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Statistics and machine learning

Statistics Machine learning
Long history, fruitful Newer, fast development
Aims to analyze datasets Aims to exploit datasets to learn
Early focused on numerical data Early focused on symbolic data
Multivariate analysis = linear Tends closely to data mining
methods on small to medium- (more practical exploitation of
sized data sets + batch large datasets
processing. Increasing employs statistical
1970s: interactive computing + methods
exploratory data analysis (EDA) More practical with computing
Computing power & data storage power
— machine learning and data ML people: need to learn
mining (aka EDA extension). statistics!

Statisticians interested in ML
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Multivariate Regression

In 1996 one of us (Hesterberg) asked Brad Efron for the most important prob-
lems in statistics., fully expecting the answer to involve the bootstrap, given
Efron’s status as inventor. Instead, Efron named a single problem, variable selec-
tion in regression. This entails selecting variables from among a set of candidate
variables, estimating parameters for those variables, and inference—hypotheses
tests, standard errors, and confidence intervals.

Hesterberg et al., LARS and 11 penalized regression



Introduction
Model and modeling

Model:
o M6 ta khai quat hodc triru twong héa cua mot thuc thé
(simplified description or abstraction of a reality).
Modeling: Qua trinh tao ra m6t mo hinh.
Mathematical modeling: Description of a system using mathematical
concepts and language

0 Linear vs. nonlinear; deterministic vs. probabilistic; static vs.
dynamic; discrete vs. continuous; deductive, inductive, or floating.

o A method for model assessment and selection

Model selection: Select the most appropriate model

o Given the problem target and the data - Choose appropriate
methods and parameter settings for the most appropriate model.

o No free lunch theorem.



Introduction
History

The earliest form of regression was the method of least squares which
was published by Legendre in 1805 and by Gauss in 1809.

The term “regression” coined by Francis Galton in the 19t century to
describe a biological phenomenon which was extended by Udny Yule
and Karl Pearson to a more general statistical context (1897, 1903).

In 1950s, 1960s, economists used electromechanical desk calculators
to calculate regressions. Before 1970, it sometimes took up to 24 hours
to receive the result from one regression.

Regression methods continue to be an area of active research. In recent
decades, new methods have been developed for robust regression in,
time series, images, graphs, or other complex data objects,
nonparametric regression, Bayesian methods for regression, etc.



Introduction
Regression and model

Given {(X;,Y,),i = 1, ...,n} where each X; is a vector of rrandom
variables X = (X4, ..., X;-)"in a space X and Y; is a vector of s random
variables Y = (Y, ..., Y5)® inaspaceY

The problem is to learn a function f: X — Y from {(X;, Y,),i = 1, ..., n}
satisfies f(X;) =Y;,i =1, ...,n.

When Y is discrete the problem is called classification and when Y is
continuous the problem is called regression. For regression:

20 Whenr=1and s =1 the problem is called simple regression.

20 Whenr>1 and s =1 the problem is called multiple regression.

2 Whenr>1ands>1 the problem is called multivariate regression.



Introduction
Least square fit

Problem statement
Adjusting the parameters of a
model function to best fit a data set

o The model function has
adjustable parameters, held in
the vector 8

o The goal is to find the
parameter values for the model
which “best” fits the data

0 The least square method finds
its optimum when the sum, S,
of squared residuals is a
minimum.

Data set
{X,Y),i=1,..,n}

Model function

fX, B)

Sum of squared residuals

1=1
ri=Yi — f(X,B)
E.Q.
fX, B) =By + B:X

B, : intercept (phan bi chin)
S, : slope (46 doc)



Introduction

Least square fit
lving th 1
Solving the problem Gradient on g
0 Minimum of the sum of as Zra”—o =1 m
squared residuals is found op; : ‘9B, = S
by setting the gradient to .
Zero. =Yl f(X.B)

o The gradient equations
apply to all least squares
problems.

o Each particular problem
requires particular
expression for the model
and its partial derivatives.




Introduction
Least square fit

Linear least squares
o Coefficients ¢; are functions of X;
Non-linear least squares

o There is no closed-form solution to

a non-linear least squares problem.

o Numerical algorithms are used to
find the value of the parameter f8
which minimize the objective.

0 The parameters f are refined
iteratively and the values are
obtained by successive
approximation.

Linear model function
X, B) = D B 9,X)

j=1
X = af (X, B) _

B=X'X)"1XTY

P; (X))

lterative approximation Shiftvector

k+1 — BJK + AB;

]
— Af (X,
f(xi'ﬁ) = fk(Xi'ﬁ) + Z f(aléﬁ) (ﬁj o 'BJk
=1

j
= f*X,B) + 2]1']' AB;
=

Gradient equation

Gauss-Newton algorithm

-2 Zn:]ij (AYi - i]ij Aﬁj) =0
i=1 =1

an expression is said to be a closed-form expression if it can be expressed
analytically in terms of a finife number of certain "well-known" functions.



Introduction
Simple linear regression and correlation

Okun'’s law (Macroeconomics): An example of the simple linear regression

The GDP growth is presumed to be in a linear relationship with the
changes in the unemployment rate.

(&%)
Y

©

)

Quarterly change in GDP
o

-0.5 0.0 0.5 1.0 1.5 2.0

-1.0

Quarterly change in the unemployment rate (A%)
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Introduction
Simple linear regression and correlation

Correlation analysis (correlation coefficient) is for determining
whether a relationship exists.

Simple linear regression is for examining the relationship between two
variables (if a linear relationship between them exists).

Mathematical equations describing these relationships are models, and
they fall into two types: deterministic or probabilistic.

o Deterministic model: an equation or set of equations that allow us
to fully determine the value of the dependent variable from the
values of the independent variables.

Contrast this with...

o Probabilistic model: a method used to capture the randomness that
is part of a real-life process.

11



Introduction
Simple linear regression

Example: Do all houses of the same size sell for exactly the same price?

Models

o Deterministic model: approximates the relationship we want to
model and add a random term that measures the error of the
deterministic component.

The cost of building a new house is about $75 per square foot and most

lots sell for about $25,000. Hence the approximate selling price (Y)
would be:

Y =$25,000 + (75$/ft2)(X)

(where X is the size of the house in square feet)

12



Introduction
Background of model design

The facts

0 Having too many input variables in the regression model
= an overfitting regression function with an inflated variance

0 Having too few input variables in the regression model
= an underfitting and high bias regression function with poor
explanation of the data

The “importance” of a variable

Depends on how seriously it will affects prediction accuracy if it is
dropped.

The behind driving force

The desire for a simpler and more easily interpretable regression
model combined with a need for greater accuracy in prediction.

13



Introduction
Simple linear regression

A model of the relationship between house size (independent variable)
and house price (dependent variable) would be:

N
House

Price

Most lots sell
for $25,000

House size

~
7

In this model, the price of the house is completely determined by the size
14



Introduction
Simple linear regression

A model of the relationship between house size (independent variable) and
house price (dependent variable) would be:

A Lower vs. Higher
House Variability
Price
Same square footage, but
different price points
(e.g. décor options, cabinet
upgrades, lot location...)
Most lots sell
for $25,000 House Price = 25,000 + 75(Size) +E
House size _

In this model, the price of the house is completely determined by the size
15



Introduction
Simple linear regression

Example: Do all houses of the same size sell for exactly the same price?
Probabilistic model:

Y =25,000+ 75X+ ¢

where ¢ is the random term (error variable). It is the difference
between the actual selling price and the estimated price based on the
size of the house. Its value will vary from house sale to house sale, even
if the square footage (X) remains the same.

First order simple linear regression model:

¥ .
Y = +B. X+ ¢ error variable
Dependent ~_ « Fo + B

: "—
variable /‘ ( independent

intercept variable
slope

16



Introduction
Regression and model

Techniques for modeling and analyzing the relationship between
dependent variables and independent variables.

Input (independent, predictor, explanatory) Output (dependent, predicted, response)

X 2,

Xp=1 : o . Yi=| :
i The relationship = Regression model :

Xy Ys

Different forms of
[ X—>Y

o linear vs. nonlinear;

Quarterly change in GDP  (A%)

0 parametric vs.
p . -10 -05 0.0 0.5 1.0 15 2.0
n O np aram etrl C . Quarterly change in the unemployment rate (A%)

Linear combination of the parameters (but need not be linear in the independent variables) 17



Introduction
Model selection and model assessment

X X

= Model Selection: Estimating performances of different models to
choose the best one (produces the minimum of the test error).

» Model Assessment: Having chosen a model, estimating the prediction
error on new data.

18
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Regression function and least squares

Consider the problem of predicting Y by a function, f(X), of X

L.oss function

L(Y, f(X))
measures the prediction accuracy gives the loss incurred if Y is
predicted by f(X).
Risk function

R(f) = E{L(Y, f(X))}

(expected loss) measures the quality of f(X) as a predictor.

Bayes rule and the Bayes risk

The Bayes rule is the function f* which minimizes R(f),
and the Bayes riskis R(f").

20



Regression function and least squares
Regression function

Squared-error loss function
2
L(Y,f(X)) = (Y = f(X))

Mean square error criterion
R() = E{(Y ~ f(X0)"} = Bx | Eix {(¥ — F(X0)"IX}]
We can write Y - f(x) = (Y - u(x)) + (u(x) - f(x)) where
U(x) = EyxlY|X = x)

is called regression function of Y on X. Squaring both sides and taking the
conditional distribution of ¥ given X = x, as Eyx{Y — u(x)}|X = x} = 0,
we have

Enx {(Y = F0) 1X = x} = Eyx {(¥ — 10)*1X = x} + (u(®) - F )’

21



Regression function and least squares

Least squares

Taking f*(x) = u(x) = Eyx{Y|X = x}, the
previous equation is minimized

Eyix{(Y — f*(x))?|X = x}
= Eyx{(Y — p(®)?|X = x}

Taking expectations of both sides, we have Bayes
risk

R(f*) = min, R(f) = E{(¥ — n(0)°}

The regression function u(X) of Y on X, evaluated
at X = x, is the “best” predictor (defined by using
minimum mean squared error).

Data

|

Statistical
model

|

Systematic
component
+
Random
errors

22



Regression function and least squares

Assumption
The output variables Y are linearly related to the input variables X

The model
uX) =Bo+ 21 Bi Xy = Y=0y+Xi_1f:X;+e

is treated depending on assumptions on how Xj, ..., X, were generated.

o X;: the input (or independent, predictor) variables
o Y: the output (or dependent, response) variable
0 e : (error) the unobservable random variable with mean 0, variance o

The tasks

To estimate the true values of f,, 4, ..., B, and 2

To assess the impact of each input variable on the behavior of Y
To predict future values of Y

To measure the accuracy of the predictions

2

Q
Q
Q
Q

23



Regression function and least squares
Random-X case vs. Fixed-X case

Random-X case Fixed-X case (Fisher, 1922)
X is a random variable, also X is fixed, but measured with
known as the structural model or noise, is known as the functional
structural relationship. model or functional relationship.
Methods for the structural model The fixed-X assumption is that the
require some estimate of the explanatory variable is measured
variability of the variable X. without error.
The least squares fit will still give Distribution of the regression
the best linear predictor of Y, but coefficient is unaffected by the
the estimates of the slope and distribution of X.

intercept will be biased.

E(Y|X) =By + B, X

E(Y|X=x) =, + B;x

24



Regression function and least squares

Random-X case vs. Fixed-X case

Hs Prc ($10,000)
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Regression function and least squares
Random-X case vs. Fixed-X case

i LINE assumptions of the Simple
v Regression Plot Y Linear Regression Model

. Hyx=a+ Bx

I
/ Identical normal

: distributions of errors,

| all centered on the
regression line.

26



Regression function and least squares
Random-X case

Regression coefficients

Bo 1

B
B=<51>, a = ’8:1 , L= X1
Pr B, X,

Regression function

uX) = Z'a = By + BX = fo + Xi=1 B; X;
Let
S(a) = E{(Y — Z*a)?}

and define a* = argmin, S(a)

27



Regression function and least squares
Random-X case

Setting differential of S(a) with respect to a to 0

0S(a)
— _2E(ZY — ITta) = 0
Ja
We get a*= [E(ZZY)]1E(ZY)

Br= Z)?)l(zxy; Bo = uy — uxp”

In practice, uy, uy, Xyy, and Xyy are unknown, we estimate them by ML
using data generated by the joint distribution of (X,Y). Let

— 1 — 1
X = (Xll o 'IXn)TIy = (Yll B YH)T’X = ; ?X]’Y - ;Z?YJ’
X=X..0,7=F., 70X =X-XY.=U—-17,
B = (XFX) XY, BE=Y7-XB"

Covariance matrix: Xyy = cov(X,X) = E{(X — py) X — py)* § 28



Regression function and least squares
Fixed-X case

X4, ..., X, are fixed in repeated sampling and Y may be selected in the
designed experiment or Y may be observed conditional on the X3, ..., X,

1 x .. x? Y,
Z=\|: '+ = i |-inputvariables, Y =| : |- output variables
1 Xr ... Xnr Y,

The regression function

r
Yl-=,6’0+z,8inj+ €;, i=1,2,...,n
j=1

Y=2Zp + e
e: random n-vector of unobservable errors with E(e) = 0, var(e) = o1,

Error sum of squares

ESS(B) =Y el =e"e= (Y —2ZB)" (Y — ZB)

29



Regression function and least squares
Fixed-X case

Estimate 8 by minimizing ESS(f) w.r.t. B. Set differential w.r.t. #to 0
0ESS(f3)

op
The unique ordinary least-squares (OLS) estimator of f is
Eols = (ZTZ)_lzTy

Even though the descriptions differ as to how the input data are
generated, the ordinary least-squares estimator estimates turn out to be
the same for the random-X case and the fixed-X case:

B = (XEX)IXEY., PE=Y-XB

==22"(Y-2pB) =0

The components of the n-vector of OLS fitted values are the vertical
projections of the n points onto the LS regression surface (or hyperplane)
Vi=aX)) =X'Bos,i =1,...,10.
30



Regression function and least squares
Fixed-X case

The variance of ¥, for fixed X is given by
var(¥;|X;) = XH{var (Boi5) }X; = 02XF(272)7'X;
The n-vector of fitted values Y = (¥, ..., ¥,)% is
Y =2Bos =2(27°2)7'27Y = HY
where the (nxn)-matrix H = Z(Z2%2)~1Z7 is often called the hat matrix.

The variance of Yis given by

var(Y|X) = H{var(Y)}H* = ¢°H

The residuals, @ = Y — Y = (1, - H)Y are the
OLS estimates of the unobservable errors e,

and can be writtenas e = (I,, — H)e.

M = span(x ,x;)

31



Regression function and least squares
ANOVA table for multiple regression model and F-statistic

. . ~ RSS
Residual variance 62 =

n-r—1
Total sum of squares Syy=20 (=) =Y -1P(Y-7)

Regression sum of SSreg = 2i1(Vi — )% = BLs(Z2°2)Bois
of squares

Residual sum of squares RSS = Y™ . (Y; —Y)? = (Y — ZBo1) (Y = ZBos)

SSreg/T
RSS/(n-r-1)’
between Y and the Xs: F small 2 notreject § = 0, Flarge = 3j,; # 0.

Use F-statistic, F =

to see if there is a linear relationship

If,Bj= 0, use t-statistic, t; = J\/_
(ZT2)7LIf |tj| large large 2 f; # 0, else (near zero) 2 f; = 0.

where vj; is the jth diagonal entry of

32



Regression function and least squares

Bodyfat data

= n =252 men, to relate the percentage of bodyfat to age, weight, height,

neck, chest, abdomen, hip, thigh, knee, ankle, bicept, foream, wrist (13).

bodyfat = B, + 8,(age)
+ B,(weight) + B;(height)
+ B,(neck) + Bs(chest)
+ Bg(abdomen) + B,(hip)
+ Bg(thigh) + By(knee)
+ Byo(ankle)
+ B1(biceps)
+ B;,(forearm)

+ B5(wrist) + e

age weight height neck chest abdomen
weight 0.013
height 0.245 0.487
neck 0.114 0.831 0.321
chest 0.176 0.894 0.227 0.785
abdomen 0.230 0.888 0.190  0.754 0.916
hip 0.050 0.941 0.372  0.735 0.829 0.874
thigh 0.200 0.869 0.339  0.696 0.730 0.767
knes 0.018 0.853 0.501 0.672 0.719 0.737
ankle 0.105 0.614 0.393 0.478 0.483 0.453
biceps 0.041 0.800 0.319 0.731 0.728 0.685
forearm 0.085 0.630 0.322  0.624 0.580 0.503
wWrist 0.214 0.730 0.3938 0.745 0.660 0.620
hip thigh knes anklse biceps forearm
thigh  0.806
knee 0.823 0.799
ankle 0.558 0.540 0.612
biceps 0.739 0.761 0.679 0.485
forearm 0.545 0.567 0.556  0.419 0.678
wrist 0.630 0.559 0.665  0.566 0.632 0.586

33



Regression function and least squares

Fixed-X case

Coefficient Estimate Std.Error {f-value
(Intercept) -21.3532 22.1862  -0.9625
age 0.0646 0.0322 2.0058
welght -0.0964 0.0618  -1.5584
height -0.0439 0.1787  -0.2459
neck -0.4755 0.2356 -2.0184
chest -0.0172 0.1032  -0.1665
abdomen 0.9550 0.0902 10,5917
hip -0.1886 0.1448  -1.3025
thigh 0.2483 0.1462 1.6991
knee 0.0139 0.2477 0.0563
ankle 0.1779 0.2226 0.7991
biceps 0.1823 0.1725 1.0568
forearm 0.4557 0.1993 2.2867
wrist -1.6545 0.5332  -3.1032

OLS estimation of coefficients :

- multiple R2 is 0.749
- residual sum of squares is 4420.1
- F-statistic is 54.5 on 13 and 238 degrees of freedom.

A multiple regression using variables having [t| > 2

- residual sum of squares 4724.9,
- R2=0.731,
- F-statistic of 133.85 on 5 and 246 degrees of freedom.

abdomen
wrist
forearm
neck
age
thigh
weight
hip
biceps
ankle
height
chest
knee

0 2 4 6 8 10
Absolute Value of t-ratio

Multiple regression results for the bodyfat data.

The variable names are given on the vertical axis
(listed in descending order of their absolute t-ratios)
and the absolute value of the t-ratio for each variable
on the horizontal axis.
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Prediction accuracy and model assessment

The aims

0 Prediction is the art of making accurate guesses about new
response values that are independent of the current data.

o Good predictive ability is often recognized as the most useful way of
assessing the fit of a model to data.

Practice
o Learning data £ = {(X;,Y;),i = 1, ...,n} for regression of Y on X.

0 Prediction of a new Y*®" by applying the fitted model to a brand-
new X% from the test set T.

o Predicted Y™®% is compared with the actual response value. The
predictive ability of the regression model is assessed by its
prediction error (or generalization error), an overall measure of the
quality of the prediction, usually taken to be mean squared error.

36



Prediction accuracy and model assessment
Random-X case

Learning dataset L = {(X,,Y;),i = 1, ..., n} are observations from the
joint distribution of (X,Y) and

T
Y=,BO+Z,BJ'XJ'+€=[J(X)+€
j=1

where u(X) = E(Y|X), E(e]X) = 0, var(e|X) = o2

Given the test set T = {(X"¢%, Y™¢W)}, if the estimated OLS regression
function at X is AX) = By + X" Byis

then the predicted value of Y at Xnew is ¥ = g(X™eV).

37



Prediction accuracy and model assessment
Random-X case

= Prediction Error
PE, = E{Y™W — j(X"*W)}? = 62 + MEy

= Model Error (also called the “expected bias-squared”)

ME, = E{u(X"e¥) — a(X"eW)}* = (ﬁ — ﬁozs)rzxx(ﬁ - ﬁols)

38



Prediction accuracy and model assessment
Fixed-X case

InL={(X,Y),i=1,..,n},{X;}are fixed and only Y is random.
Assume that

T
Y; = Bo +Z,8jxji + e =uX;) +e
=1

where u(X;) = fo + Xj=1 8 X ji is the regression function evaluated at
X;, and the errors e; are iid with mean 0 and variance
o2 and uncorrelated with {X;}.

Assume the test data set generated by “future-fixed” {X"¢"¥} and T =
{X,Y*™),i =1,..,m}, where Y;**" = u(X;) + ¢/**". The predicted
value of Y*"atXis A(X) = B, + X*B,is.

39



Prediction accuracy and model assessment
Fixed-X case

= Prediction Error
m

PE. =E ({%Z(Ylﬂew - ﬁ(Xi))ZD = 0%+ MEy

i=1

= Model Error

1 v (1 )
ME = EZ(YL'MW — ﬁ(xi))z = (B —Bos) (EXTX) Zxx(B — Bois)
i=1

40
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Observed from ICML 2004

Then vs Now ...

1994: 2004:
= Concept Learning = SVMs
= Kernel
= Neural Nets = Numeric Methods

= Linear Algebra

= Clustering
= 12 papers, vs 0

Then

1994:

= Probabilistic
Models

» Rare...

= Bayesian nets

vs Now ...

2004:

= Probabilistic
Models

= Everywhere!

= Bayesian nets,
Markov Random
Fields,
Conditional
Random Fields,

15

Russ Greiner, ICMI’04 PC co-chair

Applications

Then vs Now ...

1994: 2004:
= Validation: = Validation:
= Better than C4.5 on = Better than SVM on
some UCI MANY UCI
= Some Real = Most involve Real

applications

42



Estimating prediction error
Training, validation, and testing data

Results known

@® :

Data i £

N

Validation set

Y

|

Training set

Evaluate

l Model Builder

Predictions

+

!
=—

[ T |

___ Final Test Set = Final Model
= " JRe

Model
Builder

Final Evaluation
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Estimating prediction error
Background

In cases the entire data set is not large enough and a division of the data
into learning, validation, and test sets is not practical, we have to use

alternative methods.

Apparent Error Rate
Applying the regression function obtained from OLS to the original
sample data to see how well it predicts those same members

Cross-Validation
Split data set into two subsets, treating one subset as the learning
set, and the other as the test set. Fit a model using this learning set
and compute its prediction error. The learning set and the test set
are then switched, and average all the prediction errors to estimate

the test error.

44



Estimating prediction error
Background

Bootstrap

Drawing a random sample with replacement having the same size as
the parent data set. Fit a model using this bootstrap sample and
compute its prediction error. Repeat the procedure, and average all the
prediction errors to estimate the test error.

0 Random-X case: Cross-validation and “unconditional bootstrap”
are appropriate;

0 Fixed-X case: “Conditional bootstrap” are appropriate but cross-
validation is not appropriate for estimating prediction error.

45



Estimating prediction error

Apparent error rate
(resubstitution error rate)

n
. 1 . 2RSS
PE(R,D) == > (1 - p(Xp)”* ==
n i n
Misleadingly optimistic, RSS/n will be PE too = Fl &|ﬁ L
optimistic estimation with PE (I, D) < PE : g 311 | 1] m)iyerace
Rand P1Ek] | KN >
. . andom
Cross-Validation (V-fold) Partition " | Testing
D= {T,...T,}, D=UY_,T,, T,NT, =@ Learning
v
__ 1 .
L, =D —-T,PEcy)y = vy 7 (Y; — A, (X))?
v=1 (X;Y;)ET,

subtract o2 (obtain from the full data set) from PE to get ME

o Leave-one-out rule: V = n, the most computationally intensive, but

usually worse at model assessment than 10-fold (even 5-fold) CV. 46



Estimating prediction error

Bootstrap (Efron, 1979)
o Unconditional Bootstrap

Random-X bootstrap sample (with replacement)
DP ={(X;%,v7?),i=1,..,n}
n

PE(a2,D) = ) (% — A (X))
i=1
Simple bootstrap estimator of PE

PE,(D) = Z PE(a;r,D) = B_1n§B: Zn:(Yi — [y (Xi))2

Simple bootstrap estimator of PE using apparent error rate for D

B B n
P 1 A% * 1 A% *
PE(D) =% ) PE(ai,Di?) = B—Z 2 - AR ()
b:1 : 1=1



Estimating prediction error

Bootstrap
o Unconditional Bootstrap

Simple estimators of PE are overly optimistic because there are
observations common to the bootstrap samples {D;b } that
determined {/}’

The optimism (improvement of PE by estimating the bias for D’

using RSS/n as an estimate of PE and then correcting RSS/n by
subtracting its estimated bias)

optp = PE(az>,D) — PE(az?, DiP)

B
IO, _
optp = EE opt? = PER(D) — PE(D;?)
b=1

_ RSS
PER — T + OptR
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Estimating prediction error

Bootstrap
o Unconditional Bootstrap

The optimism (improvement of PE by estimating the bias for D’
using RSS/n as an estimate of PE and then correcting RSS/n by

subtracting its estimated bias)

_ RSS
PER — T + OptR

Computationally more expensive than cross-validation

Low bias, slightly better for model assessment than 10-fold
cross-validation

About 37% of the observations in D are left out of bootstrap sample

1 n
Prob((X;,Y;) €Dl =1 — (1 — E) —1—-—e1=x0.632asn >
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Estimating prediction error

Bootstrap
o Conditional Bootstrap

Coefficients determination
Estimate a by minimizing ESS(a) with respect to a.

E\IOLS — (ZTZ)_IZTY

Suppose @, s to be the true value of the regression parameter, for
the bth bootstrap sample, we sample with replacement from the

residuals to get the bootstrapped residuals, é; b and then compute
the new set of responses

DP ={(X;, V" =alx) +¢é"),i=1,2,..n}
a*b — (Z‘Ez)—lz‘t'y*b
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Instability of least square estimates

If XFX, issingular (as X, has not less than full rank caused by columns of
Z are collinear, or when r > n or the data is ill-conditioned) then the OLS
estimate of a will not be unique

Ill-conditioned data:

o When the quantities to be computed are sensitive to small changes
in the data, the computational results are likely to be numerically
unstable.

o Too many highly correlated variables (near collinearity)

o The standard error of the estimated regression coefficients may be
dramatically inflated (tho6i phong, khoa trwong).

a0 The most popular measure of the ill-conditioning is the condition
number.
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Biased regression method

As OLS estimates depend on (Z72) ! we would experience numerical
complications in computing f8,5if Z7Z were singular or nearly singular.

If Z is ill-conditioned, small changes to Z lead to large changes in (272)1,
and f8,;; becomes computationally unstable.

One way: to abandon the requirement of an unbiased estimator of f# and,
instead, consider the possibility of using a biased estimator of .

a Principal Components Regression
Use the scores of the first t principal component of Z.

o Partial Least-Square Regression
Construct latent variables from Z to retain most of the information
that helps predict Y (reducing the dimensionality of the regression.)

o Ridge Regression (ridge: chdp, dai dat hep dai trén dinh, luéng, ...)
Add a small constant k to the diagonal entries of the matrix before
taking its inverse

Brr(k) = (XTX + kL)71XTY
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Variable selection

Motivation

o Having too many input variables in the regression model
= an overfitting regression function with an inflated variance

o Having too few input variables in the regression model
= an underfitting and high bias regression function with poor
explanation of the data

The “importance” of a variable

Depends on how seriously it will affects prediction accuracy if it is
dropped

The behind driving force

The desire for a simpler and more easily interpretable regression
model combined with a need for greater accuracy in prediction.
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Regularized regression

A hybrid of these two ideas of Ridge Regression and Variable Selection.

General penalized least-squares criterion
¢(B) = (Y —XB) (Y —XB) +Ap(B)
for a given penalty function p(-) and regularization parameter A.

Define a family (indexed by g > 0) of penalized least-squares estimators
in which the penalty function,

q q
Pq(B) = §=1|,3j| z:j|:8j| =c
bounds the L;-norm (Frank and Friedman, 1993)

Z|ﬁj|q =c

J
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Regularized regression

q =2: ridge regression. The penalty function is
rotationally invariant hypersphere centered at
the origin, circular disk (r = 2) or sphere (r = 3).
q #+ 2, the penalty is no longer invariant.

0 g < 2 (most interesting): penalty function
collapses toward the coordinate axes
—>ridge regression and variable selection.

0 q = 0 penalty function places all its mass along
the coordinate axes, and the contours of the
elliptical region of ESS(f) touch an
undetermined number of axes, the result is
variable selection.

a0 q = 1 produces the lasso method having a
diamond-shaped penalty function with the
corners of the diamond on the coordinate axes.

Two-dimensional contours
of the symmetric penalty
function

Pa(B) = B/ + || = 1 for
g=0.2,05,1,2,5 The
case g = 1 (blue diamond)
yields the lasso and q = 2
(red circle) yields ridge
regression.
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Regularized regression
The Lasso

The Lasso (least absolute shrinkage and selection operator) is a
constrained OLS minimization problem in which

¢(B) = (Y —XB)* (Y —XB) +Ap(B)

is minimized for B = (f;) subject to the diamond-shaped condition
that Z}7=1| ,Bj| < ¢ (Tibshirani, 1996). The regularization form of the

problem is to find  to minimize
DB = (Y- XBFY-XB)+1Y |
j=1

This problem can be solved using complicated quadratic programming
methods subject to linear inequality constraints.

The Lasso has a number of desirable features that have made it a
popular regression algorithm.

Lasso: toan tir chon va co tuyét déi téi thiéu 57



Regularized regression

The Lasso

Like ridge regression, the Lasso is a shrinkage estimator of 8, where
the OLS regression coefficients are shrunk toward the origin, the value
of ¢ controlling the amount of shrinkage.

It behaves as a variable selection technique: for a given value of ¢, only
a subset of the coefficient estimates, ,8]-, will have nonzero values, and
reducing the value of c reduces the size of that subset.

Coatficknta

i 5
\
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Lasso paths for the bodyfat data.
The paths are plots of the
coefficients {Bj} (left panel) and
the standardized coefficients,

{B; I X; 1%} (right panel) plotted
against. The variables are added
to the regression model in the
order: 6, 3, 1, 13,4, 12, 7, 11, 8,
2, 10,5, 9.
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Regularized regression
The Garotte

A different type of penalized least-squares estimator (Breiman, 1995).

Let B,; be the OLS estimator and let W= diag{w} be a diagonal matrix
with nonnegative weights w = (w;) along the diagonal. The problem is
to find the weights w that minimize

¢(W) = (y - Xwﬁols)r(y - owols)

subject to one of the following two constraints,

1.w = 0,17w = }_; w; < c (nonnegative garotte, that co)
2. w'w =3Y"_, w} < ¢ (garotte)

As cis decreased, more of the w;become 0 (thus eliminating those
particular variables from the regression function), while the nonzero
B ois; shrink toward 0.
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Multivariate regression

Multivariate regression has s output variables Y = (¥Y,---,Y,)% each
of whose behavior may be influenced by exactly the same set of inputs
X = (le ) °'Xr)T .

Not only are the components of X correlated with each other, but in
multivariate regression, the components of Y are also correlated with
each other (and with the components of X).

Interested in estimating the regression relationship between Y and X,
taking into account the various dependencies between the r-vector X
and the s-vector Y and the dependencies within X and within Y.
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