑋1, … , 𝑋𝑟)𝜏 in a space 𝕏 and 𝐘i is a vector of s random 

variables 𝐘 = (𝑌1, … , 𝑌𝑠)𝜏  
 in a space 𝕐  

 The problem is to learn a function 𝑓: 𝕏 ⟶ 𝕐 from 𝐗𝑖, 𝐘𝑖 , 𝑖 = 1, … , 𝑛  
satisfies 𝑓 𝐗𝑖 = 𝐘𝑖 , 𝑖 = 1, … , 𝑛. 

 When 𝕐 is discrete the problem is called classification and when 𝕐 is 
continuous the problem is called regression. For regression: 

 When r = 1 and s =1 the problem is called simple regression. 

 When r > 1 and s =1 the problem is called multiple regression. 

 When r > 1 and s > 1 the problem is called multivariate regression. 
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Introduction 
Least square fit 

 Problem statement 
Adjusting the parameters of a 
model function to best fit a data set 

 The model function has 
adjustable parameters, held in 
the vector 𝜷 

 The goal is to find the 
parameter values for the model 
which “best” fits the data 

 The least square method finds 
its optimum when the sum, 𝑆, 
of squared residuals is a 
minimum. 
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𝑓 𝐗, 𝜷  

𝑆 =   𝑟𝑖
2

𝑛

𝑖=1

 

𝑟𝑖 = 𝑌𝑖 − 𝑓 𝐗𝑖, 𝜷  

Data set 

Model function 

Sum of squared residuals 

E.g. 
𝑓 𝐗, 𝜷  = 𝛽0 + 𝛽1𝐗 

𝛽0 ∶ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 (phần bị chắn) 
𝛽1 ∶ 𝑠𝑙𝑜𝑝𝑒 (độ dốc) 

𝐗𝑖, 𝐘𝑖 , 𝑖 = 1, … , 𝑛   



Introduction 
Least square fit 

 Solving the problem 

 Minimum of the sum of 
squared residuals is found 
by setting the gradient to 
zero. 

 The gradient equations 
apply to all least squares 
problems. 

 Each particular problem 
requires particular 
expression for the model 
and its partial derivatives. 

𝜕𝑆

𝜕𝛽𝑗

= 2  𝑟𝑖

𝜕𝑟𝑖

𝜕𝛽𝑖

= 0, 

𝑖

𝑗 = 1, … , 𝑚 

Gradient on 𝛽 

𝑟𝑖 = 𝑌𝑖
 −

𝑓 𝐗𝑖, 𝜷  

−2  𝑟𝑖

𝜕𝑓 𝐗𝑖, 𝜷

𝜕𝛽𝑗

= 0, 

𝑖

𝑗 = 1, … , 𝑚 

Gradient equation 



Introduction 
Least square fit 

 Linear least squares 

 Coefficients 𝜑𝑖 
 are functions of X𝑖 

 Non-linear least squares 

 There is no closed-form solution to 
a non-linear least squares problem. 

 Numerical algorithms are used to 
find the value of the parameter 𝜷 
which minimize the objective. 

 The parameters 𝜷 are refined 
iteratively and the values are 
obtained by successive 
approximation. 

𝑓 𝐗𝑖, 𝜷 =  𝛽𝑗 𝜑𝑗 𝐗𝑖

𝑚

𝑗=1

 

Linear model function 

𝑿𝑖𝑗 =  
𝜕𝑓 𝐗𝑖, 𝜷

𝜕𝛽𝑗
 
=  𝜑𝑗 𝐗𝑖  

𝜷 = 𝐗𝑇 𝐗 −1 𝐗𝑇 𝒀 

Iterative approximation 

𝛽𝑗
𝑘+1 = 𝛽𝑗

𝑘  +  ∆𝛽𝑗  

Shift vector 

𝑓 𝐗𝑖, 𝜷 = 𝑓𝑘 𝐗𝑖, 𝜷 +  
𝜕𝑓 𝐗𝑖, 𝜷

𝜕𝛽𝑗

𝛽𝑗  − 𝛽𝑗
𝑘

𝑚

𝑗=1

 

= 𝑓𝑘 𝐗𝑖, 𝜷 +  𝐽𝑖𝑗  
∆𝛽𝑗

𝑚

𝑗=1

 

Gradient equation 

−2  𝐽𝑖𝑗 ∆𝑌𝑖 −  𝐽𝑖𝑗  ∆𝛽𝑗

𝑚

𝑗=1

= 0

𝑛

𝑖=1

 

Gauss-Newton algorithm 

an expression is said to be a closed-form expression if it can be expressed                                                   

analytically in terms of a finite number of certain "well-known" functions. 



Introduction 
Simple linear regression and correlation 

Okun’s law (Macroeconomics): An example of the simple linear regression 

The GDP growth is presumed to be in a linear relationship with the 
changes in the unemployment rate. 
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Introduction 
Simple linear regression and correlation 

 Correlation analysis (correlation coefficient) is for determining 
whether a relationship exists.  

 Simple linear regression is for examining the relationship between two 
variables (if a linear relationship between them exists). 

 Mathematical equations describing these relationships are models, and 
they fall into two types: deterministic or probabilistic. 

 Deterministic model: an equation or set of equations that allow us 
to fully determine the value of the dependent variable from the 
values of the independent variables. 

Contrast this with… 

 Probabilistic model: a method used to capture the randomness that 
is part of a real-life process. 
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Introduction 
Simple linear regression 

Example: Do all houses of the same size sell for exactly the same price? 

 Models 

 Deterministic model:  approximates the relationship we want to 
model and add a random term that measures the error of the 
deterministic component. 

 

The cost of building a new house is about $75 per square foot and most 
lots sell for about $25,000. Hence the approximate selling price (Y) 
would be:  

 Y = $25,000 + (75$/ft2)(X) 

(where X is the size of the house in square feet) 
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Introduction 
Background of model design 

 The facts 

 Having too many input variables in the regression model 
⇒ an overfitting regression function with an inflated variance 

 Having too few input variables in the regression model 
⇒ an underfitting and high bias regression function with poor 
explanation of the data 

 The “importance” of a variable 

Depends on how seriously it will affects prediction accuracy if it is 
dropped. 

 The behind driving force 

The desire for a simpler and more easily interpretable regression 
model combined with a need for greater accuracy in prediction.  
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Introduction 
Simple linear regression 

A model of the relationship between house size (independent variable) 
and house price (dependent variable) would be:  

 

 

 

 

 

 

 

 

 

 

In this model, the price of the house is completely determined by the size 
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House size 

House 
Price 

Most lots sell  

for $25,000 



Introduction 
Simple linear regression 

A model of the relationship between house size (independent variable) and 
house price (dependent variable) would be:  

 

 

 

 

 

 

 

 

 

 

In this model, the price of the house is completely determined by the size 
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House size 

House 
Price 

Most lots sell  

for $25,000 

Lower vs. Higher 
Variability 

House Price = 25,000 + 75(Size) + 

Same square footage, but 
different price points 
(e.g. décor options, cabinet 
upgrades, lot location…) 



Introduction 
Simple linear regression 

Example: Do all houses of the same size sell for exactly the same price? 

 Probabilistic model: 

   𝑌 = 25,000 + 75 𝐗 + 𝜀 

where 𝜀 is the random term (error variable). It is the difference 
between the actual selling price and the estimated price based on the 
size of the house. Its value will vary from house sale to house sale, even 
if the square footage (X) remains the same. 

 First order simple linear regression model: 

  𝑌 = 𝛽0 + 𝜷1𝑿 + 𝜀 
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Dependent 
variable 

intercept 
slope 

independent 
variable 

error variable 



Introduction 
Regression and model 

 Techniques for modeling and analyzing the relationship between 
dependent variables and independent variables.   
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𝑿𝑖 =
𝑋1

𝑖

⋮
𝑋𝑟

𝑖
 𝒀𝑖 =

𝑌1
𝑖

⋮
𝑌𝑠

𝑖
 

Input (independent, predictor, explanatory) Output (dependent, predicted, response) 

The relationship = Regression model 

 Different forms of                       

                𝑓: 𝕏 ⟶ 𝕐 

 linear vs. nonlinear,  

 parametric vs. 
nonparametric. 

Linear combination of the parameters (but need not be linear in the independent variables) 



Introduction 
Model selection and model assessment 

 Model Selection: Estimating performances of different models to 
choose the best one (produces the minimum of the test error). 

 Model Assessment: Having chosen a model, estimating the prediction 
error on new data. 
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Regression function and least squares 

Consider the problem of predicting 𝑌 by a function, 𝑓 𝐗 , of 𝐗 

 Loss function 

𝐿 𝑌, 𝑓 𝐗  

measures the prediction accuracy gives the loss incurred if 𝑌 is 
predicted by 𝑓 𝐗 .  

 Risk function 

𝑅 𝑓 = 𝐸 𝐿 𝑌, 𝑓 𝐗  

(expected loss) measures the quality of 𝑓 𝐗  as a predictor. 

 Bayes rule and the Bayes risk 

The Bayes rule is the function 𝑓∗ which minimizes 𝑅 𝑓 ,                       
and the Bayes risk is 𝑅 𝑓∗ . 
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Regression function and least squares 
Regression function 

 
 Squared-error loss function 

𝐿 𝑌, 𝑓 𝐗 = 𝑌 − 𝑓 𝐗
2

 

 Mean square error criterion 

 𝑅 𝑓 = 𝐸 𝑌 − 𝑓 𝐗
2

= 𝐸𝐗 𝐸𝑌 𝐗 𝑌 − 𝑓 𝐗
2
 𝐗  

 We can write Y − f(x) = (Y − μ(x)) + (μ(x) − f(x)) where 

                𝜇 𝐱 = 𝐸𝑌 𝐗 𝑌 𝐗 = 𝐱  

    is called regression function of Y on X . Squaring both sides and taking the 
conditional distribution of 𝑌 given 𝐗 = 𝐱, as 𝐸𝑌 𝐗 𝑌 − 𝜇(𝑥) 𝐗 = 𝐱 = 0,      

we have    

𝐸𝑌 𝐗 𝑌 − 𝑓 𝐗
2
 𝐗 = 𝐱 = 𝐸𝑌 𝐗 𝑌 − 𝜇 𝐱

2
 𝐗 = 𝐱 + 𝜇 𝐱 − 𝑓 𝐱

𝟐
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Regression function and least squares 
Least squares 

 Taking 𝑓∗ 𝐱 = 𝜇 𝐱 = 𝐸𝑌 𝑋*𝑌 𝐗 = 𝐱+, the 

previous equation is minimized 

𝐸𝑌 𝐗*(𝑌 − 𝑓∗ 𝐱 )2|𝐗 = 𝐱+ 

= 𝐸𝑌 𝐗*(𝑌 − 𝜇 𝐱 )2 𝐗 = 𝐱+ 

 Taking expectations of both sides, we have Bayes 
risk 

𝑅 𝑓∗ = min𝑓 𝑅 𝑓 = 𝐸 𝑌 − 𝜇 𝐗
2

 

The regression function 𝜇 𝐗  of 𝑌 on 𝐗, evaluated 
at 𝐗 = 𝐱, is the “best” predictor (defined by using 
minimum mean squared error). 
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Data 

Statistical  

model 

Systematic  

component 

+ 

Random 

errors 



Regression function and least squares 

 Assumption 

 The output variables 𝒀 are linearly related to the input variables 𝑿 

 The model  
𝜇 𝐗 = 𝛽0 +  𝛽𝑖  𝑿𝑖

𝑟
𝑖=1   ⟹    𝑌 = 𝛽0 +  𝛽𝑖  𝑿𝑖

𝑟
𝑖=1 + 𝑒 

    is treated depending on assumptions on how 𝑋1, … , 𝑋𝑟  were generated. 

 𝑿𝑖 : the input (or independent, predictor) variables 
 𝑌: the output (or dependent, response) variable 
 𝑒 : (error) the unobservable random variable with mean 0, variance 2ߪ 

 The tasks  

 To estimate the true values of 𝛽0, 𝛽1, … , 𝛽𝑟 , and 2ߪ 
 To assess the impact of each input variable on the behavior of 𝑌  
 To predict future values of  𝑌 
 To measure the accuracy of the predictions 
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Regression function and least squares 
Random-X case vs. Fixed-X case 

Random-X case 

 X is a random variable, also 
known as the structural model or 
structural relationship. 

 Methods for the structural model 
require some estimate of the 
variability of the variable X.  

 The least squares fit will still give 
the best linear predictor of Y, but 
the estimates of the slope and 
intercept will be biased.  

 E(Y|X) = β0 + β1X 

Fixed-X case (Fisher, 1922) 

 X is fixed, but measured with 
noise, is known as the functional 
model or functional relationship. 

 The fixed-X assumption is that the 
explanatory variable is measured 
without error. 

 Distribution of the regression 
coefficient is unaffected by the 
distribution of X. 

 E(Y|X=x) = β0 + β1x 
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Regression function and least squares 
Random-X case vs. Fixed-X case 
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Regression function and least squares 
Random-X case vs. Fixed-X case 
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Regression Plot 

0 
X 

Y 

my|x=a +  x 

x 

} }
 

 = Slope 

1 

y 

{ Error:  

{ a = Intercept 

X 

Y 
LINE assumptions of the Simple 

Linear Regression Model 

Identical normal 

distributions of errors, 

all centered on the 

regression line. 

my|x=a +  x 

y 

N(my|x, sy|x
2) 



Regression function and least squares 
Random-X case 

 Regression coefficients 

𝜷 =
𝛽1

⋮
𝛽𝑟

,          𝜶 =

𝛽0

𝛽1

⋮
𝛽𝑟

 ,    𝐙 =

1
𝑿1

⋮
𝑿𝑟

 

 Regression function 

𝜇 𝐗 = 𝐙𝜏𝜶 = 𝛽0 + 𝜷𝐗 = 𝛽0 +  𝛽𝑗  𝑿𝑗
𝑟
𝑗=1  

 Let 

𝑆 𝜶 = 𝐸 𝑌 − 𝐙𝜏𝜶 2  

and define 𝜶∗ = arg min𝜶 𝑆 𝜶  
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Regression function and least squares 
Random-X case 

 Setting differential of 𝑆 𝜶  with respect to 𝜶 to 0  

𝜕𝑆 𝜶

𝜕𝜶
= −2𝐸 𝐙𝑌 − 𝐙𝐙𝜏𝜶 = 0 

 We get                              𝜶∗= E 𝐙𝐙τ −1E 𝐙𝑌  

  𝜷∗= 𝚺𝑋𝑋
−1𝚺𝑋𝑌,  𝛽0

∗ = 𝜇𝑌 − 𝝁𝑋
𝜏 𝜷∗ 

 In practice, 𝝁𝑋, 𝜇𝑌, 𝚺𝑋𝑋, and 𝚺𝑋𝑌 are unknown, we estimate them by ML 

using data generated by the joint distribution of 𝐗, 𝑌 . Let                      

𝒳 = (X1, · · · ,Xn)τ, 𝒴 = (Y1, · · · , Yn)τ, 𝐗 =
1

𝑛
 𝐗𝑗

n
1 , 𝑌 =

1

𝑛
 𝑌𝑗

𝑛
1 ,  

              𝒳 = 𝐗 , … , 𝐗 𝜏, 𝒴 = 𝑌 , … , 𝑌 𝜏, 𝒳𝑐 = 𝒳 − 𝒳 , 𝒴𝑐 = 𝒴 − 𝒴 , 

𝜷 ∗ = 𝒳𝑐
𝜏𝒳𝑐

−1𝒳𝑐
𝜏𝒴𝑐 , 𝛽 0

𝜏 = 𝑌 − 𝐗 𝜏𝜷 ∗ 

 28 Covariance matrix: ΣXX = cov(X,X) = E{(X − μX)(X − μX)τ }  



Regression function and least squares 
Fixed-X case 

 𝑋1, … , 𝑋𝑟  are fixed in repeated sampling and 𝑌 may be selected in the 
designed experiment or 𝑌 may be observed conditional on the 𝑋1, … , 𝑋𝑟 

𝒵 =
1 𝑋1

1 ⋯ 𝑋𝑟
1

⋮ ⋮ ⋱ ⋮
1 𝑋1

𝑛 ⋯ 𝑋𝑟
𝑛

- input variables,    𝒴 =
𝑌1

⋮
𝑌𝑟

- output variables 

 The regression function 

𝑌𝑖 = 𝛽0 +  𝛽𝑗𝑋𝑖𝑗 + 𝑒𝑖

𝑟

𝑗=1

, 𝑖 = 1,2, … , 𝑛 

𝒴 = 𝒵𝜷 + 𝒆 

𝒆: random n-vector of unobservable errors with 𝐸 𝒆 = 0, var 𝒆 = 𝜎2𝐈𝑛 . 

 Error sum of squares 

𝐸𝑆𝑆 𝜷 =  e𝑖
2 = 𝒆𝜏𝒆 = (𝒴 − 𝒵𝜷)𝜏𝑛

𝑖=1 (𝒴 − 𝒵𝜷) 
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Regression function and least squares 
Fixed-X case 

 Estimate 𝜷 by minimizing 𝐸𝑆𝑆 𝜷  w.r.t. 𝜷. Set differential w.r.t. 𝜷 to 0 

𝜕𝐸𝑆𝑆(𝜷)

𝜕𝜷
= −2𝒵𝜏 𝒴 − 𝒵𝜷 = 0 

The unique ordinary least-squares (OLS) estimator of 𝜷 is  

𝜷 𝑜𝑙𝑠 = (𝒵𝜏𝒵)−1𝒵𝜏𝒴 

 Even though the descriptions differ as to how the input data are 
generated, the ordinary least-squares estimator estimates turn out to be 
the same for the random-X case and the fixed-X case:                                             

𝜷 ∗ = 𝒳𝑐
𝜏𝒳𝑐

−1𝒳𝑐
𝜏𝒴𝑐 , 𝛽 0

𝜏 = 𝑌 − 𝐗 𝜏𝜷 ∗ 

 The components of the n-vector of OLS fitted values are the vertical 
projections of the n points onto the LS regression surface (or hyperplane)  

𝑌 𝑖 = 𝜇 𝐗𝑖 = 𝐗𝑖
𝜏𝜷 𝑜𝑙𝑠, 𝑖 = 1, … , 𝑛.  
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Regression function and least squares 
Fixed-X case 

 The variance of  𝑌 𝑖  for fixed Xi is given by 

var 𝑌 𝑖 𝐗𝑖 = 𝐗𝑖
𝜏 𝑣𝑎𝑟(𝛽 𝑜𝑙𝑠) 𝐗𝑖 = 𝜎2𝐗𝑖

𝜏(𝒵𝜏𝒵)−1𝐗𝑖  

 The n-vector of fitted values 𝒴 = (𝑌 1, … , 𝑌 𝑛)𝜏 is 

𝒴 = 𝒵𝜷 𝑜𝑙𝑠 = 𝒵(𝒵𝜏𝒵)−1𝒵𝜏𝒴 = 𝐇𝒴 

where the (n×n)-matrix H = 𝒵(𝒵𝜏𝒵)−1𝒵𝜏 is often called the hat matrix. 

 The variance of  Y is given by 

         𝑣𝑎𝑟 𝒴  𝐗 = 𝐻 𝑣𝑎𝑟 𝒴 𝐇𝜏 = 𝜎2H 

 The residuals, 𝒆  = 𝒴 − 𝒴  = (In − H)𝒴 are the                                                    

OLS estimates of the unobservable errors e,                                                    

and can be written as    𝒆 = 𝐈𝑛 − 𝐇 𝒆. 
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Regression function and least squares 
ANOVA table for multiple regression model and F-statistic 

Residual variance                𝜎 2 =
𝑅𝑆𝑆

𝑛−𝑟−1
 

Total sum of squares           𝑆𝑌𝑌=  (𝑛
𝑖=1 𝑌𝑖 − 𝑌 )2 = 𝒴 − 𝒴 𝜏 𝒴 − 𝒴  

Regression sum of                𝑆𝑆𝑟𝑒𝑔 =  (𝑛
𝑖=1 𝑌 𝑖 − 𝑌 𝑖)

2 = 𝛽 𝑜𝑙𝑠
𝜏 (𝒵𝜏𝒵)𝛽 𝑜𝑙𝑠  

of squares 

Residual sum of squares    𝑅𝑆𝑆 =  (𝑛
𝑖=1 𝑌𝑖 − 𝑌 𝑖)

2 = (𝒴 − 𝒵𝛽 𝑜𝑙𝑠)
𝜏(𝒴 − 𝒵𝛽 𝑜𝑙𝑠) 

 Use F-statistic,  𝐹 =
𝑆𝑆𝑟𝑒𝑔 𝑟 

𝑅𝑆𝑆 (𝑛−𝑟−1) 
, to see if there is a linear relationship 

between Y and the Xs: F small  not reject 𝛽 = 0, F large   ∃𝑗, 𝛽𝑗 ≠ 0. 

 If 𝛽𝑗= 0, use t-statistic, 𝑡𝑗 =
𝛽 𝑗

𝜎 𝑣𝑗𝑗
, where 𝑣𝑗𝑗 is the jth diagonal entry of 

(𝒵𝜏𝒵)−1. If 𝑡𝑗  large large  𝛽𝑗 ≠ 0, else (near zero)  𝛽𝑗 = 0. 
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Regression function and least squares 
Bodyfat data 

 n = 252 men, to relate the percentage of bodyfat to age, weight, height, 
neck, chest, abdomen, hip, thigh, knee, ankle, bicept, foream, wrist (13). 
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bodyfat = β0 + β1(age)   

               + β2(weight) + β3(height) 

               + β4(neck) + β5(chest)  

               +  β6(abdomen) + β7(hip) 

               + β8(thigh) + β9(knee)  

               + β10(ankle)      

               + β11(biceps) 

               + β12(forearm)   

               + β13(wrist) + e 



Regression function and least squares 
Fixed-X case 

34 

OLS estimation of coefficients : 

- multiple R2 is 0.749 

- residual sum of squares is 4420.1 

- F-statistic is 54.5 on 13 and 238 degrees of freedom.  

A multiple regression using variables having |t| > 2  

-   residual sum of squares 4724.9,  

- R2 = 0.731,  

- F-statistic of 133.85 on 5 and 246 degrees of freedom. 

Multiple regression results for the bodyfat data.    

The variable  names are given on the vertical axis 

(listed in descending order of their absolute t-ratios) 

and the absolute value of the t-ratio for each variable 

on the horizontal axis. 
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Prediction accuracy and model assessment 

 The aims 

 Prediction is the art of making accurate guesses about new 
response values that are independent of the current data. 

 Good predictive ability is often recognized as the most useful way of 
assessing the fit of a model to data. 

 Practice 

 Learning data ℒ = * 𝐗𝑖 , 𝑌𝑖 , 𝑖 = 1, … , 𝑛+ for regression of 𝑌 on 𝑿. 

 Prediction of a new 𝑌𝑛𝑒𝑤 by applying  the fitted model to a brand-
new 𝑿𝑛𝑒𝑤 , from the test set 𝑇. 

 Predicted 𝑌𝑛𝑒𝑤 is compared with the actual response value. The 
predictive ability of the regression model is assessed by its 
prediction error (or generalization error), an overall measure of the 
quality of the prediction, usually taken to be mean squared error. 
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Prediction accuracy and model assessment 
Random-X case 

 Learning data set 𝐿 = 𝐗𝑖, 𝑌𝑖 , 𝑖 = 1, … , 𝑛  are observations from the 

joint distribution of 𝐗, 𝑌  and 

𝑌 = 𝛽0 +  𝛽𝑗 𝑋𝑗

𝑟

𝑗=1

+ 𝑒 = 𝜇 𝐗 + 𝑒 

       where 𝜇 𝐗 = 𝐸 𝑌 𝐗 , 𝐸 𝑒 𝐗 = 0, 𝑣𝑎𝑟 𝑒 𝐗 = 𝜎2 

 Given the test set 𝑇 = 𝐗𝑛𝑒𝑤, 𝑌𝑛𝑒𝑤 , if the estimated OLS regression 

function at X is                          𝜇 𝐗 = 𝛽 0 + 𝐗𝜏𝜷 𝑜𝑙𝑠 

then the predicted value of 𝑌 at 𝐗new is 𝑌 = 𝜇 𝐗𝑛𝑒𝑤 . 
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Prediction accuracy and model assessment 
Random-X case 

 Prediction Error 

𝑃𝐸𝑅 = 𝐸 𝑌𝑛𝑒𝑤 − 𝜇 𝐗𝑛𝑒𝑤 2 = 𝜎2 + 𝑀𝐸𝑅  

 Model Error (also called the “expected bias-squared”) 

 𝑀𝐸𝑅 = 𝐸 𝜇 𝐗𝑛𝑒𝑤 − 𝜇 𝐗𝑛𝑒𝑤 2 = 𝜷 − 𝜷 𝑜𝑙𝑠

𝜏
𝚺𝑋𝑋 𝜷 − 𝜷 𝑜𝑙𝑠
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Prediction accuracy and model assessment 
Fixed-X case 

 In 𝐿 = 𝐗𝑖, 𝑌𝑖 , 𝑖 = 1, … , 𝑛 , 𝑿𝑖  are fixed and only Y is random. 

Assume that 

𝑌𝑖 = 𝛽0 +  𝛽𝑗 𝑋𝑗
𝑖

𝑟

𝑗=1

+ 𝑒𝑖 = 𝜇 𝐗𝑖 + 𝑒𝑖 

where 𝜇 𝐗𝑖 = 𝛽0 +  𝛽𝑗 𝑋𝑗
𝑖𝑟

𝑗=1   is the regression function evaluated at 

𝐗𝑖 , and the errors 𝑒𝑖  are iid with mean 0 and variance 

𝜎2  and uncorrelated with 𝑿𝑖  . 

 Assume the test data set generated by “future-fixed” 𝐗𝑛𝑒𝑤   and    𝑇 =

𝐗𝑖, 𝑌𝑖
𝑛𝑒𝑤 , 𝑖 = 1, … , 𝑚 , where 𝑌𝑖

𝑛𝑒𝑤 = 𝜇 𝑋𝑖 + 𝑒𝑖
𝑛𝑒𝑤 . The predicted 

value of 𝑌𝑛𝑒𝑤at X is  𝜇 𝐗 = 𝛽 0 + 𝐗𝜏𝜷 𝑜𝑙𝑠. 
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Prediction accuracy and model assessment 
Fixed-X case 

 Prediction Error 

𝑃𝐸𝐹 = 𝐸
1

𝑚
 𝑌𝑖

𝑛𝑒𝑤 − 𝜇 𝐗𝑖
2

𝑚

𝑖=1

= 𝜎2 + 𝑀𝐸𝐹  

 Model Error 

𝑀𝐸𝐹 =
1

𝑚
 𝑌𝑖

𝑛𝑒𝑤 − 𝜇 𝐗𝑖
2

𝑚

𝑖=1

= 𝛽 − 𝛽 𝑜𝑙𝑠

𝜏 1

𝑚
𝜒𝜏𝜒 Σ𝑋𝑋 𝛽 − 𝛽 𝑂𝐿𝑆
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Russ Greiner, ICML’04 PC co-chair 

Observed from ICML 2004 



Estimating prediction error 
Training, validation, and testing data 
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Estimating prediction error 
Background 

 
In cases the entire data set is not large enough and a division of the data 
into learning, validation, and test sets is not practical, we have to use 
alternative methods. 

Apparent Error Rate  

Applying the regression function obtained from OLS to the original 
sample data to see how well it predicts those same members 

Cross-Validation 

Split data set into two subsets, treating one subset as the learning 
set, and the other as the test set. Fit a model using this learning set 
and compute its prediction error. The learning set and the test set 
are then switched,  and average all the prediction errors to estimate 
the test error. 
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Estimating prediction error 
Background 

Bootstrap 

Drawing a random sample with replacement having the same size as 
the parent data set. Fit a model using this bootstrap sample and 
compute its prediction error. Repeat the procedure, and average all the 
prediction errors to estimate the test error. 

 Random-X case: Cross-validation and “unconditional bootstrap” 
are appropriate;  

 Fixed-X case: “Conditional bootstrap” are appropriate but cross-
validation is not appropriate for estimating prediction error. 
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Estimating prediction error 

 Apparent error rate                                                                          
(resubstitution error rate) 

𝑃𝐸 𝜇 , 𝐷  =
1

𝑛
 𝑌𝑖

𝑛𝑒𝑤 − 𝜇 𝐗𝑖
2

=
𝑅𝑆𝑆

𝑛

𝑛

𝑖=1

 

Misleadingly optimistic, 𝑅𝑆𝑆 𝑛  will be PE too                                                        
optimistic estimation with 𝑃𝐸 𝜇 , 𝐷 < 𝑃𝐸 

 Cross-Validation (V-fold) 

𝐷 ⟹ 𝑇1, … , 𝑇𝑉 , 𝐷 =  𝑇𝑣
𝑉
𝑣=1 , 𝑇𝑣⋂𝑇𝑣′ = ∅  

𝐿𝑣 = 𝐷 − 𝑇𝑣, 𝑃𝐸 
𝐶𝑉/𝑉  =

1

𝑉
  𝑌𝑖 − 𝜇 −𝑣 𝐗𝑖

2

𝐗𝑖𝑌𝑖 ∈𝑇𝑣

𝑉

𝑣=1

 

subtract 𝜎2 (obtain from the full data set) from 𝑃𝐸  to get 𝑀𝐸  

 Leave-one-out rule: 𝑉 = 𝑛, the most computationally intensive, but 
usually worse at model assessment than 10-fold (even 5-fold) CV. 
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Estimating prediction error 

 Bootstrap (Efron, 1979) 

 Unconditional Bootstrap 

Random-X bootstrap sample (with replacement) 

𝐷𝑅
∗𝑏 = 𝐗𝑖

∗𝑏 , 𝑌𝑖
∗𝑏 , 𝑖 = 1, … , 𝑛  

𝑃𝐸 𝜇 𝑅
∗𝑏 , 𝐷  =

1

𝑛
 𝑌𝑖 − 𝜇 𝑅

∗𝑏 𝐗𝑖
2

𝑛

𝑖=1

 

Simple bootstrap estimator of 𝑃𝐸 

𝑃𝐸 
𝑅 𝐷 =

1

𝐵
 𝑃𝐸 𝜇 𝑅

∗𝑏 , 𝐷

𝐵

𝑏=1

 =
1

𝐵𝑛
  𝑌𝑖 − 𝜇 𝑅

∗𝑏 𝐗𝑖
2

𝑛

𝑖=1

𝐵

𝑏=1

 

Simple bootstrap estimator of 𝑃𝐸 using apparent error rate for 𝐷𝑅
∗𝑏 

𝑃𝐸 𝐷𝑅
∗𝑏 =

1

𝐵
 𝑃𝐸 𝜇 𝑅

∗𝑏 , 𝐷𝑅
∗𝑏

𝐵

𝑏=1

 =
1

𝐵𝑛
  𝑌𝑖

∗𝑏 − 𝜇 𝑅
∗𝑏 𝐗𝑖

∗𝑏
2

𝑛

𝑖=1

𝐵

𝑏=1
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Estimating prediction error 

 Bootstrap 

 Unconditional Bootstrap 

Simple estimators of 𝑃𝐸 are overly optimistic because there are 

observations common to the bootstrap samples 𝐷𝑅
∗𝑏  that 

determined 𝜇 𝑅
∗𝑏  

The optimism (improvement of 𝑃𝐸 by estimating the bias for 𝐷𝑅
∗𝑏 

using 𝑅𝑆𝑆 𝑛  as an estimate of 𝑃𝐸 and then correcting 𝑅𝑆𝑆 𝑛  by 
subtracting its estimated bias) 

𝑜𝑝𝑡 𝑅
𝑏 = 𝑃𝐸 𝜇 𝑅

∗𝑏 , 𝐷 − 𝑃𝐸 𝜇 𝑅
∗𝑏 , 𝐷𝑅

∗𝑏  

𝑜𝑝𝑡 𝑅 =
1

𝐵
 𝑜𝑝𝑡 𝑅

𝑏

𝐵

𝑏=1

 = 𝑃𝐸 
𝑅 𝐷 − 𝑃𝐸 𝐷𝑅

∗𝑏  

𝑃𝐸 
𝑅 =

𝑅𝑆𝑆

𝑛
+ 𝑜𝑝𝑡 𝑅  
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Estimating prediction error 

 Bootstrap 

 Unconditional Bootstrap 

The optimism (improvement of 𝑃𝐸 by estimating the bias for 𝐷𝑅
∗𝑏 

using 𝑅𝑆𝑆 𝑛  as an estimate of 𝑃𝐸 and then correcting 𝑅𝑆𝑆 𝑛  by 
subtracting its estimated bias) 

𝑃𝐸 
𝑅 =

𝑅𝑆𝑆

𝑛
+ 𝑜𝑝𝑡 𝑅  

‒ Computationally more expensive than cross-validation 

‒ Low bias, slightly better for model assessment than 10-fold 
cross-validation 

About 37% of the observations in 𝒟 are left out of bootstrap sample 

Prob( 𝑋𝑖 , 𝑌𝑖 ∈ 𝒟𝑅
∗𝑏 = 1 − 1 −

1

𝑛

𝑛

⟶ 1 − 𝑒−1 ≈ 0.632 as 𝑛 → ∞ 
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Estimating prediction error 

 Bootstrap 

 Conditional Bootstrap 

Coefficients determination 
Estimate 𝜶 by minimizing 𝐸𝑆𝑆 𝜶  with respect to  𝜶. 
 

𝜶 𝑂𝐿𝑆 = 𝒁𝜏𝒁 −1𝒁𝜏𝒀 

Suppose 𝜶 𝑂𝐿𝑆 to be the true value of the regression parameter, for 
the b th bootstrap sample, we sample with replacement from the 

residuals to get the bootstrapped residuals, 𝑒 𝑖
∗𝑏, and then compute 

the new set of responses 

𝐷𝐹
∗𝑏 = 𝐗𝑖 , 𝑌𝑖

∗𝑏 = 𝜇 𝑿𝑖 + 𝑒 𝑖
∗𝑏 , 𝑖 = 1, 2, … 𝑛  

𝜶 ∗𝑏 = 𝒁𝜏𝒁 −1𝒁𝜏𝒀∗𝑏 
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Instability of least square estimates 

If  𝒳𝑐
𝜏𝒳𝑐 is singular (as 𝒳𝑐  has not less than full rank caused by columns of 

𝒁 are collinear, or when 𝑟 > 𝑛 or the data is ill-conditioned) then the OLS 
estimate of 𝜶 will not be unique 

Ill-conditioned data: 

 When the quantities to be computed are sensitive to small changes 
in the data, the computational results are likely to be numerically 
unstable.  

 Too many highly correlated variables (near collinearity) 

 The standard error of the estimated regression coefficients may be 
dramatically inflated (thổi phồng, khoa trương). 

 The most popular measure of the ill-conditioning is the  condition 
number. 
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Biased regression method 

 As OLS estimates depend on (𝒵𝜏𝒵)-1 we would experience numerical 

complications in computing 𝜷 𝑜𝑙𝑠if 𝒵𝜏𝒵 were singular or nearly singular.  

 If 𝒵 is ill-conditioned, small changes to 𝒵 lead to large changes in (𝒵𝜏𝒵)-1 , 

and 𝜷 𝑜𝑙𝑠 becomes computationally unstable. 

 One way: to abandon the requirement of an unbiased estimator of 𝜷 and, 
instead, consider the possibility of using a biased estimator of 𝜷. 

 Principal Components Regression 
Use the scores of the first t principal component of 𝒁. 

 Partial Least-Square Regression 
Construct latent variables from 𝒁 to retain most of the information 
that helps predict 𝑌 (reducing the dimensionality of the regression.) 

 Ridge Regression (ridge: chóp, dải đất hẹp dài trên đỉnh, luống, …) 
Add a small constant k to the diagonal entries of the matrix before 
taking its inverse                          

  𝛽 𝑟𝑟 𝑘 =  𝒳𝜏𝒳 + 𝑘𝐈𝑟
−1𝒳𝜏𝒴 

53 



Variable selection 

 Motivation 

 Having too many input variables in the regression model 
⇒ an overfitting regression function with an inflated variance 

 Having too few input variables in the regression model 
⇒  an underfitting and high bias regression function with poor 
explanation of the data 

 The “importance” of a variable 

Depends on how seriously it will affects prediction accuracy if it is 
dropped 

 The behind driving force 

The desire for a simpler and more easily interpretable regression 
model combined with a need for greater accuracy in prediction.  
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Regularized regression 

 A hybrid of these two ideas of Ridge Regression and Variable Selection. 

 General penalized least-squares criterion 

 𝜙 𝜷 = 𝒴 − 𝒳𝜷 𝜏 𝒴 − 𝒳𝜷 + λ𝑝(𝜷) 

for a given penalty function p(·) and regularization parameter λ.  

 Define a family (indexed by q > 0) of penalized least-squares estimators 
in which the penalty function, 

      𝑝𝑞 𝜷 =  𝛽𝑗
𝑞𝑟

𝑗=1   𝛽𝑗
𝑞

≤ 𝑐𝑗  

bounds the 𝐿𝑞-norm (Frank and Friedman, 1993)     

 𝛽𝑗
𝑞

≤ 𝑐

𝑗
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Regularized regression 

 q =2: ridge regression. The penalty function is 
rotationally invariant hypersphere centered at 
the origin, circular disk (r = 2) or sphere (r = 3).  

 q ≠ 2, the penalty is no longer invariant.  

 q < 2 (most interesting): penalty function 
collapses toward the coordinate axes            
ridge regression and variable selection. 

 𝑞 ≈ 0 penalty function places all its mass along 
the coordinate axes, and the contours of the 
elliptical region of ESS(β) touch an 
undetermined number of axes, the result is 
variable selection. 

 q = 1 produces the lasso method having a 
diamond-shaped penalty function with the 
corners of the diamond on the coordinate axes. 
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Two-dimensional contours 

of the symmetric penalty 

function 

pq(β) = |β1
|q + |β2|

q = 1 for            

q = 0.2, 0.5, 1, 2, 5. The 

case q = 1 (blue diamond) 

yields the lasso and q = 2 

(red circle) yields ridge 

regression. 



Regularized regression 
The Lasso 

 The Lasso (least absolute shrinkage and selection operator) is a 
constrained OLS minimization problem in which 

𝜙 𝜷 = 𝒴 − 𝒳𝜷 𝜏 𝒴 − 𝒳𝜷 + λ𝑝(𝜷) 

is minimized for 𝜷 =  (𝛽𝑗) subject to the diamond-shaped condition 

that  𝛽𝑗
𝑟
𝑗=1 ≤ 𝑐  (Tibshirani, 1996). The regularization form of the 

problem is to find β to minimize 

𝜙 𝜷 = 𝒴 − 𝒳𝜷 𝜏 𝒴 − 𝒳𝜷 + λ  𝛽𝑗

𝑟

𝑗=1
 

 This problem can be solved using complicated quadratic programming 
methods subject to linear inequality constraints. 

 The Lasso has a number of desirable features that have made it a 
popular regression algorithm. 
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Regularized regression 
The Lasso 

 Like ridge regression, the Lasso is a shrinkage estimator of β, where 
the OLS regression coefficients are shrunk toward the origin, the value 
of c controlling the amount of shrinkage. 

 It behaves as a variable selection technique: for a given value of c, only 

a subset of the coefficient estimates,  𝛽 𝑗 , will have nonzero values, and 

reducing the value of c reduces the size of that subset. 
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Lasso paths for the bodyfat data. 

The paths are plots of the 

coefficients *β j} (left panel) and 

the standardized coefficients, 

*𝛽 𝑗 ∥  𝒳𝑗  ∥ 2+   (right panel) plotted 

against. The variables are added 

to the regression model in the 

order: 6, 3, 1, 13, 4, 12, 7, 11, 8, 

2, 10, 5, 9. 



Regularized regression 
The Garotte 

 A different type of penalized least-squares estimator (Breiman, 1995).  

 Let  𝜷 𝑜𝑙𝑠 be the OLS estimator and let W= diag{w} be a diagonal matrix 
with nonnegative weights w = (wj) along the diagonal. The problem is 
to find the weights w that minimize 

𝜙 𝒘 = (𝒴 − 𝒳𝐖𝜷 ols)
τ(𝒴 − 𝒳𝐖𝜷 ols)

 

 

 subject to one of the following two constraints, 
 

 1. 𝐰 ≥ 𝟎, 𝟏𝑟
𝜏𝐰 =  w𝑗 ≤ 𝑐𝑟

𝑗=1  (nonnegative garotte, thắt cổ) 

 2.  𝐰𝛕𝐰 =  w𝑖
2 ≤ 𝑐𝑟

𝑗=1   (garotte) 

 As c is decreased, more of the wj become 0 (thus eliminating those 
particular variables from the regression function), while the nonzero 

𝛽 ols,j shrink toward 0. 
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Multivariate regression 
 

 Multivariate regression has s output variables 𝒀 =  (𝑌1,· · · , 𝑌𝑠)
𝜏, each 

of whose behavior may be influenced by exactly the same set of inputs 
𝑿 =  (𝑋1,· · ·, 𝑋𝑟)

𝜏 . 

 Not only are the components of X correlated with each other, but in 
multivariate regression, the components of Y are also correlated with 
each other (and with the components of X). 

 Interested in estimating the regression relationship between Y and X, 
taking into account the various dependencies between the r-vector X 
and the s-vector Y and the dependencies within X and within Y. 
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