
DISCRETE DATA ASSIMILATION FOR THE

TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS USING

LOCAL OBSERVABLES

CUNG THE ANH\ AND VU MANH TOI

Abstract. We study the data assimilation for the two-dimensional Navier-
Stokes equations when the local measurements are obtained discretely in time

and may be contaminated by systematic errors. Under suitable conditions
on the relaxation (nudging) parameter, the spatial mesh resolution, and the

time step between successive measurements, with the spatial resolution N is

sufficiently large (in the case using a spectral inequality), the complement of
the full domain Ω0 and the sub-domain Ω is small enough (in the case using

no spectral operator) we obtain an asymptotic in time estimate of the differ-

ence between the approximating solution and the unknown reference solution
corresponding to the measurements, in an appropriate norm, which shows ex-

ponential convergence up to a term which depends on the size of the errors.

1. Introduction

Suppose that the evolution of u is governed by the two-dimensional Navier-
Stokes equations, subject to periodic boundary conditions on Ω0 = [0, L]2 or no-slip
boundary conditions (u = 0 on ∂Ω0) if Ω0 is a C2 bounded domain in R2

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f,

∇ · u = 0,
(1.1)

on the interval [t0,∞), where the initial data u(t0) = u0 is unknown. Here
u = u(x, t) represents the velocity of the fluid, called the filtered velocity, p is
the pressure, and f is a body force which is assumed, for simplicity, to be time-
independent.

Data assimilation is a methodology to estimate weather or ocean variables com-
bining (synchronizing) information from observational data with a numerical dy-
namical (forecast) model. In the pioneering work [2] Titi et al. introduced a
new continuous data assimilation algorithm (this algorithm is often called as the
AOT algorithm) for the two-dimensional Navier-Stokes equations (1.1) based on the
ideas that have been developed for designing finite-dimensional feedback controls
for disipative dynamical systems. With generalized interpolant operators Ih, the
AOT algorithm is to construct v(t) from the observational measurements Ih(u(t))
for t ∈ [t0, T ], t0 ≥ 0, is given by

∂v

∂t
− ν∆v + (v · ∇)v +∇q = f − µIh(v) + µIh(u),

∇ · v = 0,

v(t0) = v0,

(1.2)
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where µ is a positive relaxation parameter, which relaxes the coarse spatial scales of
v toward those of the observed data, and v0 is taken to be arbitrary. Here ν and f are
the same kinematic viscosity parameter and forcing term from (1.1), q is a modified
pressure. The result is that when µ is large enough depending on parameters of
systems and forcing function f , and h is small enough depending on µ then the
solutions v(t) of (1.2) goes to u(t) in suitable phase spaces as t→∞ at exponential
rate. After this poineering paper, continuous data assimilation problems for many
important equations in fluid mechanics have been extensively studied, see e.g.,
[1, 2, 4, 9, 16, 17, 18, 19, 22, 23, 24].

On the other hand, in [21] the authors introduced the following discrete data
assimilation algorithm for finding v of the following system

∂v

∂t
− ν∆v + (v · ∇)v +∇q = f − µ

∞∑
n=0

(Ih(v(tn))− ũ(tn))χn,

∇ · v = 0,

v(t0) = v0,

where the increasing sequence of instants of time {tn}n∈N in [t0,∞) at which mea-
surements are taken which is assumed that

tn < tn+1, ∀n ∈ N, and tn →∞ as n→∞,
|tn+1 − tn| ≤ κ, ∀n ∈ N,

and the observational measurements ũ(tn) at the time tn given by

ũ(tn) = Ih(u(tn)) + ηn.

Here ηn is the error associated to the measurements at time tn, χn is the characteris-
tic function of the interval [tn, tn+1), and κ is called the step size between successive
measurements. Under suitable conditions on µ, κ and h, then v(t) → u(t) in H or
in V as t → ∞ at exponential rate. Then the similar discrete data assimilation
schemes for some other models were studied later in [3, 5]. The discrete-in-time
downscaling data assimilation algorithm was also studied in a recent work [13].

Recently, Biswas et al. [8] introduced the continuous data assimilation using
local observables for the two-dimensional Navier-Stokes equations. To overcome
the difficulty due to the local observations, the authors used spectral inequality
and Gevrey regularity of solutions in the periodic case, and the assumption of the
complement of the full domain Ω0 and the sub-domain Ω is small enough in the no-
slip boundary conditions case. In a very recent work [6], combining ideas in [8] and
in [16, 17], we study continuous data assimilation for the three-dimensional Leray-
α model using local observables on any two components of the three-dimensional
velocity field, and without any information of the rest component.

To the best of our knowledge, there is no result on the dicrete data assimilation
using local observables. In the present paper, using some ideas in [8] and [21], we
set up the discrete data assimilation problem for the two-dimensional Navier-Stokes
equations (1.1) using local observables. Our aim here is to prove similar results as
in the continuous data assimilation with local observables in [8].

The paper is organized as follows. In Section 2, for convenience of the reader, we
recall some results on function spaces and results on the two-dimensional Navier-
Stokes equations which will be used in the proof. Section 3 is devoted to the discrete
data assimilation using local observables in the no-slip boundary conditions case
when the complement of the full domain Ω0 and the sub-domain Ω is small enough.
In both two cases of periodic and no-slip boundary conditions, the finite-dimensional
discrete data assimilation using local observables is studied in the last section by
exploiting spectral inequalities.
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2. Preliminaries

We begin by defining a suitable domain Ω0 and space V of smooth functions
which satisfy each type of boundary conditions.

• In the periodic boundary conditions case: Ω0 = [0, L]2, we denote by V the
set of all vector valued trigonometric polynomials defined in Ω0, which are
divergence-free and have average zero.
• In the no-slip boundary conditions case: Let Ω0 be an open, bounded

and connected domain with C2 boundary. We denote by V the set of all
C∞ vector fields from Ω0 to R2 that are divergence free and compactly
supported.

Then we denote by H and V the closures of V in the L2(Ω0)2 and H1(Ω0)2, re-
spectively. Then H and V are Hilbert spaces with inner products given by

(u, v) =

2∑
i=1

∫
Ω0

uividx and ((u, v)) =

2∑
i,j=1

∫
Ω0

∂jui∂jvidx,

respectively, and the associated norms

|u| = (u, u)1/2 and ‖u‖ = ((u, u))1/2.

With the Leray projector P, we denote the Stokes operator A = −P∆ with
domain D(A) = H2(Ω0)2 ∩ V . In the case of periodic boundary conditions, A =
−∆|D(A). The Stokes operator A is a positive self-adjoint operator with compact
inverse. Hence there exists a complete orthonormal set of eigenfunctions {φj}∞j=1 ⊂
H, such that Aφj = λjφj and

0 < λ1 ≤ λ2 ≤ · · · , λj →∞ as j →∞.
We have the following versions of the Poincaré inequalities:

|v|2 ≤ λ−1
1 ‖v‖2, ∀v ∈ V, (2.1)

‖v‖2V ′ ≤ λ−1
1 |v|2, ∀v ∈ H. (2.2)

For every u, v ∈ V, we write B(u, v) = P[(u · ∇)v]. The bilinear operator B can
be extended continuously from V × V with values in V ′.

Let us now recall some algebraic properties of the nonlinear term B(u, v) that
play an important role in our analysis. For u, v, w ∈ V we have that

〈B(u, v), w〉V ′,V = −〈B(u,w), v〉V ′,V ,

and consequently
〈B(u, v), v〉V ′,V = 0. (2.3)

Furthermore,

| 〈B(u, v), w〉V ′,V | ≤ c0|u|
1/2‖u‖1/2|v|1/2‖v‖1/2‖w‖, ∀u, v, w ∈ V. (2.4)

From (2.4), we have

‖B(u, v)‖V ′ ≤ c0|u|1/2‖u‖1/2|v|1/2‖v‖1/2, ∀u, v ∈ V. (2.5)

With the above notations, we can rewrite the two-dimensional Navier-Stokes
equations in the following functional form

du

dt
+ νAu+B(u, u) = Pf, (2.6)

with initial condition u(t0) = u0 ∈ H.
We first have the following result about the global existence and long-time behav-

ior of solutions to two-dimensional Navier-Stokes equations (1.1) (see for instance
[14, 20]). The results concerning some uniform bounds of the attractor with respect
to the H and V norms. In the statement below and in the remainder of this work,
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we denote by c a generic absolute constant, whose value may change from line to
line and G = ν−2λ−1

1 |f | is the Grashoff number.

Theorem 2.1. Let f ∈ H and u0 ∈ H. Then system (2.6) has a unique global
solution u that satisfies

u ∈ C([t0,∞);H) ∩ L2
loc(t0,∞;V ),

du

dt
∈ L2

loc(t0,∞;V ′). (2.7)

Furthermore, the associated continuous semigroup S(t) : H → H has a global
attractor A in H, which is bounded in V . Additionally, for any u ∈ A, we have

|u| ≤M0 := νG, ‖u‖ ≤M1. (2.8)

where

M1 :=

{
νλ

1/2
1 G in the case of periodic boundary conditions,

cνλ
1/2
1 Ge

G
4 in the case of no-slip boundary conditions.

We denote by λ1(Ω0\Ω) the first eigenvalue of the Stokes operator on the domain
Ω0 \ Ω with no-slip boundary conditions, i.e.,

λ1(Ω0 \ Ω) := inf

{∫
Ω0\Ω

|∇ϕ|2dx | ∀ϕ ∈ H1
0 (Ω0 \ Ω) with

∫
Ω0\Ω

|ϕ|2dx = 1

}
.

Then we have the following lemma.

Lemma 2.2. [7, Lemma 1] Let Ω and Ω0 be bounded domains with smooth boundary
so that Ω ⊂ Ω0. For any ε > 0, there exists `0 = `0(ε) > 0 so that for ` > `0, the
following inequality holds∫

Ω0

(
|∇ϕ|2 + `1Ω|ϕ|2

)
dx ≥ (λ1(Ω0 \ Ω)− ε)

∫
Ω0

|ϕ|2dx, (2.9)

for ϕ ∈ V .

We note that here

λ1(Ω0 \ Ω) ≥ C

(
sup

x∈Ω0\Ω
dist(x, ∂Ω0)

)−2

. (2.10)

We have the following spectral inequality (one can see [8] for the periodic bound-
ary conditions case concerning with spectral inequality to thick sets in [15], or in [11,
Theorem 3.1] for the no-slip boundary conditions case): If ϕ ∈ span(φ1, . . . , φN ),
then

‖ϕ‖2L2(Ω0)2 ≤ CΩe
CΩ

√
N‖ϕ‖2L2(Ω)2 . (2.11)

where CΩ presents a positive constant which is independent of N .

3. Discrete data assimilation using local observables in the case of
no-slip boundary conditions

In this section, the observational measurements at each time tn are represented
by

ũ(tn) = Pm1Ω(u(tn)) + ηn, (3.1)

where u is the unknown reference solution of of the two-dimensional Navier-Stokes
equations (1.1), 1Ω is the characteristic function of the sub-domain Ω of Ω0, Pm :
H → span{φ1, . . . , φm} is the low Fourier modes projector, which is defined as the
orthogonal projector of H onto the subspace Hm = span{φ1, . . . , φm} generated by
m first eigenfunctions of the Stokes operator A, and ηn is the error associated to
the measurements at time tn. We assume that {ηn}n∈N is bounded in L2(Ω0)2.
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We now follow the approach in [21] to introduce the following discrete data
assimilation algorithm for finding an approximate solution v of the unknown refer-
ence solution u: Given an arbitrary initial data v0 ∈ H, we look for a function v
satisfying the same boundary conditions for u, and the following system

∂v

∂t
− ν∆v + (v · ∇)v +∇q = f − µ

∞∑
n=0

(Pm1Ω(v(tn))− ũ(tn))χn,

∇ · v = 0,

v(t0) = v0,

(3.2)

where ν and f are the same kinematic viscosity parameter and forcing term from
(1.1), q is a modified pressure, ũ(tn) represents the observational measurements at
time tn given in (3.1), and µ > 0 is a relaxation (nudging) parameter. The purpose
of µ is to force the coarse spatial scales of v toward those of the reference solution
v. As mentioned in [21], one of the advantages of this algorithm is that the initial
data v0 of the approximate solution can be chosen to be arbitrary.

Using the definition of ũ(tn) given in (3.1) and the functional setting from Section
2, we can rewrite system (3.2) in the following equivalent form

dv

dt
+ νAv +B(v, v) = Pf − µ

∞∑
n=0

(Pm1Ω(v(tn)− u(tn)))χn + µ
∞∑
n=0
Pηnχn,

v(t0) = v0.

(3.3)
We will show that for any initial data v0 ∈ H, the data assimilation equation (3.3)
has a unique solution v defined on the whole interval [t0,∞), and under suitable
conditions of µ, κ,E0, m and λ1(Ω0 \ Ω), this approximate solution will converge
to the reference solution u of the two-dimensional Navier-Stokes equations as time
goes to ∞.

The existence and uniqueness of a global weak solution for the initial value
problem associated to data assimilation equation (3.3) is given in the following
theorem.

Theorem 3.1. Let v0 ∈ H, f ∈ H and let u be a trajectory in the global attractor
A of the two-dimensional Navier-Stokes equations. Then, there exists a unique
solution v of equation (3.3) on [t0,∞) satisfying v(t0) = v0 and

v ∈ C([t0,∞);H) ∩ L2
loc(t0,∞;V ),

dv

dt
∈ L2

loc(t0,∞;V ′).

Proof. The proof is very similar to that of Theorem 3.1 in [21], so we can omit it
here.

�

Let us set

BH (M0) := {u ∈ H : |u| ≤M0} .

The next theorem is the main result of this section.

Theorem 3.2. Let Ω be a sub-domain of a C2 bounded domain Ω0. Let u be a
trajectory in the global attractor A of the two-dimensional Navier-Stokes equations
and let M0 be positive constants related to estimates of the solution u given in
(2.8). Consider v0 ∈ BH(M0), and let v be the unique solution of (3.3) on the
interval [t0,∞) satisfying v(t0) = v0. Assume that {ηn}n∈N is a bounded sequence
in L2(Ω0)2, namely, there exists a constant E0 ≥ 0 such that

‖ηn‖L2(Ω0)2 ≤ E0, ∀n ∈ N. (3.4)
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If λ1(Ω0 \ Ω) and µ are large enough such that

λ1(Ω0 \ Ω) ≥ 4µ

ν
with µ ≥ max

{
12c20M

2
1

ν
,

(
ν2`2 + 24c20M

2
1 `
)1/2

+ ν`

8

}
, (3.5)

κ is small enough such that

κ ≤ c

µ
min


1,

ν1/2(
ν + c0

(
M0 + ν1/2

(min{ ν2 ,1})1/2E0

)2
)1/2

,

(
ν2λ1µ

ν2µ2 + λ1(c0M0M1)2

)1/2

,

1

ν2 + c0

(
M0 + ν1/2

(min{ ν2 ,1})1/2E0

)2

+
(c0M0M1)2

ν2λ1
+
µ2

λ2
1

+
µ

νλ1

 , (3.6)

and m is large enough such that

λm+1 ≥
6µ

ν
, (3.7)

then
lim sup
t→∞

|v(t)− u(t)| ≤ cE0.

Moreover, if E0 = 0, then v(t)→ u(t) in H, exponentially, as t→∞.
Here, c0 is the best constant in estimate (2.4) and c is a suitable positive constant

independent of parameters of system.

Remark 3.1. Comparing with the corresponding conditions in the discrete data
assimilation using global observables [21], one can see that condition (3.7) on m
is exactly the same, condition (3.5) on µ is slightly larger, condition on κ is also
slightly changed. This comes from the fact that the inequality (2.9) is used to
overcome the essential difficulty caused by local observables.

By inequality (2.10), condition λ1(Ω0 \Ω) ≥ 4µ
ν will hold if the sub-domain Ω is

large enough.

Proof of Theorem 3.2. Denote w = u− v. Subtracting (3.3) from (2.6) to obtain

dw

dt
+νAw+B(u,w)+B(w, u)+B(w,w) = −µ

∞∑
n=0

Pm1Ω(w(tn))χn+µ

∞∑
n=0

Pηnχn.

(3.8)
Here we have used

B(v, v)−B(u, u) = B(u,w) +B(w, u) +B(w,w).

Multiplying (3.8) by w, then integrating over Ω0 and using property (2.3) we obtain

1

2

d

dt
|w|2 + ν‖w‖2 + 〈B(w, u), w〉V ′,V

=− µ
∞∑
n=0

(Pm1Ω(w(tn)), w)χn + µ

∞∑
n=0

(ηn, w)χn

=− µ|Pm1Ωw|2 − µ
∞∑
n=0

(Pm1Ω(w(tn)− w), w)χn + µ

∞∑
n=0

(ηn, w)χn.

(3.9)

Since u is a trajectory in the global attractor A, we can use the bound from (2.8).
Using (2.4), and the Cauchy inequality, we obtain

| 〈B(w, u), w〉V ′,V | ≤ c0|w|‖w‖‖u‖
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≤ 3c20M
2
1

2ν
|w|2 +

ν

6
‖w‖2. (3.10)

Using hypothesis (3.7) we get

−µ|Pm1Ωw|2 =− µ‖w‖2L2(Ω)2 + µ‖Qmw‖2L2(Ω)2

≤− µ‖w‖2L2(Ω)2 + µ|Qmw|2

≤− µ‖w‖2L2(Ω)2 +
µ

λm+1
‖w‖2

≤− µ‖w‖2L2(Ω)2 +
ν

6
‖w‖2. (3.11)

Also, using the Cauchy inequality and the bound from hypothesis (3.4), we have

µ|(ηn, w)| ≤ µ‖ηn‖L2(Ω0)2 |w|
≤ µE0|w|

≤ µ

2
E2

0 +
µ

2
|w|2. (3.12)

Moreover,

µ|(Pm1Ω(w(tn)− w(t)), w(t))| = µ|(w(tn)− w(t), Pm1Ωw(t))|

= µ

∣∣∣∣(∫ t

tn

dw

ds
(s)ds, Pm1Ωw(t)

)∣∣∣∣
≤ µ

∥∥∥∥∫ t

tn

dw

ds
(s)ds

∥∥∥∥
V ′

‖Pm1Ωw(t)‖

≤ µ
∫ t

tn

∥∥∥∥dwds (s)

∥∥∥∥
V ′
ds ‖w(t)‖

≤ 3µ2

2ν

(∫ t

tn

∥∥∥∥dwds (s)

∥∥∥∥
V ′
ds

)2

+
ν

6
‖w(t)‖2. (3.13)

From (3.8), we obtain∥∥∥∥dwds (s)

∥∥∥∥
V ′
≤ ν‖w(s)‖+ ‖B(u,w)‖V ′ + ‖B(w, u)‖V ′ + ‖B(w,w)‖V ′

+ µ‖Pm(w(tn)− w(s))‖V ′ + µ‖Pm(w(s))‖V ′ + µ‖ηn‖V ′ .

Then, by same as in the proof of (4.16) in [21], we deduce that(∫ t

tn

∥∥∥∥dwds (s)

∥∥∥∥
V ′
ds

)2

≤ cκ
∫ t

tn

ϕ(s)ds+
cµ2κ2

λ1
E2

0 , (3.14)

where

ϕ(s) = ν2‖w(s)‖2 +2c0M0M1|w(s)|‖w(s)‖+ c0|w(s)|2‖w(s)‖2 +
µ2

λ1
|w(s)|2. (3.15)

Substituting estimates (3.10), (3.11), (3.12), (3.13) and (3.14) into (3.9) we have

d

dt
|w|2 + ν‖w‖2 ≤− 2µ‖w‖2L2(Ω)2 +

3c20M
2
1

ν
|w|2 + µ|w|2

+
cµ2κ

ν

∞∑
n=0

χn

∫ t

tn

ϕ(s)ds+ µ

(
1 +

cµ3κ2

νλ1

)
E2

0 . (3.16)

We denote R = 2M0 + ν1/2

(min{ ν2 ,1})1/2E0 then since w ∈ C([t0,∞);H), and

|w(t0)| ≤ |v(t0)|+ |u(t0)| ≤ 2M0 ≤ R,
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there exists τ ∈ (t0,∞) such that

|w(t)| ≤ 2R, ∀t ∈ [t0, τ ].

Define

t̃ = sup

{
τ ∈ [t0,∞) : sup

t∈[t0,τ ]

|w(t)| ≤ 2R

}
. (3.17)

Suppose that t̃ < t1. Then, integrating (3.16) from t0 to t ≤ t̃, we obtain that

|w(t)|2 − |w(t0)|2 + ν

∫ t

t0

‖w(s)‖2ds

≤− 2µ

∫ t

t0

‖w(s)‖2L2(Ω)2ds+

(
3c20M

2
1

ν
+ µ

)∫ t

t0

|w(s)|2ds

+
cµ2κ2

ν

∫ t

t0

ϕ(s)ds+ µκ

(
1 +

cµ3κ2

νλ1

)
E2

0 . (3.18)

Here we have used the fact that
∞∑
n=0

χn

∫ t

tn

ϕ(s)ds ≤
∫ t

t0

ϕ(s)ds, ∀t ∈ [t0, t̃].

Since |w(t)| ≤ 2R for all t ∈ [t0, t̃], and using the Cauchy inequality we have

ϕ(s) ≤
(
2ν2 + 4c0R

2
)
‖w(s)‖2 +

(
(c0M0M1)2

ν2
+
µ2

λ1

)
|w(s)|2. (3.19)

Hence, (3.18) becomes

|w(t)|2 − |w(t0)|2 + ν

(
1− cµ2κ2

(
1 +

c0R
2

ν

))∫ t

t0

‖w(s)‖2ds

≤− 2µ

∫ t

t0

‖w(s)‖2L2(Ω)2ds+ µκ

(
1 +

cµ3κ2

νλ1

)
E2

0

+

(
3c20M

2
1

ν
+ µ+

(
c20(M0M1)2

ν2
+
µ2

λ1

)
cµ2κ2

ν

)∫ t

t0

|w(s)|2ds. (3.20)

Using condition (3.3) and applying (2.9) then we deduce from (3.20) that

|w(t)|2 − |w(t0)|2

+

{
ν

2
−
(

3c20M
2
1

ν
+ µ+

(
c20(M0M1)2

ν2
+
µ2

λ1

)
cµ2κ2

ν

)
1

λ1(Ω0 \ Ω)

}∫ t

t0

‖w(s)‖2ds

≤
{
−2µ+

(
3c20M

2
1

ν
+ µ

+

(
c20(M0M1)2

ν2
+
µ2

λ1

)
cµ2κ2

ν

)
`

λ1(Ω0 \ Ω)

}∫ t

t0

‖w(s)‖2L2(Ω)2ds

+ µκ

(
1 +

cµ3κ2

νλ1

)
E2

0 . (3.21)

From condition (3.6) on κ and condition (3.5) on µ and λ1(Ω0 \Ω), we deduce from
(3.21) that

|w(t)|2 − |w(t0)|2 +
ν

2

∫ t

t0

‖w(s)‖2ds ≤ cE2
0 ,

which implies in particular that∫ t

t0

‖w(s)‖2ds ≤ 2

ν
|w(t0)|2 +

c

ν
E2

0 , ∀t ∈
[
t0, t̃

]
. (3.22)
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Furthermore, by using the Poincaré inequality (2.1), we get from (3.19) that

ϕ(s) ≤
(

2ν2 + 4c0R
2 + λ−1

1

(
c20(M0M1)2

ν2
+
µ2

λ1

))
‖w(s)‖2. (3.23)

Substituting (3.23) into (3.16) and using (2.9) then we have that for all t ∈
[
t0, t̃

]
:

d

dt
|w|2 +

(
ν −

(
3c20M

2
1

ν
+ µ

)
1

λ1(Ω0 \ Ω)

)
‖w‖2

≤ −
(

2µ−
(

3c20M
2
1

ν
+ µ

)
`

λ1(Ω0 \ Ω)

)
‖w‖2L2(Ω)2

+
cµ2κ

ν

(
2ν2 + 4c0R

2 +
c20(M0M1)2

ν2λ1
+
µ2

λ2
1

)∫ t

t0

‖w(s)‖2ds

+ µ

(
1 +

cµ3κ2

νλ1

)
E2

0 . (3.24)

Here we have used the fact that
∞∑
n=0

∫ t

tn

ϕ(s)ds ≤
∫ t

t0

ϕ(s)ds, ∀t ∈ [t0, t̃].

Substituting (3.22) into (3.24) and using condition (3.5) to deduce

d

dt
|w|2 +

ν

2
‖w‖2 + `‖w‖2L2(Ω)2

≤
(

2ν2 + 4c0R
2 +

c20(M0M1)2

ν2λ1
+
µ2

λ2
1

)
cµ2κ

ν

(
|w(t0)|2 + E2

0

)
+ µ

(
1 +

cµ3κ2

νλ1

)
E2

0 .

(3.25)

Using (2.9) and note that R = 2M0 + ν1/2

(min{ ν2 ,1})1/2E0 we deduce from (3.25) that

d

dt
|w|2 + λ1(Ω0 \ Ω) min

{ν
2
, 1
}
|w|2

≤

ν2 + c0

(
M0 +

ν1/2(
min

{
ν
2 , 1
})1/2E0

)2

+
c20(M0M1)2

ν2λ1
+
µ2

λ2
1

 cµ2κ

ν

(
|w(t0)|2 + E2

0

)
+ µ

(
1 +

cµ3κ2

νλ1

)
E2

0 . (3.26)

Using the Gronwall inequality to (3.26) in [t0, t], t < t̃, with noting that λ1(Ω0\Ω) ≥
4µ
ν , we have

|w(t)|2 ≤
(

1− e−
4µ
ν min{ ν2 ,1}(t−t0)

)(
γ1|w(t0)|2 + γ2E

2
0 +

ν

4 min
{
ν
2 , 1
}E2

0

)
+ |w(t0)|2e−

4µ
ν min{ ν2 ,1}(t−t0), (3.27)

where

γ1 =
cµκν

4 min
{
ν
2 , 1
}
ν2 + c0

(
M0 +

ν1/2(
min

{
ν
2 , 1
})1/2E0

)2

+
c20(M0M1)2

ν2λ1
+
µ2

λ2
1

 ,

and

γ2 = γ1 +
cµ3κ2

4λ1 min
{
ν
2 , 1
} .
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Since |w(t0)| ≤ R, then (3.27) becomes

|w(t)|2 ≤
(

1− e−
4µ
ν min{ ν2 ,1}(t−t0)

)(
γ1R

2 + γ2E
2
0 +

ν

4 min
{
ν
2 , 1
}E2

0

)
+R2e−

4µ
ν min{ ν2 ,1}(t−t0).

Using the choice of κ in (3.6) with suitable constant c, we get γ1 ≤ 1/2, γ2 ≤
ν

4 min{ ν2 ,1}
so that

γ1R
2 + γ2E

2
0 +

ν

4 min
{
ν
2 , 1
}E2

0 ≤ R2.

Thus
|w(t)| ≤ R, ∀t ∈ [t0, t̃].

In particular, |w(t̃)| ≤ R, and from the definition of t̃ in (3.17) we conclude that
t̃ ≥ t1. Therefore, we also have |w(t1)| ≤ R and we can apply the same previous
arguments to obtain that t̃ ≥ t2 and |w(t2)| ≤ R. Continuing inductively, we obtain
that t̃ ≥ tn, for all n ≥ 0. Furthermore, we get the same as (3.27) that

|w(t)|2 ≤
(

1− e−
4µ
ν min{ ν2 ,1}(t−t0)

)(
γ1|w(tn)|2 + γ2E

2
0 +

ν

4 min
{
ν
2 , 1
}E2

0

)
+ |w(tn)|2e−

4µ
ν min{ ν2 ,1}(t−t0), (3.28)

for all t ∈ [tn, tn+1] and for all n ∈ N. Therefore,

|w(tn+1)|2 ≤ θ|w(tn)|2 + cE2
0 , ∀n ≥ 0,

where

θ = e−
4µ
ν min{ ν2 ,1}κ + γ1

(
1− e−

4µ
ν min{ ν2 ,1}κ

)
< 1.

Thus,

|w(tn)|2 ≤ θn|w(t0)|2 + cE2
0

n−1∑
j=0

θj , ∀n ≥ 1. (3.29)

Combining (3.28) and (3.29) we deduce that

|w(t)|2 ≤ θn|w(t0)|2 + cE2
0

1 +
n−1∑
j=0

θj

 ,∀t ∈ [tn, tn+1], ∀n ≥ 1.

Therefore
lim sup
t→∞

|w(t)|2 ≤ cE2
0 .

Moreover, if E0 = 0, we have

|w(t)|2 ≤ θn|w(t0)|2, ∀t ∈ [tn, tn+1], ∀n ≥ 1,

and thus w(t) converges exponentially to 0 in H as t→∞. �

4. Finite-dimensional discrete data assimilation using local
observables

We now consider the two-dimensional Navier-Stokes equations (1.1) in the both
two cases, periodic boundary conditions and no-slip boundary conditions. For any
positive integer N , we denote PN the projection onto the finite-dimensional sub-
space generated by N first eigenvectors of the Stokes operator. For any N ∈ N, we
will consider the measurements as follows

ũ(tn) = PN1Ω(u(tn)) + PNηn, (4.1)

where u is the unknown solution of (1.1).
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We now follow the approach in [8] to introduce the following data assimilation
algorithm for finding an approximate solution vN of the unknown reference solution
v: Given information about a reference solution u by using the interpolant operator
PN1Ω, we look for a function vN satisfies the following system

dvN
dt

+ νAvN + PNB(vN , vN ) = PNf − µ
∞∑
n=0

(1ΩvN (tn)− ũ(tn))χn,

vN (t0) = v0.
(4.2)

Using (4.1) then (4.2) can be rewritten as following system
dvN
dt

+ νAvN + PNB(vN , vN ) = PNf − µ
∞∑
n=0

1Ω(vN (tn)− PNu(tn))χn

+µ
∞∑
n=0

PNηnχn,

vN (t0) = v0.

(4.3)

By similar arguments as in the proof of Theorem 3.1 we also have that (4.3) has a
unique global weak solution vN (t) on [t0,∞). We can now state the main result of
this section.

Theorem 4.1. Let Ω be any open subset of the domain Ω0. Let u be a trajectory in
the global attractor A of the two-dimensional Navier-Stokes equations and let M0 be
the positive constant related to estimates of the solution u given in (2.8). Consider
v0 ∈ BH(M0), and let vN be the unique solution of (4.3) on the interval [t0,∞)
satisfying vN (t0) = v0. Let ε > 0 be given. Assume that {ηn}n∈N is a bounded
sequence in L2(Ω0)2, namely, there exists a constant E1 ≥ 0 such that

‖ηn‖L2(Ω0)2 ≤ E1, ∀n ∈ N. (4.4)

If N is large enough such that

N ≥ cmax

{
c20M

2
0M

6
1 (c0 +M1)2

(ενλ1)2
,
M2

1

ε

}
, (4.5)

µ is defined by

µ =
3c20M

2
1CΩe

CΩ

√
N

ν
, (4.6)

and κ is small enough such that

κ ≤ c

µ
min

{
1, ν

(
ν2 +M2

0 +
µ2

ν2λ2
1

E2
1

)−1/2

, c0M1

(
(M0M1)2

ν2
+
µ2

λ1

)−1

,

νλ1

µµ
,

µ

µ+ λ1µ
,

(νλ1)2

µλ1µ+ µ2

}
, (4.7)

where

µ := ν2 +M2
0 +

µ2

(νλ1)2
E2

1 +
(M0M1)2

ν2λ1
+
µ2

λ2
1

,

then

|vN (t)− u(t)|2 ≤ c µ
2

νλ1
E2

1 + ε, (4.8)

for t sufficiently large.

Remark 4.1. We see that if we choose

N = N0(ε) =

[
cmax

{
c20M

2
0M

6
1 (c0 +M1)2

(ενλ1)2
,
M2

1

ε

}]
+ 1,

then µ = µ0(ε) has the form (4.6) which depends on ε. So if the size of errors E1

satisfies E1 ≤ cενλ1

µ0(ε) , then we obtain that |vN (t)− u(t)| ≤ 2ε for t sufficiently large.
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Proof of Theorem 4.1. Let ε be given and we set ε = ενλ1

8 . Let u and vN be as in
the statement of Theorem 4.1. Note that for any N ∈ N, PNu satisfies

d

dt
PNu+ νAPNu+ PNB(PNu, u) = PNf − PNB(QNu, u), (4.9)

where QN = I − PN . Let w = vN − PNu. Subtracting (4.2) from (4.9) to obtain

dw

dt
+ νAw + PNB(PNu,w) + PNB(w,w) + PNB(w,PNu)

=− µ
∞∑
n=0

1Ωw(tn)χn + µ

∞∑
n=0

PNηnχn + PNB(QNu, u) + PNB(PNu,QNu).

(4.10)

Here we have used the fact that

PNB(vN , vN )− PNB(PNu, u) = PNB(PNu,w) + PNB(w,w)

+ PNB(w,PNu)− PNB(PNu,QNu).

Multiplying (4.10) by w, then integrating over Ω0 and using (2.3) we obtain

1

2

d

dt
|w|2 + ν‖w‖2 + 〈B(w,PNu), w〉V ′,V

= − µ
∞∑
n=0

(1Ωw(tn), w)χn + µ

∞∑
n=0

(PNηn, w)χn

+ 〈B(QNu, u), w〉V ′,V + 〈B(PNu,QNu), w〉V ′,V

= − µ‖w‖2L2(Ω)2 − µ
∞∑
n=0

(1Ω(w(tn)− w), w)χn + µ

∞∑
n=0

(ηn, w)χn

+ 〈B(QNu, u), w〉V ′,V + 〈B(PNu,QNu), w〉V ′,V . (4.11)

We now estimate for the right hand side of (4.11). We first apply (2.4), the Cauchy
inequality, (2.8) and the spectral inequality (2.11) to obtain

〈B(w,PNu), w〉V ′,V ≤ c0|w|‖w‖‖PNu‖

≤ 2c20
ν
‖u‖2|w|2 +

ν

8
‖w‖2

≤ 2c20M
2
1

ν
|w|2 +

ν

8
‖w‖2

≤ 2c20M
2
1CΩe

CΩ

√
N

ν
‖w‖2L2(Ω)2 +

ν

8
‖w‖2. (4.12)

Applying (2.4), (2.8) and the Cauchy inequality, we obtain

〈B(QNu, u), w〉V ′,V + 〈B(PNu,QNu), w〉V ′,V

≤ c0
(
|QNu|1/2‖QNu‖1/2|u|1/2‖u‖1/2 + |PNu|1/2‖PNu‖1/2|QNu|1/2‖QNu‖1/2

)
‖w‖

≤ 2c0|QNu|1/2‖QNu‖1/2|u|1/2‖u‖‖w‖

≤ c20|QNu|‖QNu‖|u|‖u‖+
ν

8
‖w‖2

≤ c20λ
−1/2
N M0M

3
1 +

ν

8
‖w‖2. (4.13)

By the Cauchy inequality and using condition (4.4), we have

µ(ηn, w) ≤ 2µ2

νλ1
E2

1 +
νλ1

8
|w|2 ≤ 2µ2

νλ1
E2

1 +
ν

8
‖w‖2. (4.14)
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Moreover, we have

µ|(1Ω(w(tn)− w(t)), w(t))| = µ

∣∣∣∣(∫ t

tn

dw

ds
(s)ds, 1Ωw(t)

)∣∣∣∣
≤ µ

∥∥∥∥∫ t

tn

dw

ds
(s)ds

∥∥∥∥
V ′

‖1Ωw(t)‖

≤ µ
∫ t

tn

∥∥∥∥dwds (s)

∥∥∥∥
V ′
ds ‖w(t)‖

≤ 2µ2

ν

(∫ t

tn

∥∥∥∥dwds (s)

∥∥∥∥
V ′
ds

)2

+
ν

8
‖w(t)‖2. (4.15)

From (4.10), using (2.5) and (2.2) we obtain∥∥∥∥dwds (s)

∥∥∥∥
V ′
≤ ν‖w(s)‖+ ‖B(PNu,w)‖V ′ + ‖B(w,PNu)‖V ′ + ‖B(w,w)‖V ′

+ µ‖1Ω(w(tn)− w(s))‖V ′ + µ‖1Ωw(s)‖V ′

+ µ‖ηn‖V ′ + ‖PNB(QNu, u)‖V ′ + ‖PNB(PNu,QNu)‖V ′

≤ ν‖w(s)‖+ 2c0|PNu|1/2‖PNu‖1/2|w|1/2‖w‖1/2 + c0|w|‖w‖

+ µ

∫ s

tn

∥∥∥∥dwdτ (τ)

∥∥∥∥
V ′
dτ +

µ

λ
1/2
1

|w(s)|+ µ

λ
1/2
1

‖ηn‖L2(Ω0)2

+ 2c0|QNu|1/2‖QNu‖1/2|u|1/2‖u‖

≤ ν‖w(s)‖+ 2c0(M0M1)1/2|w|1/2‖w‖1/2 + c0|w|‖w‖

+ µ

∫ s

tn

∥∥∥∥dwdτ (τ)

∥∥∥∥
V ′
dτ +

µ

λ
1/2
1

(|w(s)|+ E1) + 2c0λ
−1/4
N M

1/2
0 M2

1 .

Integrating with respect to s from tn to t ∈ [tn, tn+1), we obtain that∫ t

tn

∥∥∥∥dwds (s)

∥∥∥∥
V ′
ds ≤

∫ t

tn

(
ν‖w(s)‖+ 2c0(M0M1)1/2|w(s)|1/2‖w(s)‖1/2

+ c0|w(s)|‖w(s)‖+
µ

λ
1/2
1

|w(s)|
)
ds+

µκ

λ
1/2
1

E1

+
2c0κM

1/2
0 M2

1

λ
1/4
N

+ µκ

∫ t

tn

∥∥∥∥dwdτ (τ)

∥∥∥∥
V ′
dτ.

Using condition on κ we deduce∫ t

tn

∥∥∥∥dwds (s)

∥∥∥∥
V ′
ds ≤ c

∫ t

tn

(
ν‖w(s)‖+ 2c0(M0M1)1/2|w(s)|1/2‖w(s)‖1/2

+ c0|w(s)|‖w(s)‖+
µ

λ
1/2
1

|w(s)|
)
ds+ c

µκ

λ
1/2
1

E1 +
cc0κM

1/2
0 M2

1

λ
1/4
N

.

By the Hölder inequality it implies that(∫ t

tn

∥∥∥∥dwds (s)

∥∥∥∥
V ′
ds

)2

≤ cκ
∫ t

tn

ϕ(s)ds+
cµ2κ2

λ1
E2

1 +
cc0κM0M

4
1

λ
1/2
N

, (4.16)

where ϕ(s) is the same as in (3.15). Substituting estimates (4.12), (4.13), (4.14),
(4.15) and (4.16) into (4.11) we have

d

dt
|w|2 + ν‖w‖2 ≤−

(
2µ− 4c20M

2
1CΩe

CΩ

√
N

ν

)
‖w‖2L2(Ω)2 +

2c0M0M
3
1 (c0 + cµκM1)

λ
1/2
N
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+
cµ2κ

ν

∞∑
n=0

χn

∫ t

tn

ϕ(s)ds+ µ2

(
4

νλ1
+
cµ2κ2

νλ1

)
E2

1 . (4.17)

We denote R = 2M0 + 3
√

2µ
νλ1

E1 then since w ∈ C([t0,∞);H), and

|w(t0)| ≤ |v(t0)|+ |u(t0)| ≤ 2M0 ≤ R,
there exists τ ∈ (t0,∞) such that

|w(t)| ≤ 2R, ∀t ∈ [t0, τ ].

Define

t̃ = sup

{
τ ∈ [t0,∞) : sup

t∈[t0,τ ]

|w(t)| ≤ 2R

}
.

Suppose that t̃ < t1. Then, integrating (4.17) from t0 to t ≤ t̃, we obtain that

|w(t)|2 − |w(t0)|2 + ν

∫ t

t0

‖w(s)‖2ds

≤−

(
2µ− 4c20M

2
1CΩe

CΩ

√
N

ν

)∫ t

t0

‖w(s)‖2L2(Ω)2ds+
2µκc0M0M

3
1 (c0 + cµκM1)

λ
1/2
N

+
cµ2κ2

ν

∫ t

t0

ϕ(s)ds+ µ2κ

(
4

νλ1
+
cµ2κ2

νλ1

)
E2

1 . (4.18)

Here we have used the fact that
∞∑
n=0

χn

∫ t

tn

ϕ(s)ds ≤
∫ t

t0

ϕ(s)ds, ∀t ∈ [t0, t̃].

Since |w(t)| ≤ 2R for all t ∈ [t0, t̃], and using the spectral inequality (2.11) we have

ϕ(s) ≤ (2ν2 + 4R2)‖w(s)‖2 +

(
(M0M1)2

ν2
+
µ2

λ1

)
CΩe

CΩ

√
N‖w(s)‖2L2(Ω)2 .

Here we have used (2.11). Hence, (4.18) becomes

|w(t)|2 − |w(t0)|2 +

(
ν − (2ν2 + 4R2)

cµ2κ2

ν

)∫ t

t0

‖w(s)‖2ds

≤−

{
2µ− 4c20M

2
1CΩe

CΩ

√
N

ν

−cµ
2κ2

ν

(
(M0M1)2

ν2
+
µ2

λ1

)
CΩe

CΩ

√
N

}∫ t

t0

‖w‖2L2(Ω)2ds

+
2µκc0M0M

3
1 (c0 + cµκM1)

λ
1/2
N

+ µ2κ

(
4

νλ1
+
cµ2κ2

νλ1

)
E2

1 . (4.19)

From condition (4.7) on κ and condition (4.5) on µ, we deduce from (4.19) that

|w(t)|2 − |w(t0)|2 +
ν

2

∫ t

t0

‖w(s)‖2ds ≤ cE2
1 + ε,

which implies in particular that∫ t

t0

‖w(s)‖2ds ≤ 1

ν

(
2|w(t0)|2 + cE2

1 + 2ε
)
, ∀t ∈

[
t0, t̃

]
. (4.20)

Using the Poincaré inequality (2.1), we obtain as same as (3.23) that

ϕ(s) ≤
(

2ν2 + 4R2 + λ−1
1

(
(M0M1)2

ν2
+
µ2

λ1

))
‖w(s)‖2.
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Then we have from (4.17) that for all t ∈
[
t0, t̃

]
:

d

dt
|w|2 + ν‖w‖2 ≤−

(
2µ− 4c20M

2
1CΩe

CΩ

√
N

ν

)
‖w‖2L2(Ω)2 +

2c0M0M
3
1 (c0 + cµκM1)

λ
1/2
N

+
cµ2κ

ν

(
2ν2 + 4R2 + λ−1

1

(
(M0M1)2

ν2
+
µ2

λ1

))
‖w(s)‖2

+ µ2

(
4

νλ1
+
cµ2κ2

νλ1

)
E2

1 . (4.21)

Substituting (4.20) into (4.21) to deduce

d

dt
|w|2 +

ν

2
‖w‖2 +

(
2µ− 4c20M

2
1CΩe

CΩ

√
N

ν

)
‖w‖2L2(Ω)2

≤
(

2ν2 + 4R2 +
(M0M1)2

ν2λ1
+
µ2

λ2
1

)
cµ2κ

ν

(
|w(t0)|2 + E2

1 + ε
)

+
2c0M0M

3
1 (c0 + cµκM1)

λ
1/2
N

+ µ2

(
4

νλ1
+
cµ2κ2

νλ1

)
E2

1 . (4.22)

From condition (4.7) on κ and condition (4.5) on N , we have

2c0M0M
3
1 (c0 + cµκM1)

λ
1/2
N

≤ ε

2
.

From condition (4.6) on µ, then from (4.22) we have

d

dt
|w|2 +

ν

2
‖w‖2 ≤

(
2ν2 + 4R2 +

(M0M1)2

ν2λ1
+
µ2

λ2
1

)
cµ2κ

ν

(
|w(t0)|2 + E2

1 + ε
)

+ ε+ µ2

(
4

νλ1
+
cµ2κ2

νλ1

)
E2

1 .

Hence

d

dt
|w|2 +

νλ1

2
|w|2 ≤

(
2ν2 + 4R2 +

(M0M1)2

ν2λ1
+
µ2

λ2
1

)
cµ2κ

ν

(
|w(t0)|2 + E2

1 + ε
)

+ ε+ µ2

(
4

νλ1
+
cµ2κ2

νλ1

)
E2

1 . (4.23)

Using the Gronwall inequality to (4.23) in [t0, t], t < t̃

|w(t)|2 ≤
(

1− e−
νλ1

2 (t−t0)
)(

γ1|w(t0)|2 + γ2E
2
1 +

8µ2

(νλ1)2
E2

1 + (γ2 + 1)
ε

νλ1

)
+ |w(t0)|2e−

νλ1
2 (t−t0) (4.24)

where

γ1 =
cµ2κ

ν2λ1

(
ν2 +M2

0 +
µ2

(νλ1)2
E2

1 +
(M0M1)2

ν2λ1
+
µ2

λ2
1

)
,

and

γ2 = γ1 +
cµ4κ2

ν2λ2
1

.

Since |w(t0)| ≤ R, then (4.24) becomes

|w(t)|2 ≤
(

1− e−
νλ1

2 (t−t0)
)(

γ1R
2 + γ2E

2
1 +

8µ2

(νλ1)2
E2

1 + (γ2 + 1)
ε

νλ1

)
+R2e−

νλ1
2 (t−t0).
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Using the choice of κ in (4.7) with suitable constant c, we get

γ1 ≤ 1/2, γ2 ≤ min

{
µ2

(νλ1)2
, 1

}
so that

γ1R
2 + γ2E

2
1 +

8µ2

(νλ1)2
E2

1 ≤ R2.

In particular, |w(t̃)| ≤ R, and from the definition of t̃ we conclude that t̃ ≥ t1.
Therefore, we also have |w(t1)| ≤ R and we can apply the same previous arguments
to obtain that t̃ ≥ t2 and |w(t2)| ≤ R. Continuing inductively, we obtain that t̃ ≥ tn,
for all n ≥ 0. Furthermore, we get the same as (4.24) that

|w(t)|2 ≤
(

1− e−
νλ1

2 (t−t0)
)(

γ1|w(tn)|2 + γ2E
2
1 +

4µ2

(νλ1)2
E2

1 + (γ2 + 1)
ε

νλ1

)
+ |w(tn)|2e−

νλ1
2 (t−t0), (4.25)

for all t ∈ [tn, tn+1] and for all n ∈ N. Therefore,

|w(tn+1)|2 ≤ θ|w(tn)|2 + c
µ2

(νλ1)2
E2

1 + 2
ε

νλ1
, ∀n ≥ 0,

where

θ = e−
νλ1

2 κ + γ1

(
1− e−

νλ1
2 κ
)
< 1.

Thus,

|w(tn)|2 ≤ θn|w(t0)|2 +

(
c

µ2

(νλ1)2
E2

1 + 2
ε

νλ1

) n−1∑
j=0

θj , ∀n ≥ 1. (4.26)

Combining (4.25) and (4.26) we deduce that

|w(t)|2 ≤ θn|w(t0)|2+

(
c

µ2

(νλ1)2
E2

1 + 2
ε

νλ1

)1 +

n−1∑
j=0

θj

 ,∀t ∈ [tn, tn+1], ∀n ≥ 1.

Now we have

|vN (t)− u(t)|2 ≤ |w(t)|2 + |QNu(t)|2

≤ θn|w(t0)|2 +

(
c

µ2

(νλ1)2
E2

1 + 2
ε

νλ1

)1 +

n−1∑
j=0

θj

+
ε

4
,

for all t ∈ [tn, tn+1], ∀n ≥ 1, provided by N is large enough satisfying (4.5), i.e.,

|QNu|2 ≤
1

λN
‖QNu‖2 ≤

1

λN
‖u‖2 ≤ 1

λN
M2

1 ≤
ε

4
.

Hence

|vN (t)− u(t)|2 ≤ c µ2

(νλ1)2
E2

1 + ε,

for t sufficiently large. Moreover, if E1 = 0, we have

|vN (t)− u(t)|2 ≤ ε
for t sufficiently large. �

Remark 4.2. In the previous work [8], the authors studied finite-dimensional con-
tinuous data assimilation for the two-dimensional Navier-Stokes equations with
local observables. In Theorem 4.1 we have studied the finite-dimensional discrete
data assimilation for the two-dimensional Navier-Stokes equations in a special case
of the local interpolant operators, namely the low Fourier modes projector. It is
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worthy noticing that our results are not only hold for the periodic case but also
for the no-slip boundary case, and without assumption on the suitable Gevrey
regularity of solutions in the periodic case or the fast enough decay condition of
ûN = (u, φN ) in the no-slip boundary case as in the continuous data assimilation
problem in [8].
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