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Introduction 

 The background 

 The data is high-dimensional 

 The desire of projecting those data onto a lower-dimensional 
subspace without losing importance information regarding some 
characteristic of the original variables 

 

 The methods 

 Accomplishing the reduction of dimensionality through variable 
selection, referred to as feature selection. 

 Accomplishing the reduction of dimensionality by creating a reduced 
set of linear or nonlinear transformations of the input variables, 
referred to as feature extraction. 
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Linear techniques 

 Transformations ℜ𝑝 → ℜ𝑘,  𝑥1, … , 𝑥𝑝  ↦  𝑠1, … , 𝑠𝑘 , 𝑘 ≪ 𝑝, and result 

in each of the 𝑘 ≤ 𝑝 components of the new variable being a linear 
combination of the original variables: 

𝑠𝑖 = 𝑤𝑖1𝑥1 +⋯+ 𝑤𝑖𝑝𝑥𝑝  for 𝑖 = 1,… , 𝑘  or 

𝐬 = 𝐖𝐱 
where 𝐖𝑘×𝑝 is the linear transformation weight matrix. Expressing the 

same relationship as 
x = As 

with 𝐀𝑝×𝑘, new variables s are also the hidden or the latent variables.  

 In terms of an 𝑛 × 𝑝 observation matrix X, we have 

𝑆𝑖𝑗 = 𝑤𝑖1𝑋1𝑗 +⋯+ 𝑤𝑖𝑝𝑋𝑝𝑗   for 𝑖 = 1,… , 𝑘; j = 1,… , n 

    where j indicates the jth realization, or, equivalently, 

𝐒𝑘×𝑛 = 𝐖𝑘×𝑝𝐗𝑝×𝑛,                 𝐗𝑝×𝑛 = 𝐀𝑝×𝑘𝑺𝑘×𝑛 
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Principal component analysis (PCA) 

 PC is also known as the singular value decomposition (SVD), the 
Karhunen-Loève transform, the Hotelling transform (1933), and the 
empirical orthogonal function (EOF) method. 

 PCA reduces the dimension by finding a few orthogonal linear 
combinations (the PCs) of the original variables with the largest variance 
(PCA giảm số chiều bằng cách tìm ra một số nhỏ các tổ hợp tuyến tính 
trực giao (PC) của các biến gốc với phương sai lớn nhất)  

 The first PC, 𝑠1, is the linear combination with the largest variance 

𝒔1 = 𝐱𝜏𝐰1, where coefficient vector  𝐰1 = 𝑤11, … , 𝑤1𝑝
𝜏
 solves 

𝐰1 = arg max
𝐰=1

Var 𝐱𝜏𝐰    

 The second PC , 𝑠2, is the linear combination with the second largest 
variance and orthogonal to the first PC, and so on. There are as many PCs 
as the number of the original variables. 
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Principal component analysis 

 The first several PCs may explain most of the variance, so that the rest 
can be disregarded with minimal loss of information. 

 As variance depends on the variable scale, first standardize each 
variable to have mean zero and standard deviation one. Assuming a 
standardized data with the empirical covariance matrix 

𝚺𝑝×𝑝 =
1

𝑛
𝐗𝐗𝜏  

 We can use the spectral decomposition theorem to write 𝚺 as 

𝚺 = 𝐔𝚲𝐔𝜏 

where 𝚲 = diag(𝜆1, … , 𝜆𝑝) is the diagonal matrix of the ordered 

eigenvalues 𝜆1 ≤ ⋯ ≤ 𝜆𝑝, and U is a  𝑝 × 𝑝 orthogonal matrix containing 

the eigenvectors. 
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Principal component analysis 

 Property 1. The subspace spanned by the first k eigenvectors has the 
smallest mean square deviation (độ lệch trung bình bình phương nhỏ nhẩt) 
from X among all subspaces of dimension k (Mardia et al., 1995). 

 Property 2.  The total variation in the eigenvalue decomposition is equal to 
the sum of the eigenvalues of the covariance matrix, (sai khác toàn bộ trong 
phân tích gía trị riêng bằng tổng các vector riêng của ma trận phương sai) 

 𝑉𝑎𝑟 𝑃𝐶𝑖 =  𝜆𝑖 = trace(𝚺)

𝑝

𝑖=1

𝑝

𝑖=1

𝑝

𝑖=1

 

and the fraction  

 𝜆𝑖

𝑘

𝑖=1

trace(𝚺)  

gives the cumulative proportion of the variance explained by the first k PCs 
(tỷ lệ tích lũy của biến đổi tính theo k PC đầu tiên) . 
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Principal component analysis 

 By plotting the cumulative proportions in as a function of k, one can 
select the appropriate number of PCs to keep in order to explain a 
given percentage of the overall variation. 

 
 An alternative way to reduce the dimension 

of a dataset using PCA: Instead of using the 
PCs as the new variables, this method uses 
the information in the PCs to find important 
variables in the original dataset. 

 Another way: The number of PCs to keep is 
determined by first fixing a threshold 𝜆0, 
then only keeping the eigenvectors (at least 
four) such that their corresponding 
eigenvalues are greater than 𝜆0 (Jolliffe, 
1972, 1973). 
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Principal component analysis 
Example 

 Nutritional data from 961 food items. The nutritional components of 
each food item are given by seven variables: fat (grams), food energy 
(calories), carbohydrates (grams), protein (grams), cholesterol 
(milligrams), weight (grams), and saturated fat (grams). 

 PCA of the transformed data yields six principal components ordered by 
decreasing variances. The first three principal components, PC1, PC2, 
and PC3, which account for more than 83% of the total variance 
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Principal component analysis 
Example 
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Independent component analysis (ICA) 

 A method that seeks linear projections, not necessarily orthogonal to 
each other, but nearly statistically independent as possible. 

 The random variables 𝐱 = 𝑥1, … , 𝑥𝑝  are uncorrelated, if for ∀ 𝑖 ≠ 𝑗,

  1 ≤ 𝑖, 𝑗 ≤ 𝑝, we have 𝐶𝑜𝑣 𝑥𝑖 , 𝑥𝑗 = 0. Independence requires that the 

multivariate probability density function factorizes,    

𝑓 𝑥1, … , 𝑥𝑝 = 𝑓1 𝑥1 …𝑓𝑝(𝑥𝑝). 

independence ⇒ uncorrelated, but uncorrelated ⇏ independence. 

 The noise-free ICA model for the p-dimensional random vector x seeks to 
estimate the components of the k-dimensional vector s and the 𝑝 × 𝑘 full 
column rank mixing matrix A 

𝑥1, … , 𝑥𝑝
𝜏
= 𝐀𝑝×𝑘 𝑠1, … , 𝑠𝑘

𝜏 

such that the components of s are as independent as possible, according 
to some definition of independence. 
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Independent component analysis (ICA) 

 The noisy ICA contains an additive random noise component,  

𝑥1, … , 𝑥𝑝
𝜏
= 𝐀𝑝×𝑘 𝑠1, … , 𝑠𝑘

𝜏 + 𝑢1, … , 𝑢𝑝
𝜏
 

Estimation of such models is still an open research issue. 

 In contrast with PCA, the goal of ICA is not necessarily dimension 
reduction. To find 𝑘 <  𝑝 independent components, one needs to first 
reduce the dimension of the original data p to k, by a method such as 
PCA.  

 No order among the PCs of ICA. ICA can be considered a generalization 
of the PCA and the PP (project pursuit) concepts.  

 ICA is applied to many different problems, including exploratory data 
analysis, blind source separation, blind deconvolution, and feature 
extraction. 
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Factor analysis (FA) 

 A linear method, based on the second-order data summaries.                   
Factor analysis assumes that the measured variables depend on some 
unknown, and often unmeasurable, common factors.  

 Typical examples include variables defined as various test scores of 
individuals, as such scores are thought to be related to a common 
“intelligence" factor.  

 The goal of FA is to uncover such relations, and thus can be used to 
reduce the dimension of datasets following the factor model. 

 The zero-mean p-dimensional random vector 𝑥𝑝×1 with covariance 

matrix 𝚺 satisfies the k-factor model 

𝐱 =  𝚲𝐟 + 𝐮 

where 𝚲𝑝×𝑘 is a matrix of constants, and 𝐟𝑘×1 and 𝚲𝑝×𝑘 and 𝐮𝑝×1 are 

the random common factors and specific factors, respectively. 
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Canonical variate analysis 
(CVA, Hotelling, 1936) 
 

 A method for studying linear relationships between two vector variates,  
𝐗 = 𝑋1, … , 𝑋𝑟

𝜏 and 𝐘 = 𝑌1, … , 𝑌𝑠
𝜏 

which have different dimensions. 

 CVA seeks to replace the two sets of correlated variables, 𝐗 and 𝐘, by 𝑡 
pairs of new variables,  

𝜉𝑖 , 𝜔𝑖 , 𝑖 = 1, … , 𝑡;      𝑡 ≤ 𝑚𝑖𝑛 𝑟, 𝑠  

where  

𝜉𝑖 = 𝒈𝑗
𝜏𝐗 =  𝑔𝑘𝑗𝑋𝑘

𝑟

𝑘=1

, 𝜔𝑖 = 𝒉𝑗
𝜏𝐘 =  𝑕𝑘𝑗𝑌𝑘

𝑠

𝑘=1
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Canonical variate and correlation analysis 
Least-squares optimality of CVA 

 The task 

𝑋1, … , 𝑋𝑟, 𝑌1, … , 𝑌𝑠
𝜏  → 𝜉1, 𝜔1 , … , 𝜉𝑡 , 𝜔𝑡

𝜏
  

Linear projections by 𝑡 × 𝑟 -matrix 𝐆  and 𝑡 × 𝑠 -matrix H 

with  1 ≤ 𝑡 ≤ 𝑚𝑖𝑛 𝑟, 𝑠 : 

𝝃 = 𝐆𝐗, 𝝎 = 𝐇𝐘, 

Least-square error criterion, to find 𝝂, 𝐆, and 𝐇 so that 

𝐇𝐘 ≈ 𝝂 + 𝐆𝐗 
to minimize  

E 𝐇𝐘 − 𝝂 + 𝐆𝐗 𝐇𝐘 − 𝝂 + 𝐆𝐗 𝜏  

which measure how well we can reconstruct 𝐗  and 𝐘  from pairs of 𝜉𝑖 , 𝜔𝑖  

 The goal is 

        To choose the best 𝝂, 𝐆, and 𝐇 in the least-square sense. 
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Projection Pursuit 
Phép chiếu đuổi 

 The motivation 

The desire to discover “interesting” low-dimensional (typically,     
one- or two-dimensional) linear projections of high-dimensional data 

 The origin 

The desire to expose specific non-Gaussian features (variously 
referred to as “local concentration,” “clusters of distinct groups,” 
“clumpiness,” or “clottedness”) of the data. 

 The strategy 

1. Set up a projection index ℑ to judge the merit of a particular one or 
two-dimensional (or sometimes three-dimensional) projection of a 
given set of multivariate data. 

2. Use an optimization algorithm to find the global and local extrema of 
that projection index over all m-dimensional projections of the data. 
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Projection Pursuit 
Projection Indexes 

 Projection indexes should be chosen to possess certain computational 
and analytical properties, especially that of affine invariance (location 
and scale invariance).  

 A special case of PP occurs when the projection index is the variance. 
Maximizing the variance reduces PP to PCA, and the resulting 
projections are the leading principal components of 𝐗.  

 Maximizing the variance is equivalent to minimizing the corresponding 
Gaussian log-likelihood; in other words, the projection is most 
interesting (in a variance sense) when 𝐗 is least likely to be Gaussian. 
Typical PP: 

 Cumulant-based index 

 Polynomial-based indexes 

 Shannon negentropy 

 Optimizing the projection index 
18 



Introduction 

 The linear projection methods can be extremely useful in discovering 
low-dimensional structure when the data actually lie in a linear (or 
approximately linear) lower-dimensional subspace M (called a manifold) 
of input space ℜ𝑟 . 

 What can we do if we know or suspect that the data actually lie on a low 
dimensional nonlinear manifold, whose structure and dimensionality are 
both assumed unknown?  

 Dimensionality reduction  Problem of nonlinear manifold learning. 

 When a linear representation of the data is unsatisfactory, we turn to 
specialized methods designed to recover nonlinear structure. Even so, we 
may not always be successful. 

 Key ideas: Generalizing linear multivariate methods. Note that, these 
equivalences in the linear case do not always transfer to the nonlinear 
case. (tổng quát hóa các pp tuyến tính đa biến dù không luôn thành công). 
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Polynomial PCA 

 How should we generalize PCA to the nonlinear case? One possibility is to 
transform the set of input variables using a quadratic, cubic, or higher 
degree polynomial, and then apply linear PCA. 

 Focused on the smallest few eigenvalues for nonlinear dimensionality 
reduction. 

 Quadratic PCA: the r-vector X is transformed into an extended r-vector X, 
where r = 2r + r(r − 1)/2, 𝐗 = (𝑋1, 𝑋2)  𝐗′ = (𝑋1, 𝑋2, 𝑋1

2, 𝑋2
2, 𝑋1𝑋2) 

  Some problems inevitably arise when using quadratic PCA.  

 First, the variables in X will not be uniformly scaled, especially for  
large r, and so a standardization of all r variables may be desirable.  

 Second, the size of the extended vector X for quadratic PCA increases 
quickly with increasing r: when r = 10, r = 65, and when r = 20, r = 230. 
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Principal curves and surfaces 

 Suppose X is a continuous random r-vector having density pX, zero 
mean, and finite second moments. Suppose further that the data 
observed on X lie close to a smooth nonlinear manifold of low 
dimension. 

 A principal curve (Hastie, 1984; Hastie and Stuetzle, 1989) is a smooth 
one-dimensional parameterized curve f that passes through the 
“middle” of the data, regardless of whether the “middle” is a straight line 
or a nonlinear curve. 

 A principal surface is a generalization of principal curve to a smooth 
two-(or higher-) dimensional curve.  

 We use an analogue of least-squares optimality as the defining 
characteristic: we determine the principal curve or surface by 
minimizing the average of the squared distances between the data 
points and their projections onto that curve. 
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Introduction 

 A map including cities and towns  table  where each cell shows the 
degree of “closeness” (or proximity, sự gần gũi) of  a row city to a 
column city. Proximity could have different meanings: straight-line 
distance or as shortest traveling distance.  

 Consider entities as objects, products, a nations, a stimulus, etc. and we 
can talk about proximity of any two entities as measures of association 
(e.g., absolute value of a correlation coefficient), confusion frequency 
(i.e., to what extend one entity is confused with another in an 
identification exercise), or measure of how alike (or how different), etc. 

 Multidimensional scaling (MDS): [tái dựng bản đồ gốc nhiều chiều] 
given a table of proximities of entities, reconstruct the original map of 
entities as closely as possible.  

 MDS is a family of different algorithms, each designed to arrive at an 
optimal low-dimensional configuration for a particular type of 
proximity data.  
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Introduction 
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Problem: Re-create the map that yielded the table of airline distances.  

Two and three dimensional map of 18 world cities using 
the classical scaling algorithm on airline distances 
between those cities. The colors reflect the different 
continents: Asia (purple), North America (red), South 
America (orange), Europe (blue), Africa (brown), and 
Australasia (green). 

Airline distances (km) between 18 
cities.           
Source: Atlas of the World, Revised 
6th Edition, National Geographic 
Society, 1995, p. 131 



Examples of MDS applications 

 Marketing: Derive “product maps” of consumer choice and product 
preference (e.g., automobiles, beer) so that relationships between 
products can be discerned 

 Ecology: Provide “environmental impact maps” of pollution (e.g., oil 
spills, sewage pollution, drilling-mud dispersal) on local communities of 
animals, marine species, and insects. 

 Molecular Biology: Reconstruct the spatial structures of molecules 
(e.g., amino acids) using biomolecular conformation (3D structure). 
Interpret their interrelations, similarities, and differences. Construct a 
3D “protein map” as a global view of the protein structure universe. 

 Social Networks: Develop “telephone-call graphs,” where the vertices 
are telephone numbers and the edges correspond to calls between 
them. Recognize instances of credit card fraud and network intrusion 
detection. 
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Proximity matrices 

 The focus on pairwise comparisons of entities is fundamental to MDS. 

 The “closeness” of two entities is measured by a proximity measure, 
defined in a number of different ways.  

 A continuous measure of how physically close one entity is to another 
or a subjective judgment recorded on an ordinal scale, but where the 
scale is well-calibrated as to be considered continuous. 

 In perception study, proximity is not quantitative but a subjective 
rating of similarity (or dissimilarity) recorded on a pair of entities.  

 “Closeness” of one entity to another could be measured by a small or 
large value. Importance is a monotonic relationship between the 
“closeness” of two entities. 
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Proximity matrices 

 Collection of n entities. Let δij represent the dissimilarity of the ith entity 

to the jth entity.  Consider m dissimilarities, 𝑚 =
𝑛
2

=
1

2
𝑛 𝑛 − 1 , and 

(m × m) proximity matrix  

                                                             𝚫 =  (𝛿𝑖𝑗)                                                          (1) 

 The proximity matrix is usually displayed as a lower-triangular array of 
nonnegative entries, with the understanding that the diagonal entries are 
all zeroes and the matrix is symmetric: for all i, j = 1, . . . , n, 

𝛿𝑖𝑗 ≥  0, 𝛿𝑖𝑖 =  0, 𝛿𝑗𝑖 =  𝛿𝑖𝑗  

 In order for a dissimilarity measure to be regarded as a metric distance, 
we require that δij satisfy the triangle inequality, 

  𝛿𝑖𝑗 ≤  𝛿𝑖𝑘 +  𝛿𝑘𝑗     for all k 
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Comparing protein sequences 
Optimal sequence alignment 

 About 100,000 different proteins in the human body. 

 Proteins carry out important bodily functions: supporting cell structure, 
protecting against infection from bacteria and viruses, aiding 
movement, transporting materials (hemoglobin for oxygen), regulating 
control (enzymes, hormones, metabolism, insulin) of the body.  

28 

 “protein map”: how existing protein 
families relate to one another, 
structurally and functionally.  

 Might be able to predict the functions   
of newly discovered proteins from          
their spatial locations and proximities  
to other proteins, where we would 
expect neighboring proteins to have 
very similar biochemical properties.  



Comparing protein sequences 
Optimal sequence alignment 

 Key idea in computing the proximity of two proteins is amino acids can 
be altered by random mutations (đột biến) over a long period of evolution.  

 Mutations can take various forms: deletion or insertion of amino acids, … 
For an evolving organism to survive, structure/functionality of the most 
important segments of its protein would have to be preserved.  

 Compute a similarity value between two sequences that have different 
lengths and different amino acid distributions.  

 Trick: Align the two sequences so that as many letters in one sequence 
can be “matched” with the corresponding letters in the other sequence. 
Several methods for sequence alignment: 

 Global alignment aligns all the letters in entire sequences assuming 
that the two sequences are very similar from beginning to end;  

 Local alignment assumes that the two sequences are highly similar 
only over short segments of letters.  
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Comparing protein sequences 
Optimal sequence alignment 

 Alignment methods use dynamic programming algorithms as the primary 
tool. BLAST and FASTA are popular tools for huge databases. 

 An “optimal” alignment if maximizing an alignment score. For example,  an 
alignment score is the sum of a number of terms, such as identity (high 
positive), substitution (positive, negative or 0). 

 Substitution score: “cost” of replacing one amino acid (aa). Scores for all 
210 possible aa pairs are collected to form a (20 × 20) substitution matrix. 
One popular is BLOSUM62 (BLOcks Substitution Matrix), assuming no 
more than 62% of letters in sequences are identical (Henikoff, 1996).  

 A “gap” (indel), an empty space (“-”), penalizes an insertion or a deletion of 
an aa. Two types of gap penalties, starting a gap and extending the gap. 

 The alignment score s is the sum of the identity and substitution scores, 
minus the gap score.  
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Comparing protein sequences 
Example: Two hemoglobin chains 

 Given n proteins, let sij be the alignment score between the ith and jth 
protein.  We have  𝛿𝑖𝑗 =  𝑠𝑚𝑎𝑥 −  𝑠𝑖𝑗 ,  where smax is the largest alignment 
score among all pairs. The proximity  matrix is then given by  𝚫 =  (𝛿𝑖𝑗 ).  

 Compare the hemoglobin alpha chain protein HBA HUMAN having length 
141 with the related hemoglobin beta chain protein HBB HUMAN having 
length 146. 

 We would obtain different optimal alignments and alignment scores. 
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86 positive substitution 

scores (the 25 “+”s 

and the 61 identities). 

The alignment score is 

s = 259. 



String matching 
Edit distance 

 In pattern matching, we study the problem of finding a given pattern 
within a body of text. If a pattern is a single string, the problem is called 
string matching, used extensively in text-processing applications. 

 A popular numerical measure of the similarity between two strings is 
edit distance (also called Levenshtein distance). 

 The usual definition of edit distance is the fewest number of editing 
operations (insertions, deletions, substitutions) which would be needed 
to transform one string into the other.  

 An insertion inserts a letter into the sequence, a deletion deletes a letter 
from the sequence, and a substitution replaces one letter in the 
sequence by another letter. Identities (or matches) are not counted in 
the distance measure. Each editing operation can be assigned a cost. 

 Used to construct a phylogenetic tree — a diagram laying out a possible 
evolutionary history — of a single protein. 

32 



Classical scaling and distance geometry 

 Suppose we are given n points X1, . . . ,Xn ∈ ℜ𝑟 . From these points, we 
compute an (n × n) proximity matrix Δ = (δij) of dissimilarities, where 

                                  𝛿𝑖𝑗 = 𝑋𝑖 − 𝑋𝑗  =  (𝑋𝑖𝑘
𝑟
𝑘=1 − 𝑋𝑗𝑘)

2 1/2                          (2) 

 Many kinds of  distance can be considered: the Minkowski or                          
Lp distance is given by 

𝛿𝑖𝑗 =  𝑋𝑖𝑘 − 𝑋𝑗𝑘
𝑝𝑟

𝑘=1
1/p 

 p = 1: city-block or Manhattan distance,  

 p = 2: Euclidean distance. 
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Classical scaling and distance geometry 
From dissimilarities to principal coordinates 

 From (2), 𝜎𝑖𝑗
2 = 𝑋𝑖

2 + 𝑋𝑗
2

 −2𝑋𝑖
𝜏𝑋𝑗 . Let 𝑏𝑖𝑗 = 𝑋𝑖

𝜏𝑋𝑗 = −
1

2
(𝛿𝑖𝑗

2 − 𝛿𝑖0
2 −

𝛿𝑗0
2 )  where 𝛿𝑖0

2 = 𝑋𝑖
2.  We get  𝑏𝑖𝑗  = 𝑎𝑖𝑗− 𝑎𝑖.− 𝑎.𝑗 + 𝑎𝑖𝑖  

    where 𝑎𝑖𝑗 = −
1

2
𝛿𝑖𝑗
2 , 𝑎𝑖. = 𝑛−1  𝑎𝑖𝑗

2
𝑗 , 𝑎.𝑗 = 𝑛−1  𝑎𝑖𝑗

2
𝑖 , 𝑎.. = 𝑛−2   𝑎𝑖𝑗

2
𝑗𝑖 . 

 If setting 𝐀 = 𝑎𝑖𝑗  the matrix of squared dissimilarities and 𝐁 = 𝑏𝑖𝑗 , 

we have  𝐁 = 𝐇𝐀𝐇 where 𝐇 = 𝐈n − n−1𝐉n , 𝐉𝑛 is square matrix of ones. 

 Wish to find a t dimensional representation, Y1, . . . ,Yn ϵ ℜt (referred to as 
principal coordinates), of those r-dimensional points (with t < r), such 
that the interpoint distances in t-space “match” those in r-space. 

 When dissimilarities are defined as Euclidean interpoint distances, this 
type of “classical” MDS is equivalent to PCA in that the principal 
coordinates are identical to the scores of the first t principal components 
of the {Xi}. 
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Classical scaling and distance geometry 
From dissimilarities to principal coordinates 

 Typically, in classical scaling (Torgerson, 1952, 1958) we are not given 
*𝑿𝑖+ ϵ ℜ

𝑡; instead, we are given only the dissimilarities *𝛿𝑖𝑗+ through the 
(n×n) proximity matrix Δ. Using Δ, we form A, and then B.  

 Motivation for classical scaling comes from a least-squares argument 
similar to the one employed for PCA. 

 The classical scaling algorithm is based upon an eigendecomposition of 
the matrix B. This eigendecomposition produces Y1, . . . ,Yn ϵ ℜ𝑡 , t < r, a 
configuration whose Euclidean interpoint distances, 

𝑑𝑖𝑗
2 = 𝑌𝑖 − 𝑌𝑗

2
= 𝑌𝑖 − 𝑌𝑗

𝜏
(𝑌𝑖 − 𝑌𝑗) 

 The solution of the classical scaling problem is not unique. A common 
orthogonal transformation of the points in the configuration found by 
classical scaling yields a different solution of the classical scaling 
problem. 
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Classical 
scaling  
The classical 
scaling 
algorithm 



Classical scaling and distance geometry 
Airlines distances 
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Estimated and observed airline distances. The lefnels show the 2D 
solution and the right panels show the 3D solution. The top panels show 
the estimated distances plotted against the observed distances, and the 
bottom panels show the residuals from the the fit (residual = estimated 

distance – observed distance) plotted against sequence number. 

Eigenvalues of 
B and the 
eigenvectors 
corresponding 
to the first three 
largest 
eigenvalues    
(in red) for the 
airline distances 
example. 

First three 
principal 
coordinates 
of the 18 
cities in the 
airline 
distances 
example. 



Classical scaling and distance geometry 
Mapping the protein universe 

 498 proteins  classical scaling 
algorithm  largest 25 eigenvalues of B 
 first three eigenvalues are dominant  
 3D configuration is probably most 
appropriate. 

 2D map and 3D map 
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136 a-helix 
proteins  

92 b-sheet 
proteins  

94 a/b-sheet 
proteins  

92 a+b-sheet 
proteins  

The first 25 ordered eigenvalues of B obtained from 
the classical scaling algorithm on 498 proteins. 

Two-dimensional map of four protein classes using 
the classical scaling algorithm on 498 proteins.  

A three-dimensional map of four protein classes  
using the classical scaling algorithm on 498 proteins. 



Distance scaling 

 Given n items (or entities) and their dissimilarity matrix s, 𝚫 =  (𝛿𝑖𝑗 ) 

 Classical scaling problem is to find a configuration of points in a lower-
dimensional space such that the interpoint distances {dij} satisfy 𝑑𝑖𝑗 ≈ 𝛿𝑖𝑗.  

 In distance scaling, this relationship is relaxed; we wish to find a suitable 
configuration for which 𝑑𝑖𝑗 ≈  𝑓(𝛿𝑖𝑗) where 𝑓 is some monotonic function. 

 The function 𝑓 transforms the dissimilarities into distances. The use of 
“metric” or “nonmetric” distance scaling depends upon the nature of the 
dissimilarities.  

 If the dissimilarities are quantitative we use metric distance scaling, 
whereas if the dissimilarities are qualitative we use nonmetric distance 
scaling. In the MDS literature, metric distance scaling is traditionally called 
metric MDS, nonmetric distance scaling is called nonmetric MDS. 

39 



Summary 

 Introduction: Given a table of proximities, reconstruct the original map 
as closely as possible and the space dimension. 

 Proximity Matrices: 𝚫 =  (𝛿𝑖𝑗) measures “closeness” of pairwise 
objects, metric (triangle inequality) 

 Comparing Protein Sequences 

 String Matching: Edit distance 

 Classical Scaling: require 𝑑𝑖𝑗 ≈ 𝛿𝑖𝑗 

 Distance Scaling: 𝑑𝑖𝑗 ≈  𝑓(𝛿𝑖𝑗) where 𝑓 is monotonic  

 Metric Distance Scaling: metric distance scaling 

 Nonmetric Distance Scaling: nonmetric distance scaling 
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Nonlinear manifold learning 
Manifold? 

 An ant at a picnic: The ant crawls all over the picnic items, as diminutive 
size, the ant sees everything on a very small scale as flat and featureless. 

 A manifold can be thought of in similar terms, as a topological space that 
locally looks flat and featureless and behaves like Euclidean space.  

 A manifold also satisfies certain topological conditions. A submanifold is 
just a manifold lying inside another manifold of higher dimension. 
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Nonlinear manifold learning 

 Many exciting new algorithmic techniques: Isomap, Local Linear 
Embedding, Laplacian Eigenmap, and Hessian Eigenmap. They aim to 
recover the full low-dimensional representation of an unknown nonlinear 
manifold M. 

 Having different philosophies for recovering nonlinear manifolds, each 
methods consists of a three-step approach. 

1) Incorporating neighborhood information from each data point to 
construct a weighted graph having the data points as vertices. 

2) Taking the weighted neighborhood graph and transforming it into 
suitable input for the embedding step. 

3) Computing an (n × n)-eigenequation (embedding step). 

 Manifold learning involves concepts from differential geometry: What 
means a  manifold and what means to be embedded in a higher-
dimensional space? 
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Nonlinear manifold learning 

 If a topological manifold M is continuously differentiable to any order 
(i.e., ℳ ∈  𝐶∞), we call it a smooth (or differentiable) manifold.  

 Riemannian manifold (ℳ, 𝑑ℳ) is smooth manifold ℳ with a metric 𝑑ℳ . 
We take 𝑑ℳ  to be a manifold metric defined by 

𝑑ℳ 𝐲, 𝐲′ = 𝑖𝑛𝑓
𝑐
* ℒ(𝑐)|c is a curve in ℳ which joins 𝐲 and 𝐲′+, 

where y, y’ ∈ ℳ and ℒ(c) is the arc-length of the curve c. Thus, 𝑑ℳ  finds 
the shortest curve (or geodesic, đo đạc) between any two points on ℳ, 
and the arc-length of that curve is the geodesic distance between the 
points. 

 Data assumption: Finitely many data points, *𝒚𝑖+, are randomly sampled 
from a smooth t-dimensional manifold ℳ with metric given by geodesic 
distance. 
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Nonlinear manifold learning 
ISOMAP 

 The isometric feature mapping (or ISOMAP) algorithm (Tenenbaum et al., 
2000) assumes that the smooth manifold M is a convex region of ℜ𝑡    
(𝑡 ≪  𝑟) and that the embedding ψ : ℳ ⟶𝒳 is an isometry. 

 This assumption has two key ingredients: 

 Isometry: The geodesic distance is invariant under the map ψ. For any 
pair of points on the manifold, 𝐲, 𝐲′ ∈ ℳ, the geodesic distance 
between those points equals the Euclidean distance between their 
corresponding coordinates, 𝐱, 𝐱′ ∈  𝒳; i.e., 

𝑑ℳ(𝑦, 𝑦′) = 𝑥 − 𝑥′ 𝒳 

           where y = φ(x) and y’ = φ(x’). 

 Convexity: The manifold ℳ is a convex subset of ℜ𝑡 . 

 ISOMAP regards ℳ as a convex region that may have been distorted in 
any of a number of ways (e.g., by folding or twisting), e.g., Swiss roll. 
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Nonlinear manifold learning 
Three steps of ISOMAP 

1. Neighborhood graph.  

 Fix either an integer K or an  𝜖 > 0. Calculate the distances, 

𝑑𝑖𝑗
ℳ = 𝑑𝒳 𝑥𝑖 , 𝑥𝑗 = 𝑥𝑖 − 𝑥𝑗 𝒳 

 between all pairs of data points 𝒙𝑖 , 𝒙𝑗 ∈ 𝒳, 𝑖, 𝑗 =  1, 2, . . . , 𝑛. 

Determine which data points are “neighbors” on the manifold M by 
connecting each point either to its K nearest neighbors or to all points 
lying within a ball of radius 𝜖 of that point. Choice of K or 𝜖 controls 
neighborhood size and also the success of ISOMAP. 

 We obtain weighted neighborhood graph 𝒢 =  𝒢(𝒱, ℰ), where the 
set of vertices 𝒱 = 𝑥1, … , 𝑥𝑛  are the input data points, and the set 
of edges ℰ =  *𝑒𝑖𝑗+ indicate neighborhood relationships between the 

points. 
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Nonlinear manifold learning 
Three steps of ISOMAP 

2. Compute graph distances  

 Estimate the unknown true geodesic distances, 𝑑𝑖𝑗
ℳ , between pairs 

of points in ℳ by graph distances, 𝑑𝑖𝑗
𝒢

, with respect to the graph 𝒢. 

 The graph distances are the shortest path distances between all pairs 
of points in the graph 𝒢. Points that are not neighbors of each other 
are connected by a sequence of neighbor-to-neighbor links. 

 An efficient algorithm for computing the shortest path between 
every pair of vertices in a graph is Floyd’s algorithm (Floyd, 1962), 
which works best with dense graphs (graphs with many edges). 
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Nonlinear manifold learning 
Three steps of ISOMAP 

3. Embedding via multidimensional scaling 

 Let 𝑫𝒢 = 𝑑𝑖𝑗
𝒢
 be the symmetric 𝑛 ×  𝑛 -matrix of graph distances. 

Apply “classical” MDS to 𝑫𝒢  to give the reconstructed data points in a 
t-dimensional feature space 𝒴, so that the geodesic distances on M 
between data points is preserved as much as possible: 

 Form the “doubly centered,” symmetric, (n × n)-matrix of squared 
graph distances. 

 The embedding vectors *𝑦 𝑖} are chosen to minimize 𝑨𝑛
𝒢
− 𝑨𝑛

𝒴
 

where 𝐀𝑛
𝒢
= −

1

2
𝐇𝐒𝒢𝐇 and 𝐀𝑛

𝒴
 = −

1

2
𝐇 𝑑𝑖𝑗

𝒴 2
𝐇  and 𝑑𝑖𝑗

𝒴
=

𝑦𝑖 − 𝑦𝑗 . 

 The graph 𝒢 is embedded into 𝒴 by the (t × n)-matrix 

𝐘 = 𝐲 1, … , 𝐲 𝑛 = ( 𝜆1𝑣1, … , 𝜆𝑡𝑣𝑡)
𝜏 
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Nonlinear manifold learning 
Examples 
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Two-dimensional ISOMAP 

embedding, with neighborhood 

graph, of the  n = 1,000 Swiss 

roll data points. The number of 

neighborhood points is K = 7. 
Two-dimensional LANDMARK 

ISOMAP embedding, with 

neighborhood graph, of the     

n = 1,000 Swiss roll data 

points. The number of 

neighborhood points is K = 7 

and the number of landmark 

points is m = 50. 

Two-dimensional 

LANDMARK ISOMAP 

embedding, with 

neighborhood graph, of the 

complete set of n = 20,000 

Swiss-Roll data points. The 

number of neighborhood 

points is K = 7, and the 

number of landmark points 

is m = 50. 


