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Introduction

The background
0 The data is high-dimensional

0 The desire of projecting those data onto a lower-dimensional
subspace without losing importance information regarding some
characteristic of the original variables

The methods

o Accomplishing the reduction of dimensionality through variable
selection, referred to as feature selection.

0 Accomplishing the reduction of dimensionality by creating a reduced
set of linear or nonlinear transformations of the input variables,
referred to as feature extraction.



Linear techniques

Transformations R? — Rk, (xl, ...,xp) - (Sq4,...,5;), k < p, and result
in each of the k < p components of the new variable being a linear
combination of the original variables:

Si = Wi1Xxq + -+ wpxy, fori=1,..,k or
s = Wx
where Wy, is the linear transformation weight matrix. Expressing the

same relationship as
X = As

with A, .k, new variables s are also the hidden or the latent variables.
In terms of an n X p observation matrix X, we have

Sij = Wi1X1j + -+ Wipoj fori = 1, ,k,] = 1, |
where j indicates the jth realization, or, equivalently,

Skxn = kaz)xpxnr prn — Apxkskxn
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Principal component analysis (PCA)

PC is also known as the singular value decomposition (SVD), the
Karhunen-Loeve transform, the Hotelling transform (1933), and the
empirical orthogonal function (EOF) method.

PCA reduces the dimension by finding a few orthogonal linear
combinations (the PCs) of the original variables with the largest variance
(PCA gidm s6 chiéu bang cach tim ra mot s nhé cac t6 hop tuyén tinh
trwc giao (PC) cta cac bién géc véi phwong sai 1n nhit)

The first PC, sy, is the linear combination with the largest variance
. T
s1 = X*wy, where coefficient vector w; = (Wll, ...,Wlp) solves

w; = arg max Var{x"w}
lw=1]|
The second PC, s,, is the linear combination with the second largest
variance and orthogonal to the first PC, and so on. There are as many PCs
as the number of the original variables.



Principal component analysis

The first several PCs may explain most of the variance, so that the rest
can be disregarded with minimal loss of information.

As variance depends on the variable scale, first standardize each
variable to have mean zero and standard deviation one. Assuming a
standardized data with the empirical covariance matrix

1
Zpxp = — XX

We can use the spectral decomposition theorem to write X as
X = UAU®
where A = diag(4,, ..., 4,) is the diagonal matrix of the ordered

eigenvalues 4; < --- < 1,,and Uisa p X p orthogonal matrix containing
the eigenvectors.



Principal component analysis

Property 1. The subspace spanned by the first k eigenvectors has the
smallest mean square deviation (d6 1éch trung binh binh phwong nhé nhat)
from X among all subspaces of dimension k (Mardia et al., 1995).

Property 2. The total variation in the eigenvalue decomposition is equal to
the sum of the eigenvalues of the covariance matrix, (sai khac toan bd trong
phan tich gia tri riéng bang téng cac vector riéng cia ma tran phwong sai)

p p p
Z Var(PC;) = Z A = z trace(X)
i=1 i=1 1

=

k
; A / trace(X)

gives the cumulative proportion of the variance explained by the first k PCs
(ty 1€ tich Iy cta bién doi tinh theo k PC dau tién) .

and the fraction
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Principal component analysis

By plotting the cumulative proportions in as a function of k, one can
select the appropriate number of PCs to keep in order to explain a
given percentage of the overall variation.

An alternative way to reduce the dimension
of a dataset using PCA: Instead of using the

PCs as the new variables, this method uses
the information in the PCs to find important
variables in the original dataset.
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Another way: The number of PCs to keep is
determined by first fixing a threshold A,

Ordered Sample Eigenvalue

o

then only keeping the eigenvectors (at least o s ‘S’rderﬁumbgf s
four) such that their corresponding

eigenvalues are greater than A, (Jolliffe,

1972, 1973).



Principal component analysis
Example

Nutritional data from 961 food items. The nutritional components of
each food item are given by seven variables: fat (grams), food energy
(calories), carbohydrates (grams), protein (grams), cholesterol
(milligrams), weight (grams), and saturated fat (grams).

PCA of the transformed data yields six principal components ordered by
decreasing variances. The first three principal components, PC1, PC2,
and PC3, which account for more than 83% of the total variance

Food Component PC1 PC2 PC3 PC4 PC5 PC6
Fat 0.557 0.099 0.275 0.130 0.455 0.617

Food energy 0.536 0.357 —-0.137 0.075 0.273 -0.697
Carbohydrates —0.025 0.672 —-0.568 -0.286 —0.157 0.344
Protein  0.235 -0.374 -0.639 0.599 -0.154 0.119
Cholesterol 0.253 -0.521 -0.326 —0.717 0.210 —0.003
Saturated fat 0.531 —-0.019 0.261 -0.150 -0.791 0.022
Variance 2.649 1.330 1.020 0.680 0.267 0.055

% Total Variance 441 22.2 17.0 11.3 4.4 0.9




Principal component analysis

Example

2nd Principal Component Score
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Independent component analysis (ICA)

A method that seeks linear projections, not necessarily orthogonal to
each other, but nearly statistically independent as possible.

The random variables x = {xl, e xp} are uncorrelated, if for Vi # j,
1 <1i,j <p,wehave Cov(xl-,xj) = 0. Independence requires that the
multivariate probability density function factorizes,

fx1, o, 2p) = f1(x1) e fp ().

independence = uncorrelated, but uncorrelated # independence.

The noise-free ICA model for the p-dimensional random vector X seeks to
estimate the components of the k-dimensional vector s and the p X k full
column rank mixing matrix A

(xl, ...,xp)T = A,k (Sy, ey SK)T
such that the components of s are as independent as possible, according
to some definition of independence.
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Independent component analysis (ICA)

The noisy ICA contains an additive random noise component,
T
(xl, ...,xp) = Ak (Sy, s SK)T + (ul, ...,up)

Estimation of such models is still an open research issue.

T

In contrast with PCA, the goal of ICA is not necessarily dimension
reduction. To find k < p independent components, one needs to first

reduce the dimension of the original data p to k, by a method such as
PCA.

No order among the PCs of ICA. ICA can be considered a generalization
of the PCA and the PP (project pursuit) concepts.

ICA is applied to many different problems, including exploratory data
analysis, blind source separation, blind deconvolution, and feature
extraction.

12



Independent component analysis (ICA)

Perform ICA

Terry b= o7 Scott
& 4 Te-Won {- - | Tzyy-Ping
Play Mixtures Play Components
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Factor analysis (FA)

A linear method, based on the second-order data summaries.
Factor analysis assumes that the measured variables depend on some
unknown, and often unmeasurable, common factors.

Typical examples include variables defined as various test scores of
individuals, as such scores are thought to be related to a common
“intelligence” factor.

The goal of FA is to uncover such relations, and thus can be used to
reduce the dimension of datasets following the factor model.

The zero-mean p-dimensional random vector x,,; with covariance
matrix X satisfies the k-factor model

x= Af+u

where A,y is a matrix of constants, and fy; and A,y and u,; are
the random common factors and specific factors, respectively.
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Canonical variate analysis
(CVA, Hotelling, 1936)

A method for studying linear relationships between two vector variates,
X=(0WX,..,X)"andY = (¥, ..., Y)*

which have different dimensions.

CVA seeks to replace the two sets of correlated variables, X and Y, by ¢
pairs of new variables,

(& wi)i=1,..,t t<min(r,s)

where

Tr S
§i=g;X = z IkjXk,  w;=hiY= Z hij Yk
k=1 k=1
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Canonical variate and correlation analysis
Least-squares optimality of CVA

The task
T
(le ey XT‘J Yl! "y YS)T . ((Elr (1)1); L (étr wt))
Linear projections by (t X r)-matrix G and (t X s)-matrix H

with (1 <t < min(r, s)):
¢ = GX, w = HY,

Least-square error criterion, to find v, G, and H so that

HY ~ v + GX
to minimize
E{(HY — v + GX)(HY — v + GX)"}
which measure how well we can reconstruct X and Y from pairs of (¢;, w;)

The goal is
To choose the best v, G, and H in the least-square sense.
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Projection Pursuit
Phép chiéu dudi

The motivation
The desire to discover “interesting” low-dimensional (typically,
one- or two-dimensional) linear projections of high-dimensional data
The origin
The desire to expose specific non-Gaussian features (variously
referred to as “local concentration,” “clusters of distinct groups,”
“clumpiness,” or “clottedness”) of the data.
The strategy

1. Setup a projection index J to judge the merit of a particular one or
two-dimensional (or sometimes three-dimensional) projection of a
given set of multivariate data.

2. Use an optimization algorithm to find the global and local extrema of
that projection index over all m-dimensional projections of the data.

17



Projection Pursuit
Projection Indexes

Projection indexes should be chosen to possess certain computational
and analytical properties, especially that of affine invariance (location
and scale invariance).

A special case of PP occurs when the projection index is the variance.
Maximizing the variance reduces PP to PCA, and the resulting
projections are the leading principal components of X.

Maximizing the variance is equivalent to minimizing the corresponding
Gaussian log-likelihood; in other words, the projection is most
interesting (in a variance sense) when X is least likely to be Gaussian.
Typical PP:

o Cumulant-based index

o Polynomial-based indexes
o Shannon negentropy
Q

Optimizing the projection index
18



Introduction

The linear projection methods can be extremely useful in discovering
low-dimensional structure when the data actually lie in a linear (or
approximately linear) lower-dimensional subspace M (called a manifold)
of input space R".

What can we do if we know or suspect that the data actually lie on a low
dimensional nonlinear manifold, whose structure and dimensionality are
both assumed unknown?

Dimensionality reduction = Problem of nonlinear manifold learning.

When a linear representation of the data is unsatisfactory, we turn to
specialized methods designed to recover nonlinear structure. Even so, we
may not always be successful.

Key ideas: Generalizing linear multivariate methods. Note that, these
equivalences in the linear case do not always transfer to the nonlinear
case. (tbng quat hoa cac pp tuyén tinh da bién du khéng luén thanh cong).
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Polynomial PCA

How should we generalize PCA to the nonlinear case? One possibility is to
transform the set of input variables using a quadratic, cubic, or higher
degree polynomial, and then apply linear PCA.

Focused on the smallest few eigenvalues for nonlinear dimensionality
reduction.

Quadratic PCA: the r-vector X is transformed into an extended r-vector X,
wherer=2r+r(r-1)/2,X = (X1, X,) 2 X' = (X1, X5, X2, X%, X, X,)

Some problems inevitably arise when using quadratic PCA.

o First, the variables in X will not be uniformly scaled, especially for
large r, and so a standardization of all r variables may be desirable.

0 Second, the size of the extended vector X for quadratic PCA increases
quickly with increasing r: when r = 10, r = 65, and when r = 20, r = 230.

20



Principal curves and surfaces

Suppose X is a continuous random r-vector having density py, zero
mean, and finite second moments. Suppose further that the data
observed on X lie close to a smooth nonlinear manifold of low
dimension.

A principal curve (Hastie, 1984; Hastie and Stuetzle, 1989) is a smooth
one-dimensional parameterized curve f that passes through the
“middle” of the data, regardless of whether the “middle” is a straight line
or a nonlinear curve.

A principal surface is a generalization of principal curve to a smooth
two-(or higher-) dimensional curve.

We use an analogue of least-squares optimality as the defining
characteristic: we determine the principal curve or surface by
minimizing the average of the squared distances between the data
points and their projections onto that curve.

21



Content

Linear dimensionality reduction

1. Principal component analysis (PCA)
Independent component analysis (ICA)
Factor analysis

Canonical variate analysis

g1 B W N

Projection pursuit

Nonlinear dimensionality reduction
6. Polynomial PCA

7. Principal curves and surfaces
8. Kernel PCA

9. Multidimensional scaling

10. Nonlinear manifold learning

22



Introduction

A map including cities and towns - table where each cell shows the
degree of “closeness” (or proximity, sw gan giii) of a row city to a
column city. Proximity could have different meanings: straight-line
distance or as shortest traveling distance.

Consider entities as objects, products, a nations, a stimulus, etc. and we
can talk about proximity of any two entities as measures of association
(e.g., absolute value of a correlation coefficient), confusion frequency
(i.e., to what extend one entity is confused with another in an

identification exercise), or measure of how alike (or how different), etc.

Multidimensional scaling (MDS): [tai dwng ban d6 goc nhiéu chiéu]
given a table of proximities of entities, reconstruct the original map of
entities as closely as possible.

MDS is a family of different algorithms, each designed to arrive at an
optimal low-dimensional configuration for a particular type of
proximity data.
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Introduction

Problem: Re-create the map that yielded the table of airline distances.

Cape Town
E,
?1': Ffome New Delhi
é fr?tél“%c oW Singapore
éi ° Hong Kong
Beijing Cape Town Hong Eong Honolulu London  Melbourne .f,i‘ NPy e
“ ° Tokyo
Cape Town 12947 £ Mexico
Hong Eong 1972 San Francisoo
Homolulu 8171 8945 £
London 2160 OG46 11653 Hanalult E
a0a: 7302 2562 HO0 ! ! ! ! ! )
HEIEE;LTLE 1 _:: ’]: 14 1l T 5 ;:;E»« : Edj[: i 13557 10000 5000 0 S0 10000 8
Montreal 10490 12462 7915 5240 16730 1st principal coordinate El
Moscow L8090 T158 11342 2506 14418 %
New Delhi aTas ario 11930 G724 10192
New York 11012 12084 TOOG GLEG 16671
Paris 2236 Lelitin] 11888 341 16793
Rio de Janeiro 17325 L7710 13343 0254 13227
Rome 8144 0300 12036 1434 15987
San Francisco o524 11121 38LT BG40 12644
Singapore 1465 2575 10824 10860 GOS0
Stockholm G725 8243 11059 1436 15503
Tokyo 2104 2803 G208 G585 8159
Airline distances [km) between 18 Two and three dimensional map of 18 world cities using
iti the classical scaling algorithm on airline distances
cities. between those cities. The colors reflect the different
Source: Atlas of the World, Revised continents: Asia (purple), North America (red), South
6th Edition, National Geograph ic America (orange), Europe (blue), Africa (brown), and

Australasia (green).

Society, 1995, p. 131
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Examples of MDS applications

Marketing: Derive “product maps” of consumer choice and product
preference (e.g., automobiles, beer) so that relationships between
products can be discerned

Ecology: Provide “environmental impact maps” of pollution (e.g., oil
spills, sewage pollution, drilling-mud dispersal) on local communities of
animals, marine species, and insects.

Molecular Biology: Reconstruct the spatial structures of molecules
(e.g., amino acids) using biomolecular conformation (3D structure).
Interpret their interrelations, similarities, and differences. Construct a
3D “protein map” as a global view of the protein structure universe.

Social Networks: Develop “telephone-call graphs,” where the vertices
are telephone numbers and the edges correspond to calls between
them. Recognize instances of credit card fraud and network intrusion
detection.

25



Proximity matrices

The focus on pairwise comparisons of entities is fundamental to MDS.

The “closeness” of two entities is measured by a proximity measure,
defined in a number of different ways.

o A continuous measure of how physically close one entity is to another
or a subjective judgment recorded on an ordinal scale, but where the
scale is well-calibrated as to be considered continuous.

o In perception study, proximity is not quantitative but a subjective
rating of similarity (or dissimilarity) recorded on a pair of entities.

“Closeness” of one entity to another could be measured by a small or

large value. Importance is a monotonic relationship between the
“closeness” of two entities.

26



Proximity matrices

Collection of n entities. Let 6;;represent the dissimilarity of the ith entity
to the jth entity. Consider m dissimilarities, m = (721) = %n(n — 1), and
(m %X m) proximity matrix

A = (5ij) (1)
The proximity matrix is usually displayed as a lower-triangular array of

nonnegative entries, with the understanding that the diagonal entries are
all zeroes and the matrix is symmetric: foralli,j=1,...,n,

5, =06, =068, =6,

» Vi » Yji

In order for a dissimilarity measure to be regarded as a metric distance,
we require that o, satisfy the triangle inequality,

0;; < Oy + 0y, forallk

27



Comparing protein sequences
Optimal sequence alignment

About 100,000 different proteins in the human body.

Proteins carry out important bodily functions: supporting cell structure,
protecting against infection from bacteria and viruses, aiding
movement, transporting materials (hemoglobin for oxygen), regulating
control (enzymes, hormones, metabolism, insulin) of the body.

“protein map”: how existing protein
families relate to one another,
structurally and functionally.

Might be able to predict the functions
of newly discovered proteins from
their spatial locations and proximities
to other proteins, where we would

Proteins act alone
or in complexes to

expect neighboring proteins to have & Taom o i

functions

very similar biochemical properties. From Genes to Proteins




Comparing protein sequences
Optimal sequence alignment

Key idea in computing the proximity of two proteins is amino acids can
be altered by random mutations (dét bién) over a long period of evolution.

Mutations can take various forms: deletion or insertion of amino acids, ...
For an evolving organism to survive, structure/functionality of the most
important segments of its protein would have to be preserved.

Compute a similarity value between two sequences that have different
lengths and different amino acid distributions.

Trick: Align the two sequences so that as many letters in one sequence
can be “matched” with the corresponding letters in the other sequence.
Several methods for sequence alignment:

o  Global alignment aligns all the letters in entire sequences assuming
that the two sequences are very similar from beginning to end;

o Local alignment assumes that the two sequences are highly similar
only over short segments of letters.

29



Comparing protein sequences
Optimal sequence alignment

Alignment methods use dynamic programming algorithms as the primary
tool. BLAST and FASTA are popular tools for huge databases.

An “optimal” alignment if maximizing an alignment score. For example, an
alignment score is the sum of a number of terms, such as identity (high
positive), substitution (positive, negative or 0).

Substitution score: “cost” of replacing one amino acid (aa). Scores for all
210 possible aa pairs are collected to form a (20 x 20) substitution matrix.
One popular is BLOSUM62 (BLOcks Substitution Matrix), assuming no
more than 62% of letters in sequences are identical (Henikoff, 1996).

o))

A “gap” (indel), an empty space (“-”), penalizes an insertion or a deletion of
an aa. Two types of gap penalties, starting a gap and extending the gap.

The alignment score s is the sum of the identity and substitution scores,
minus the gap score.

30



Comparing protein sequences
Example: Two hemoglobin chains

Given n proteins, let s;;be the alignment score between the ith and jth
protein. We have 6;; = s,,, — s;, where s, is the largest alignment

score among all pairs. The proximity matrix is then givenby A = (J;; ).
Compare the hemoglobin alpha chain protein HBA HUMAN having length
141 with the related hemoglobin beta chain protein HBB HUMAN having

length 146.
We would obtain different optimal alignments and alignment scores.

LSPADKTNVEAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF —————— DLSH
. . . L+P +H+ V A WGEV + E G EAL R+ + +P T+ +F F D
86 positive substitution LTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVM
scores (the 25 “+"s
d the 61 identiti (SAQVKCHCKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCL
and the 61 identities). G+ +VK HGKKV A ++ +AH#D++  + LS+LH KL VDP NL+LL + L
The a|ignment score is GNPEVK AHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVL
s = 259. LVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKY

+ LAH EFIP V A+ K +A V+ L KY
VCVLAHHFGEEFTPPVAAYQEVVAGVANALAHEY}
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String matching
Edit distance

In pattern matching, we study the problem of finding a given pattern
within a body of text. If a pattern is a single string, the problem is called
string matching, used extensively in text-processing applications.

A popular numerical measure of the similarity between two strings is
edit distance (also called Levenshtein distance).

The usual definition of edit distance is the fewest number of editing
operations (insertions, deletions, substitutions) which would be needed
to transform one string into the other.

An insertion inserts a letter into the sequence, a deletion deletes a letter
from the sequence, and a substitution replaces one letter in the
sequence by another letter. Identities (or matches) are not counted in
the distance measure. Each editing operation can be assigned a cost.

Used to construct a phylogenetic tree — a diagram laying out a possible
evolutionary history — of a single protein.
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Classical scaling and distance geometry

Suppose we are given n points X, ...,X, € R". From these points, we
compute an (n x n) proximity matrix A = (6, of dissimilarities, where

§ii = ||X: = Xi|| = {Zh=1Xir — Xji)?}1/2 (2)

Many kinds of distance can be considered: the Minkowski or
L, distance is given by

i = {Zh=1|Xix — X [P}17P

p = 1: city-block or Manhattan distance,

p = 2: Euclidean distance.
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Classical scaling and distance geometry
From dissimilarities to principal coordinates

2 1
From (2), of; = IIX;II” + || X;]|” —2X7X;. Let b; = X[ X; = — (67 — 6f —
87%) where 65 =1X;]|>. We get b;j = a;;— a; — a; + a;;

12 — 2 — 2 — 2
where Ajj = —561']', a, = n 1 Z] aij’ a;=mn ! Ziaij; a =n 2 ZLZJ aij'
If setting A = (q; j) the matrix of squared dissimilarities and B = (b; j),
we have B = HAH where H = I, — n~!J,, J,, is square matrix of ones.

Wish to find a t dimensional representation, Y,,...,Y, € R (referred to as
principal coordinates), of those r-dimensional points (with t < r), such
that the interpoint distances in t-space “match” those in r-space.

When dissimilarities are defined as Euclidean interpoint distances, this
type of “classical” MDS is equivalent to PCA in that the principal
coordinates are identical to the scores of the first t principal components
of the {X}.
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Classical scaling and distance geometry
From dissimilarities to principal coordinates

Typically, in classical scaling (Torgerson, 1952, 1958) we are not given
{X;} € RY; instead, we are given only the dissimilarities {0,;} through the
(nxn) proximity matrix A. Using A, we form A, and then B.

Motivation for classical scaling comes from a least-squares argument
similar to the one employed for PCA.

The classical scaling algorithm is based upon an eigendecomposition of
the matrix B. This eigendecomposition produces Y,,...,Y, € Rt t<r a
configuration whose Euclidean interpoint distances,

d=v-y| =V-%) -1

The solution of the classical scaling problem is not unique. A common
orthogonal transformation of the points in the configuration found by
classical scaling yields a different solution of the classical scaling
problem.



Classical

scaling
The classical
scaling
algorithm

. Given an (nxn)-matrix of interpoint distances A = (d;;), form the (nxn)-

matrix A = (a;;), where a,;; = —%Ef"j.

. Form the “doubly centered,” symmetric, (n % n)-matrix B = HAH, where

H=1I1.-—n"'J. and J. = 1,17, is an (n ¥ n)-matrix of ones.

. Compute the eigenvalues and eigenvectors of B. Let A = diag{A1,---, .}

be the diagonal matrmx of the eigenvalues of B and let V = (vy,---, v, ) be
the matrix whose columns are the eigenvectors of B. Then, by the spectral

theorem, B = VAV,

. If B 15 nonnegative-definite with rank r(B) = t < n, the largest ¢ elgen-

values will be positive and the remaiming n — ¢ ejgenvalues will be zero.
Denote by Ay = diag{Ay,---,A;} the (¢ x ¢) diagonal matrx of the posi-
tive eigenvalues of B and let V1 = (w1, --,v:) be the corresponding matrix
of elgenvectors of B. Then,

B =VA V] = (VA APV =YY,

where ¥ = ViA{? = (VEvy, - VEve) = (Yh,-0, Y,

. The principal coordinates, which are the columns, Yq,..., Y. of the (t x

n)-matrx Y ', yvield the n pomnts in t-dimensional space whose interpoint
distances di; = ||Y: — Y ;|| are equal to the distances 8;; in the matrix A.

. If the eigenvalues of B are not all nonnegative, then either 1gnore the neg-

ative elgenvalues (and associated elgenvectors) or add a swmtable constant
to the dissimilanties {(Le., d;; «— di; + c 1f i # j, and unchanged otherwise)
and return to step 1. If ¢ 1s too large for practical purposes, then the largest
t' < t positive elgenvalues and associated elgenvectors of B can be used to
construct a reduced set of principal coordinates. In this case, the interpoint
distances d;; approximate the 8;; from the matrix A.
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Classical scaling and distance geometry
Airlines distances

Eigenvalues of
B and the
eigenvectors
corresponding
to the first three
largest
eigenvalues

(in red) for the
airline distances
example.

First three
principal
coordinates
of the 18
cities in the
airline
distances
example.

Eigenvalues

Figenvectors

1 AT1582511 0.245 0.072 0.183
2 316GB24TRT 0.003 0.502 -0.347
3 253043687 0.323 0.017 0.103
4 05466163 0.044 0.487  -0.080
5 74912121 0.145 0.144 0.203
6 ATE05097 0.366 0.128 0.569
T 31736348 0.281 0.275 0.174
8 THO8328 0.272 0.115 0.004
a9 4338497 0.010 0.134 0.202
10 1747583 0.209 0.195 0.110
11 1498641 0.202 0.117 0.061
12 145113 0.141 0.163 0.196
13 102966 0.364 0.172 0.473
4 60477 0.104 0.220 0.163
15 6334 0.140 0.356 0.009
16 1362 0.375 0.139 0.054
17 100 0.074 0.112 0.215
18 0 0.260 0.214 0.173
Principal Coordinates
City 1st 2nd Ard
Beijing 5315.24 1272.90 2020.75
Cape Town 57.63 8035.14 5522.26
Hong Kong T010.90 306.52 1645.53
Honolulu 062.86 867705 1270.47
London 3157.53 2557.06 3268.11
Melbourne TO48.20 2283.67 0062.28
Mexico 6108.07 4R06.64 27T8.04
Montreal 5012.57 2039.70 1495.92
Moscow 220.84 237727 3221.22
New Delhi 4528.94 3474.33 1751.50
NHew York 6341.02 2078.66
Paris 3058.30 201008
Rio de Janeiro TO05.60 3067.34
Rome 2262.26 3016.47
San Francisco 3041.92 6341.23
Singapore 8139.01 247083
Stockholm 1610.37 1997.61 3429.67
Tokyo 5656.51 3810.66 2761.56

2D
L]
I.; LN ]
§15000 . 5 s
g *et * ae
B 10000 N S
-8 - > L]
kS L
E 50001 ' S T
('} L
w ; - AL
ol &
3000 8000 13000 18000
Observed Distance
2D
40001 K] ot .
2000 1 , s . *
L ) . * - " . - ﬁ
o 0 i“ Fi %% .
3 ® & @ s L, * "a s
® 2000 P :
o - . 5 ® ..y
-
« 40001 'f‘ . . ® '::..o e
- y . .
. ..s‘ * : .
-6000 s .
-8000 T T T
50 150 250

3D
20000
[ ]
8 1_.5-"’
£ 15000 1 . Bats
= .
[a] .
3 10000 2
E ?‘
E
= so0] A
u >
L4
ol #
3000 8000 13000 18000
Observed Distance
3D
4000 o . - .
‘. 3% * .
. .
3000
T e . ', ." e e
3 2000 L ] . . ® -
% F o I LA LN T T )
@ 2.7 0 A% a0 g -‘
o ]
1000 NSV S R td'...:..v"
a® oy -
nq e w®e j. . & s .“u‘."‘c .
. - [ . * . *
-1000 T
50 150 250 350

Estimated and observed airline distances. The lefnels show the 2D
solution and the right panels show the 3D solution. The top panels show
the estimated distances plotted against the observed distances, and the
bottom panels show the residuals from the the fit (residual = estimated
distance - observed distance) plotted against sequence number.
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Classical scaling and distance geometry

Mapping the protein universe 92 B-sheet

15 proteins
& o]
YR T T T T T T TN T N N A N A M 94 a/B-Sheet é:j: 10 . ./

50000 — = proteins §|-]"/ ;

40000 L E o :. .
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] I : -10 v.'f?} 92 a+f3-sheet
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protelns 1st Principal Coordinate Score
0- - Two-dimensional map of four protein classes using
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he classical scaling algorith 4 ins.
The first 25 ordered eigenvalues of B obtained from the classical scaling algorithm on 498 proteins

the classical scaling algorithm on 498 proteins.

498 proteins = classical scaling
algorithm - largest 25 eigenvalues of B
—> first three eigenvalues are dominant
—> 3D configuration is probably most
appropriate.

A three-dimensional map of four protein classes
2D map and 3D map using the classical scaling algorithm on 498 progeéns.



Distance scaling

Given n items (or entities) and their dissimilarity matrixs, A = (6;;)

Classical scaling problem is to find a configuration of points in a lower-
dimensional space such that the interpoint distances {d;} satisty d;; = 9.

In distance scaling, this relationship is relaxed; we wish to find a suitable
configuration for which d;; = f(6;;) where f is some monotonic function.

The function f transforms the dissimilarities into distances. The use of
“metric” or “nonmetric” distance scaling depends upon the nature of the
dissimilarities.

If the dissimilarities are quantitative we use metric distance scaling,
whereas if the dissimilarities are qualitative we use nonmetric distance
scaling. In the MDS literature, metric distance scaling is traditionally called
metric MDS, nonmetric distance scaling is called nonmetric MDS.
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Summary

Introduction: Given a table of proximities, reconstruct the original map
as closely as possible and the space dimension.

Proximity Matrices: A = (6;;) measures “closeness” of pairwise
objects, metric (triangle inequality)

Comparing Protein Sequences

String Matching: Edit distance

Classical Scaling: require d;; = 6;;

Distance Scaling: d;; = f(J;;) where f is monotonic

o Metric Distance Scaling: metric distance scaling

o Nonmetric Distance Scaling: nonmetric distance scaling
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Nonlinear manifold learning
Manifold?

= An ant at a picnic: The ant crawls all over the picnic items, as diminutive
size, the ant sees everything on a very small scale as flat and featureless.

= A manifold can be thought of in similar terms, as a topological space that
locally looks flat and featureless and behaves like Euclidean space.

= A manifold also satisfies certain topological conditions. A submanifold is
just a manifold lying inside another manifold of higher dimension.

FIGURE 16.6. Left panel: The S-curve, a two-dimensional S-shaped man-
ifold embedded in three-dimensional space. Right panel: 2,000 data points
randomly generated to lie on the surface of the S-shaped manifold. A1



Nonlinear manifold learning

Many exciting new algorithmic techniques: Isomap, Local Linear
Embedding, Laplacian Eigenmap, and Hessian Eigenmap. They aim to
recover the full low-dimensional representation of an unknown nonlinear
manifold M.

Having different philosophies for recovering nonlinear manifolds, each
methods consists of a three-step approach.

1) Incorporating neighborhood information from each data point to
construct a weighted graph having the data points as vertices.

2) Taking the weighted neighborhood graph and transforming it into
suitable input for the embedding step.

3) Computing an (n x n)-eigenequation (embedding step).

Manifold learning involves concepts from differential geometry: What
means a manifold and what means to be embedded in a higher-

dimensional space?
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Nonlinear manifold learning

If a topological manifold M is continuously differentiable to any order
(i.e, M € (C*),we call it a smooth (or differentiable) manifold.

Riemannian manifold (M, d™) is smooth manifold M with a metric d™.
We take d™ to be a manifold metric defined by

d™(y,y’) = inf{ L(c)|c is a curve in M which joins y and y'},
(o

wherey, y’ € M and £(c) is the arc-length of the curve c. Thus, d™ finds
the shortest curve (or geodesic, do dac) between any two points on M,
and the arc-length of that curve is the geodesic distance between the
points.

Data assumption: Finitely many data points, {y,}, are randomly sampled
from a smooth t-dimensional manifold M with metric given by geodesic
distance.
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Nonlinear manifold learning
ISOMAP

The isometric feature mapping (or ISOMAP) algorithm (Tenenbaum et al.,
2000) assumes that the smooth manifold M is a convex region of Rt
(t < r)and that the embedding ¥ : M' — X is an isometry.

This assumption has two key ingredients:

o Isometry: The geodesic distance is invariant under the map . For any
pair of points on the manifold, y,y’ € M, the geodesic distance
between those points equals the Euclidean distance between their
corresponding coordinates, x,x’ € X;i.e.,

d™(,y") = llx —x'llx
wherey = ¢(x) and y' = @(Xx).

o Convexity: The manifold M is a convex subset of RE.

ISOMAP regards M as a convex region that may have been distorted in
any of a number of ways (e.g., by folding or twisting), e.g., Swiss roll.
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Nonlinear manifold learning
Three steps of ISOMAP

1. Neighborhood graph.
o Fix either an integer K or an € > 0. Calculate the distances,

i} = d*(x;, %) = [|x; — x|

between all pairs of data points x;, x;€X,i,j = 12,...,n
Determine which data points are “neighbors” on the manifold M by
connecting each point either to its K nearest neighbors or to all points
lying within a ball of radius € of that point. Choice of K or € controls
neighborhood size and also the success of ISOMAP.

o We obtain weighted neighborhood graph G = G(V, £), where the
set of vertices V = {xq, ..., x,,} are the input data points, and the set
of edges € = {e;;} indicate neighborhood relationships between the

points.

45



Nonlinear manifold learning
Three steps of ISOMAP

2. Compute graph distances

o Estimate the unknown true geodesic distances, {dl]}/[ }, between pairs
of points in M by graph distances, {dlgj} , with respect to the graph G.
0 The graph distances are the shortest path distances between all pairs

of points in the graph §G. Points that are not neighbors of each other
are connected by a sequence of neighbor-to-neighbor links.

0 An efficient algorithm for computing the shortest path between
every pair of vertices in a graph is Floyd’s algorithm (Floyd, 1962),
which works best with dense graphs (graphs with many edges).
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Nonlinear manifold learning
Three steps of ISOMAP

3. Embedding via multidimensional scaling

o LetDY = (dlg]) be the symmetric (n X n)-matrix of graph distances.

Apply “classical” MDS to DY to give the reconstructed data points in a
t-dimensional feature space Y, so that the geodesic distances on M
between data points is preserved as much as possible:

Form the “doubly centered,” symmetric, (n * n)-matrix of squared
graph distances.

The embedding vectors {J;} are chosen to minimize ||A,gl — A}{”
where AY = —%HSQH and AY = —%H ([dg])z H and dg. =
ly: = il
The graph G is embedded into Y by the (¢ x n)-matrix

Y= @1 90) = (v 20
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Nonlinear manifold learning

Examples

Two—dimansicnal lsomap embodding {with naighborhood graph).

Two-dimensional ISOMAP
embedding, with neighborhood
graph, of the n = 1,000 Swiss
roll data points. The number of
neighborhood points is K = 7.

Two-dmensional lsomap embedding (with neghborhood graph).

Two-dimensional
LANDMARK ISOMAP
embedding, with
neighborhood graph, of the
complete set of n = 20,000
Swiss-Roll data points. The
number of neighborhood

88 pointsis K=7, and the

@ number of landmark points

issm = 50.

Two-dimensional LANDMARK
ISOMAP embedding, with
neighborhood graph, of the

n = 1,000 Swiss roll data
points. The number of
neighborhood pointsis K =7
and the number of landmark
points is m = 50.

48



