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subject to change. Using the strict feasibility condition, we prove the locally

Lipschitz continuity and obtain some differentiability properties of the optimal

value function of the problem under right-hand-side perturbations. For the

optimal value function under linear perturbations of the objective function,

similar differentiability properties are obtained under the assumption saying

that both primal problem and dual problem are strictly feasible.

Keywords Conic linear programming · Primal problem · Dual problem ·

Optimal value function · Lipschitz continuity · Differentiability properties ·

Increment estimates
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1 Introduction

If the feasible region or the objective function of a mathematical programming

problem depends on a parameter, then the optimal value of the problem is a

function of the parameter. In general, the optimal value function is a fairly

complicated function. Continuity properties (resp., differentiability properties)

of the optimal value function in parametric mathematical programming are

usually classified as results on stability (resp., on differential stability) of opti-

mization problems.

Many results on stability and differential stability of linear and nonlinear

optimization problems can be found in the books of Fiacco [11], Bonnans and

0 Communicated by Boris S. Mordukhovich
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Shapiro [7, Chapters 4, 5], Mordukhovich ([25, Chapter 4], [26, Chapter 5]),

the papers [1,3,4,6,13,14,15,17,20,21,27,30,36,39], the dissertation [2], and

the references therein.

In 2001, Gauvin [12] investigated the sensitivity of the optimal value of a

parametric linear programming problem. He gave separated formulas for the

increment of the optimal value with respect to perturbations of the right-hand-

side vector in the constraint system, the cost vector, and the coefficients of the

matrix defining the linear constraint system. In 2016, Thieu [37] established

some lower and upper bounds for the increment of the optimal value of a

parametric linear program, where both objective vector and right-hand-side

vector in the constraint system are subject to perturbations. He showed that

the appearance of an extra second-order term in these estimates is a must.

Conic linear programming is a natural extension of linear programming.

In a linear program, a feasible point usually has nonnegative components, i.e.,

it belongs to the nonnegative orthant of an Euclidean space. In addition, the

constraints are written as linear inequalities. Meanwhile, in a conic linear pro-

gram, the constraint is written as a linear inequality with the ordering cone

being a closed convex cone in an Euclidean space. Conic linear programs can be

used in many applications that cannot be simulated by linear programs (see,

e.g., [5, Section 2.2] and [23, Chapter 6]). This is the reason why these special

convex optimization problems have attracted much attention from researchers

(see Bonnans and Shapiro [7], Ben-Tal and Nemirovski [5], Yildirim [40], Lu-

enberger and Ye [23], Chuong and Jeyakumar [10], and the references therein).
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If the ordering cone, which defines the inequality constraint of a conic linear

optimization problem is the cone of semidefinite symmetric square matrices of

a certain order, then one deals with a linear semidefinite programming problem

(called a linear SDP program). Studies on linear SDP programs can be found

in many books, theses, and papers; see, e.g., [5,7,8,9,16,18,24,32,33,35,38,

41].

It is of interest to know whether results similar to those of Gauvin [12] and

Thieu [37] can be obtained for conic linear programs, or not. The aim of this

paper is to show that the results of [12] admit certain generalizations in conic

linear programming, and some differentiability properties, as well as a locally

Lipschitz continuity property, can be established for the two related optimal

value functions. The obtained results are analyzed via four concrete examples

which show that the optimal value functions in a conic linear program are

more complicated than that of the corresponding optimal value functions in

linear programming.

Observe that conic linear programs can be studied in much more broader

settings than the one adopted in the book of Bental and Nemirovski [5] and

in the present paper. For instance, Bonnans and Shapiro [7, pp. 125–132] and

Shapiro [34] gave very nice duality theories for conic linear programs defined on

paired locally convex topological vector spaces. In particular, Theorem 2.187

from [7] is a strong duality theorem for conic linear programs on Banach spaces.

Applications of the duality theorems to the problem of moments, linear semi-

infinite and continuous linear programming problems can be seen in [34]. Note
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also that the behavior of a certain optimal value function, the calmness of the

original problem, and the no duality gap property have tight connections (see

[7, p. 127]).

The remaining part of our paper has six sections. Section 2 contains some

definitions, a strong duality theorem in conic linear programming, and a lemma.

Section 3 is devoted to the locally Lipschitz continuity property of the optimal

value function of a conic linear program under right-hand-side perturbations.

Differentiability properties of this optimal value function are studied in Sec-

tion 4. Some increment formulas for the function are established in Section 5.

The optimal value function of a conic linear program under linear perturba-

tions of the objective function is studied in Section 6. In Section 7, we present

some concluding remarks.

2 Preliminaries

One says that a nonempty subset K of the Euclidean space Rm is a cone if

tK ⊂ K for all t ≥ 0. The (positive) dual cone K∗ of a cone K ⊂ Rm is

given by K∗ = {v ∈ Rm : vT y ≥ 0 ∀y ∈ K}, where T denotes the matrix

transposition. Herein, vectors of Euclidean spaces are written as rows of real

numbers in the text, but they are interpreted as columns of real numbers in

matrix calculations. The closed ball centered at a ∈ Rm with radius ε > 0 is

denoted by B̄(a, ε). By R we denote the set R∪{±∞} of extended real values.

The nonnegative orthant in Rm is denoted by Rm
+ . Sometimes, the origin of Rm

is denoted by 0Rm .
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Let f : Rk → R be a proper convex function and x̄ ∈ Rk be such that f(x̄)

is finite. According to Theorem 23.1 in [28], the directional derivative

f ′(x̄;h) := lim
t→0+

f(x̄+ th)− f(x̄)

t

of f at x̄ w.r.t. a direction h ∈ Rk, always exists (it can take the value −∞),

and one has f ′(x̄;h) = inf
t>0

f(x̄+ th)− f(x̄)

t
. The subdifferential of f at x̄ is

defined by ∂f(x̄) =
{
p ∈ Rk : pT (x− x̄) ≤ f(x)− f(x̄) ∀x ∈ Rk

}
.

For a convex set C in an Euclidean space Rk, the normal cone of C at

x̄ ∈ C is given by N(x̄;C) =
{
p ∈ Rk : pT (x− x̄) ≤ 0 ∀x ∈ C

}
.

Let F : Rk ⇒ R` be a multifunction. The domain and the graph of F are

given, respectively, by the formulas domF = {x ∈ Rk : F (x) 6= ∅} and

gphF =
{

(x, y) ∈ Rk × R` : y ∈ F (x)
}
.

If gphF is a convex set in Rk×R`, then F is said to be a convex multifunction.

In that case, the coderivative of F at (x̄, ȳ) ∈ gphF is the multifunction

D∗F (x̄, ȳ) : R` ⇒ Rk with

D∗F (x̄, ȳ)(v) :=
{
u ∈ Rk : (u,−v) ∈ N

(
(x̄, ȳ); gphF

)}
for all v ∈ R` (see, e.g., [25, Section 1.2] and [3]).

One says that a function g : Rk → R is Lipschitz on a set Ω ⊂ Rk

if g(x) ∈ R for every x ∈ Ω and there exists a constant ` > 0 such that

|g(x′) − g(x)| ≤ `‖x′ − x‖ for all x, x′ ∈ Ω. If V ⊂ Rk is an open set, then

one says that g is locally Lipschitz on V if for each point z ∈ V there is a

neighborhood Vz ⊂ V of z such that g is Lipschitz on Vz.
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From now on, let K be a closed convex cone in Rm, which plays the role of

an ordering cone. For any y1, y2 from Rm, one writes y1 ≥K y2 if y1−y2 ∈ K.

Similarly, one writes y1 >K y2 if y1 − y2 ∈ intK, where intK denotes the

interior of K.

Given a matrix A ∈ Rm×n, vectors b ∈ Rm and c ∈ Rn, we consider the

primal conic linear optimization problem

min{cTx : x ∈ Rn, Ax ≥K b}. (P)

Following Bental and Nemirovski [5, p. 52], we call

max{bT y : y ∈ Rm, AT y = c, y ≥K∗ 0} (D)

the dual problem of (P). The feasible region, and the solution set, and the

optimal value of (P) are denoted respectively by F(P), S(P), and v(P). The

feasible region, the solution set, and the optimal value of (D) are denoted

respectively by F(D), S(D), and v(D). By definitions, one has

v(P) = inf{cTx : x ∈ Rn, Ax ≥K b}

and v(D) = sup{bT y : y ∈ Rm, AT y = c, y ≥K∗ 0}. By a standard conven-

tion, inf ∅ = +∞ and sup ∅ = −∞.

Thanks to the weak duality theorem in conic linear programming [5, Propo-

sition 2.3.1], one has cTx ≥ bT y for any x ∈ F(P) and y ∈ F(D). Hence,

v(P) ≥ v(D). By constructing suitable examples, we can show that the strict

inequality v(P) > v(D) is possible, i.e., a conic linear program may have a

duality gap. Thus, the equality v(P) = v(D) is guaranteed only if one imposes
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a certain regularity condition. In what follows, we will rely on the regularity

condition called strict feasibility, which was intensively employed by Bental

and Nemirovski [5].

Definition 2.1 (See [5, Section 2.4]) If there exists a point x0 ∈ Rn satisfying

Ax0 >K b, then one says that problem (P) is strictly feasible. If there is some

y0 ∈ Rm satisfying AT y0 = c and y0 >K∗ 0, then the dual problem (D) is said

to be strictly feasible.

Remark 2.1 The strict feasibility of (P) is a generalization of Slater’s regu-

larity condition for convex programming problems with finitely many convex

inequality constraints; see, e.g., [31, p. 108].

The main assertion of the strong duality theorem in conic linear program-

ming can be stated as follows.

Lemma 2.1 (See [5, Theorem 2.4.1 (assertions 3a and 3b)]) If (P) is strictly

feasible and v(P) > −∞, then (D) has a solution and v(D) = v(P). If (D)

is strictly feasible and one has v(D) < +∞, then (P) has a solution and

v(D) = v(P).

The following analogues of the Farkas lemma [28, p. 200] will be used

repeatedly in the sequel.

Lemma 2.2 Let there be given a closed convex cone K in Rm, a matrix A in

Rm×n, vectors b ∈ Rm and c ∈ Rn, and a real number α.

(a) Suppose that there exists a point x0 ∈ Rn satisfying Ax0 >K b. Then,
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the inequality cTx ≥ α is a consequence of the conic-linear inequality Ax ≥K b

iff there exists a vector y ∈ K∗ satisfying AT y = c and bT y ≥ α.

(b) Suppose that there exists a point y0 ∈ Rm satisfying AT y0 = c and

y0 >K∗ 0. Then, the inequality bT y ≤ α is a consequence of the system

AT y = c, y ≥K∗ 0

iff there exists a vector x ∈ Rn satisfying Ax ≥K b and cTx ≤ α.

Proof To prove assertion (a), suppose that Ax ≥K b and there exists a vector

y ∈ K∗ satisfying AT y = c and bT y ≥ α. Then we have

cTx− bT y = xT c− bT y = xT (AT y)− bT y

= (Ax)T y − bT y

= (Ax− b)T y ≥ 0,

(1)

where the last inequality in (1) is valid because Ax ≥K b and y >K∗ 0.

Combining this with the assumption bT y ≥ α, yields cTx ≥ α. Conversely,

suppose that cTx ≥ α for all x satisfying Ax ≥K b. It is clear that (P) is

strictly feasible and v(P) ≥ α. By the first assertion of Lemma 2.1, (D) has a

solution and one has v(P) = v(D). Let y be a solution of (D). Then we have

y ∈ K∗, AT y = c and bT y = v(D) = v(P) ≥ α. So, assertion (a) holds true.

Now, to prove assertion (b), suppose that AT y = c, y ≥K∗ 0 and there

exists a vector x ∈ Rn satisfying Ax ≥K b and cTx ≤ α. Then, we have

bT y − cTx = bT y − xT c = bT y − xT (AT y)

= bT y − (Ax)T y

= −(Ax− b)T y ≤ 0,

(2)
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where the last inequality in (2) is valid because Ax ≥K b and y ≥K∗ 0. Since

cTx ≤ α, this yields bT y ≤ α. Conversely, suppose that bT y ≤ α for all y

satisfying AT y = c, y ≥K∗ 0. So, (D) is strictly feasible by our assumption

and v(D) ≤ α. By the second assertion of Lemma 2.1, (P) has a solution

and v(P) = v(D). Let x be a solution of (P). Then we have Ax ≥K b and

cTx = v(P) = v(D) ≤ α. This justifies the validity of (b). 2

Remark 2.2 The result in Lemma 2.2(a) is a known one (see [5, Proposi-

tion 2.4.3]). The assertions of Lemma 2.1 and Lemma 2.2(a) may be false if the

assumption on the strict feasibility of the conic-linear inequality Ax ≥K b is

removed (see [5, Example 2.4.2]). Similarly, the assertion of Lemma 2.2(b) may

be false if the assumption on the strict feasibility of the conic-linear inequality

y ≥K∗ 0 is removed.

Remark 2.3 Theorems of the alternative for linear semidefinite programming

problems can be found in [8, Theorems 3.3.10 and 3.3.11].

The optimal value v(P) depends on the parameters A, b, and c. Following

Gauvin [12], who studied differential stability properties of linear programming

problems, we consider the functions ϕ(b) := inf{cTx : x ∈ Rn, Ax ≥K b}

and ψ(c) := inf{cTx : x ∈ Rn, Ax ≥K b}. Note that ϕ(·) is the optimal value

function of (P) under right-hand-side perturbations of the constraint set and

ψ(·) is the optimal value function of (P) under perturbations of the objective

function.



Parametric Conic Linear Programming 11

3 Locally Lipschitz Continuity of ϕ(·)

According to a remark given in the paper of An and Yen [3, p. 113], we know

that ϕ(·) is a convex function. The next theorem presents additional continuity

properties of ϕ.

Theorem 3.1 Suppose that (P) is strictly feasible and v(P) > −∞. Then,

there exists ε > 0 such that ϕ(b′) is finite for every b′ ∈ B̄(b, ε) and ϕ is

Lipschitz on B̄(b, ε).

Proof On one hand, since (P) is strictly feasible, one selects a point x0 ∈ Rn

satisfying Ax0 >K b, i.e., Ax0 − b ∈ intK. Then there exists a convex open

neighborhood V of b satisfying Ax0 − b′ ∈ intK for every b′ ∈ V . So, x0 is a

feasible point of the problem

min{cTx : x ∈ Rn, Ax ≥K b′} (Pb′)

for all b′ ∈ V . Moreover ϕ(b′) ≤ cTx0 < +∞. On the other hand, applying the

weak duality theorem [5, Proposition 2.3.1] for the problems (Pb′) and

max{(b′)T y : y ∈ Rm, AT y = c, y ≥K∗ 0} (Db′)

one has cTx ≥ (b′)T y for all x ∈ Rn satisfying Ax ≥K b′ and for every y ∈ Rm

satisfying AT y = c, y ≥K∗ 0. Therefore,

inf{cTx : x ∈ Rn, Ax ≥K b′} ≥ sup{(b′)T y : y ∈ Rm, AT y = c, y ≥K∗ 0}.

This means that

ϕ(b′) ≥ sup{(b′)T y : y ∈ Rm, AT y = c, y ≥K∗ 0}.
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So, we have ϕ(b′) > −∞ because

sup{(b′)T y : y ∈ Rm, AT y = c, y ≥K∗ 0}

≥ sup{(b′)T y : y ∈ S(D)} > −∞,
(3)

where the last inequality in (3) is valid as S(D) is nonempty (see Lemma 2.1).

It follows that ϕ(b′) is finite for every b′ ∈ V , i.e., V ⊂ int(domϕ). Combining

this with the convexity of ϕ, by [28, Theorem 24.7] we can asserts that ϕ is

locally Lipschitz on V . Hence, there exists ε > 0 such that B̄(b, ε) ⊂ V and ϕ

is Lipschitz on B̄(b, ε). 2

Remark 3.1 The locally Lipschitz continuity property of the optimal value

function in a convex semidefinite programming problem satisfying the Slater

condition was established by Bonnans and Shapiro (see [7, Proposition 5.82]

and the subsequent remarks). The proof of the above Theorem 3.1 is different

from the proof of [7, Proposition 5.82], which relies on the conjugate duality

theory in [7, Chapter 2].

4 Differentiability Properties of ϕ(·)

First, let us show that the solution set of (D) possesses a remarkable stability

property, provided that the assumptions of Theorem 3.1 are satisfied.

Proposition 4.1 Suppose that (P) is strictly feasible and v(P) > −∞. Then

there exists ε > 0 such that S(Db′) is nonempty and compact for every b′ in

B(b, ε).
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Proof Since (P) is strictly feasible, there is x0 ∈ Rn satisfying Ax0−b ∈ intK.

Therefore, there is a real number ε > 0 satisfying Ax0 − b′ ∈ intK for all

b′ ∈ B(b, ε). According to Theorem 3.1, without loss of generality we can

assume that ϕ(b′) is finite for all b′ ∈ B(b, ε). Fix a vector b′ ∈ B(b, ε). Then,

the problem (Pb′) is strictly feasible and v(Pb′) > −∞. So, applied for the pair

problems (Pb′) and (Db′) Lemma 2.1 asserts that S(Db′) is nonempty and

S(Db′) =
{
y ∈ F(Db′) : (b′)T y = ϕ(b′)

}
.

Since F(Db′) = F(D), this implies S(Db′) =
{
y ∈ F(D) : (b′)T y = ϕ(b′)

}
.

Clearly, S(Db′) is a closed set. To prove that S(Db′) is compact by contra-

diction, let us suppose that S(Db′) is unbounded. Select a sequence {yk} in

S(Db′) satisfying the condition lim
k→∞

‖yk‖ = +∞. Define ỹk = ‖yk‖−1yk. Since

‖ỹk‖ = 1, without loss of generality we can assume that the sequence {ỹk}

converges to a vector ỹ with ‖ỹ‖ = 1. Since the sequence {yk} is contained in

the closed cone K∗, one has ỹ ∈ K∗. Observe that

AT ỹ = lim
k→∞

AT ỹk = lim
k→∞

AT yk

‖yk‖

= lim
k→∞

c

‖yk‖
= 0

and

(b′)T ỹ = lim
k→∞

(b′)T ỹk = lim
k→∞

(b′)T yk

‖yk‖

= lim
k→∞

ϕ(b′)

‖yk‖
= 0.

It follows that (Ax0 − b′)T ỹ = (x0)
T
AT ỹ − (b′)T ỹ = 0. Meanwhile, since

Ax0 − b′ ∈ intK and ỹ ∈ K∗ \ {0}, (Ax0 − b′)T ỹ > 0. We have obtained a

contradiction. Thus, S(Db′) is bounded; hence it is compact. 2
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Remark 4.1 In convex semidefinite programming (see, e.g., [33, p. 316]), it is

a well known fact that the set of the optimal solutions of the dual problem is

nonempty and compact if the original problem satisfies the Slater condition

and its optimal value is finite.

The following question arises naturally from Proposition 4.1: If (D) is

strictly feasible and v(D) < +∞, then the solution set S(P) is nonempty and

compact, or not? By the second assertion of Lemma 2.1, if (D) is strictly fea-

sible and v(D) < +∞, then S(P) is nonempty. However, S(P) may not be a

compact set. The next example is an illustration for this statement.

Example 4.1 Consider the problem (P) with n = m = 2, K = R2
+, A =

1 0

0 0

,

b = (1,−1)T , c = (1, 0)T . Here we have K∗ = K = R2
+. For y0 := (1, 1)T ,

one has AT y0 = c and y0 >K∗ 0. Thus, (D) is strictly feasible. Meanwhile,

S(P) = {1} × R is unbounded.

The following result gives a formula for the directional derivative of ϕ at b

in a direction d. It can be proved in many ways: by using the conjugate duality

theories ([29], [7, Chapter 2]), the Moreau-Rockafellar theorem (see, e.g, [3]),

etc. Note that if K is the cone of semidefinite symmetric square matrices of

a certain order, then (P) is a linear SDP program, and the next theorem is a

well-known result (see, e.g., [7, Proposition 5.82]). Observe also that formu-

las for computing the directional derivative of the optimal value function of

a convex program under the canonical perturbations of the right-hand-sides

of the convex inequality constraints and the related formulas for computing



Parametric Conic Linear Programming 15

the subdifferential of that optimal value function are classical results in con-

vex programming (see [28, Section 29]). Further extensions of the results for

nonconvex programming problems can be seen in the works of Gauvin and

Tolle [15], Auslender [4], Gauvin and Dubeau [13], Rockafellar [30], Gollan [17],

Thibault [36], Mordukhovich et al. [27], and others.

Theorem 4.1 Suppose that (P) is strictly feasible and (P) has a solution.

Then, for every direction d ∈ Rm, one has

ϕ′(b; d) = max
y∈S(D)

yT d. (4)

Proof Fix a direction d ∈ Rm, consider the function g : R→ R given by

g(t) = inf{cTx : x ∈ Rn, Ax ≥K b+ td},

where t ∈ R. Let f(x, t) = cTx for all (x, t) ∈ Rn×R. Clearly, f is convex and

continuous on Rn × R. Define the multifunction G : R ⇒ Rn by setting

G(t) =
{
x ∈ Rn : Ax ≥K b+ td

}
.

Note that G is a convex multifunction. Consider the parametric convex opti-

mization problem min{f(x, t) : x ∈ G(t)}, which depends on the parameter

t ∈ R, and observe that g(·) is the optimal value function of this problem. By

a remark given in [3, p. 113] we know that g(·) is a convex function. Applying

a result of An and Yen [3, Theorem 4.2] for t̄ := 0 and for a solution x̄ of (P),

we have

∂g(0) =
⋃

(x∗,t∗)∈∂f(x̄,t̄)

{
t∗ +D∗G(t̄, x̄)(x∗)

}
.
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Since ∂f(x, t) =


c

0


, this equality yields

∂g(0) = D∗G(0, x̄)(c). (5)

By the definition of coderivative for convex multifunctions,

D∗G(0, x̄)(c) = {t∗ ∈ R : (t∗,−c) ∈ N((0, x̄), gph G)}

=
{
t∗ ∈ R : t∗t− cT (x− x̄) ≤ 0 ∀(t, x) ∈ gph G

}
=
{
t∗ ∈ R : cTx− t∗t ≥ cT x̄ ∀(t, x) with Ax ≥K b+ td

}
=
{
t∗ ∈ R : cTx− t∗t ≥ cT x̄ ∀(x, t) with Ax− td ≥K b

}
.

(6)

Let

c̃ :=

 c

−t∗

 , Ã :=

[
A − d

]
, x̃ :=

x
t

 , α := cT x̄.

Clearly, the inequality Ax − td ≥K b is equivalent to Ãx̃ ≥K b. So, from (6)

one gets

D∗G(0, x̄)(c) =
{
t∗ ∈ R : c̃T x̃ ≥ α ∀x̃ ∈ Rn × R with Ãx̃ ≥K b

}
. (7)

Since (P) is strictly feasible, there exists x0 ∈ Rn satisfying Ax0 >K b. Setting

x̃0 =

x0

0

, we have Ãx̃0 >K b. Then, applying the Farkas-type result in

Lemma 2.2(a) to the inequality system Ãx̃ ≥K b and the vector c̃, we can

assert that c̃T x̃ ≥ α for all x̃ ∈ Rn × R such that Ãx̃ ≥K b iff there exists a

vector y ∈ K∗ satisfying ÃT y = c̃ and bT y ≥ α. Since

ÃT y =

 AT

−dT

 y =

 AT y

−dT y

 ,
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the equality ÃT y = c̃ is equivalent to the conditions AT y = c and dT y = t∗.

Therefore, combining (7) with the description of the feasible region of the dual

problem (D), we have

D∗G(0, x̄)(c) =
{
t∗ ∈ R : ∃y ∈ K∗ s.t. ÃT y = c̃, bT y ≥ α

}
=
{
t∗ ∈ R : ∃y ∈ K∗ s.t. AT y = c, dT y = t∗, bT y ≥ cT x̄

}
=
{
dT y : y ∈ K∗, AT y = c, bT y ≥ cT x̄

}
=
{
dT y : y ∈ F(D), bT y ≥ cT x̄

}
=
{
dT y : y ∈ F(D), bT y ≥ v(P)

}
.

(8)

Since (P) is strictly feasible and (P) has a solution, by the strong duality

theorem in Lemma 2.1, (D) has a solution and v(D) = v(P). Hence, by (8),

D∗G(0, x̄)(c) =
{
dT y : y ∈ F(D), bT y ≥ v(D)

}
=
{
dT y : y ∈ F(D), bT y = v(D)

}
=
{
dT y : y ∈ S(D)

}
.

(9)

Combining (9) with (5) gives ∂g(0) = {dT y : y ∈ S(D)}. Then, by the

well-known result on the relationships between the directional derivative of a

convex function [28, Theorem 23.4], we obtain

g′(0; 1) = sup
s∈∂g(0)

s = sup
y∈S(D)

yT d = max
y∈S(D)

yT d, (10)

where the last equality in (10) is valid because S(D) is compact. Finally,

using (10) and the fact that ϕ′(b; d) = g′(0; 1), we get the desired formula (4). 2

As observed in Remark 2.1, the strict feasibility of (P) is a generalization

of Slater’s regularity condition for convex programming problems with finitely

many convex inequality constraints. The first anonymous referee of this paper
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asked: Whether or not the assumption of the strict feasibility in Theorem 4.1

can be replaced by a weaker regularity condition? In the next two remarks, we

will give partial answers to this question.

Remark 4.2 If K is a polyhedral convex cone and (P) has a solution, then

formula (4) holds, provided that the maximum is replaced by a supremum.

Hence, in this case, the strict feasibility assumption in Theorem 4.1 is redun-

dant. Indeed, applying Theorem 5.2 one finds τ > 0 such that the equality (19)

is valid for every t ∈ (0, τ). As

{
y ∈ Rm, AT y = c, y ≥K∗ 0, bT y = ϕ(b)

}
= S(D)

(see the definition of (D) and the first assertion of Lemma 2.1), it follows that

ϕ(b+ td)− ϕ(b)

t
= sup

y∈S(D)

dT y. Passing the last equality to the limit as t goes

to 0+ yields ϕ′(b; d) = sup
y∈S(D)

dT y.

Remark 4.3 If K has the form Rm1
+ × {0Rm2 }, then one can speak about the

Abadie constraint qualification (see, e.g., [22, p. 968] and [19, p. 433]) at a

solution of the inequality system Ax ≥K b. But, since this K is a polyhedral

convex cone, by Remark 4.2 we know that the strict feasibility assumption

can be omitted in the formulation of Theorem 4.1. If K is not of the form

Rm1
+ × {0Rm2 }, then we are not aware of any weaker version of the strict

feasibility assumption. It is worthy stress that equality (4) may hold for every

direction d ∈ Rm even in the case where the latter is violated. To have a

concrete example, we consider the problem (P) with x = (x1, x2)T ∈ R2, K is
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the Lorentz cone (also called the second-order cone) in R3, i.e.,

K =

{
(y1, y2, y3)T ∈ R3 : y3 ≥

√
y2

1 + y2
2

}
,

A =


0 0

0 1

0 0

, b = (0, 0, 0)T , c = (0, 1)T . Clearly, there does not exist any point

x0 ∈ R2 satisfying Ax0 >K b. Thus, (P) is not strictly feasible. We have

F(P) = R× {0}, ϕ(b) = 0, and S(P) = R× {0}. Note that K∗ = K and

F(D) =

{
y = (y1, y2, y3)T ∈ R3 : y2 = 1, y3 ≥

√
y2

1 + 1

}
.

Since b = (0, 0, 0)T , one has S(D) = F(D). Fixing any d = (d1, d2, d3)T ∈ R3,

one has b + td = (td1, td2, td3)T for every t > 0. By direct computation, one

can show that

ϕ′(b; d) =



d2 if d3 = 0 and d1 = 0

+∞ if d3 = 0 and d1 6= 0, or d3 > 0

d2 −
√
d2

3 − d2
1 if d3 < 0 and |d3| ≥ |d1|

+∞ if d3 < 0 and |d3| < |d1|.

Using the above explicit formula of F(D), one can verify that equality (4)

holds for an arbitrarily chosen direction d. We still don’t have any example

showing that the strict feasibility assumption is essential for Theorem 4.1.

Remark 4.4 The second anonymous referee of this paper has noticed that

Yildirim [40] gave a formula for computing the directional derivative of the

optimal value function of a linear conic program. Since the problem setting
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and the assumptions used in [40] are different from ours, Theorem 4.1 and

Corollary 5.1 from [40] are independent results. Note that Yildirim considered

linear conic programs of canonical form, while we consider linear conic pro-

grams of standard form. In [40], the right-hand-side of the linear equality and

the cost vector are perturbed. One of the key assumption of [40, Corollary 5.1]

is that the primal problem and the dual problem satisfy the primal–dual Slater

condition [40, pp. 409–410].

Based on Theorem 4.1, the next proposition provides us with a formula for

the subdifferential of ϕ at b.

Proposition 4.2 If (P) is strictly feasible and (P) possesses a solution, then

∂ϕ(b) = S(D).

Proof Take a vector p ∈ ∂ϕ(b). For any d ∈ Rm and t > 0, from the inequality

ϕ(b + td) − ϕ(b) ≥ pT (td) it follows that
1

t
(ϕ(b+ td)− ϕ(b)) ≥ pT d. Letting

t→ 0+, one has ϕ′(b; d) ≥ pT d. Combining this with the equation (4) gives

max
y∈S(D)

yT d ≥ pT d. (11)

To show that p belongs to S(D), suppose the contrary: p /∈ S(D). By S(D)

is a nonempty convex set, by the strongly separation theorem (see, e.g., [28,

Corollary 11.4.2]), there exists a vector d ∈ Rm such that max
y∈S(D)

yT d < pT d.

This contradicts (11). We have thus proved that ∂ϕ(b) ⊂ S(D). To obtain the

opposite inclusion, take any p ∈ S(D). For all d ∈ Rm, by (4),

ϕ′(b; d) = max
y∈S(D)

yT d ≥ pT d. (12)
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Besides, by [28, Theorem 23.1] one gets

ϕ(b+ d)− ϕ(b) ≥ ϕ′(b; d). (13)

Combining (12) with (13) we have ϕ(b + d) − ϕ(b) ≥ pT d for all d ∈ Rm. So,

p ∈ ∂ϕ(b). The proof is complete. 2

Remark 4.5 Proposition 4.2 is analogous to Proposition 5.80(iii) in [7] which

was obtained for convex SDP problems. A more general result was given in [7,

Theorem 2.142(ii)].

5 Increment Estimates for ϕ(·)

Roughly speaking, the following statement gives an analogue of [12, Theorem 1]

for conic linear programs.

Theorem 5.1 Suppose that (P) is strictly feasible and v(P) > −∞. Then, for

every d ∈ Rn and t > 0, one has

ϕ(b+ td) ≥ ϕ(b) + t max
{
dT y : y ∈ S(D)

}
. (14)

In addition, for every d ∈ Rn, there exists τ > 0 such that

ϕ(b+ td) ≤ ϕ(b) + t sup
{
dT y : y ∈ F(D)

}
(15)

for all t ∈ [0, τ ].

Proof Since (P) is strictly feasible and v(P) > −∞, by Lemma 2.1 we know

that (D) has a solution and v(D) = v(P); hence v(D) = ϕ(b). Fix any d ∈ Rn
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and t > 0. On one hand, applying the weak duality theorem [5, Proposi-

tion 2.3.1] for the problems

min{cTx : x ∈ Rn, Ax ≥K b+ td} (Pt)

and

max{(b+ td)T y : y ∈ Rm, AT y = c, y ≥K∗ 0} (Dt)

one has cTx ≥ (b+ td)T y for all x ∈ Rn satisfying Ax ≥K b+ td and for every

y ∈ Rm satisfying AT y = c, y ≥K∗ 0. Consequently,

inf
{
cTx : x ∈ Rn, Ax ≥K b+ td

}
≥ sup

{
(b+ td)T y : y ∈ Rm, AT y = c, y ≥K∗ 0

}
.

(16)

On the other hand, it is clear that

sup{(b+ td)T y : y ∈ Rm, AT y = c, y ≥K∗ 0}

≥ sup{(b+ td)T y : y ∈ Rm, AT y = c, y ≥K∗ 0, bT y = ϕ(b)}. (17)

Combining (16) and (17), one gets

inf{cTx : x ∈ Rn, Ax ≥K b+ td}

≥ sup{(b+ td)T y : y ∈ Rm, AT y = c, y ≥K∗ 0, bT y = ϕ(b)}.

It follows that

ϕ(b+ td) ≥ sup{(b+ td)T y : y ∈ Rm, AT y = c, y ≥K∗ 0, bT y = ϕ(b)}

= sup{bT y + tdT y : y ∈ Rm, AT y = c, y ≥K∗ 0, bT y = ϕ(b)}

= ϕ(b) + t sup{dT y : y ∈ Rm, AT y = c, y ≥K∗ 0, bT y = ϕ(b)}.
(18)
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As noted at the beginning of the proof, (D) has a solution and v(D) = ϕ(b).

So, the set {y ∈ Rm : AT y = c, y ≥K∗ 0, bT y = ϕ(b)} coincides with the solu-

tion set S(D), which is nonempty and compact according to Proposition 4.1.

Therefore, (18) shows that (14) holds for any d ∈ Rn and t > 0, and one has

ϕ(b+ td) > −∞.

Since (P) is strictly feasible, there is a point x0 ∈ Rn satisfying Ax0 >K b.

Then one can find τ > 0 such that Ax0 >K b+ td for all t ∈ [0, τ ]. Hence, (Pt)

is strictly feasible. For any fixed value t ∈ [0, τ ], applying Lemma 2.1 for the

pair of problems (Pt) and (Dt), we have

ϕ(b+ td) = sup{(b+ td)T y : y ∈ Rm, AT y = c, y ≥K∗ 0}

≤ sup{bT y : y ∈ Rm, AT y = c, y ≥K∗ 0}

+ sup{tdT y : y ∈ Rm, AT y = c, y ≥K∗ 0}

= ϕ(b) + t sup{dT y : y ∈ Rm, AT y = c, y ≥K∗ 0}.

Thus, the inequality (15) has been proved for all t ∈ [0, τ ]. 2

We now consider the case where K is a polyhedral convex cone.

Theorem 5.2 Suppose that K is a polyhedral convex cone and ϕ(b) is finite.

Then for every d ∈ Rn, there exists τ > 0 such that

ϕ(b+td) = ϕ(b)+t sup
{
dT y : y ∈ Rm, AT y = c, y ≥K∗ 0, bT y = ϕ(b)

}
(19)

for all t ∈ (0, τ ].

Proof Since K is a polyhedral convex cone in Rm, there exists a matrix

B ∈ Rk×m satisfying K = {y ∈ Rm : By ≥Rk
+

0}. Then, the problem (P) can
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be written in the form

min{cTx : x ∈ Rn, BAx ≥Rk
+
Bb}. (P’)

The dual problem of (P’) is the problem

max{(Bb)T z : z ∈ Rk, (BA)T z = c, z ≥Rk
+

0}. (D’)

Since ϕ(b) is finite, the (P’) has a solution. Moreover, both of two problems

(P’) and (D’) have solutions and the optimal values are equal. Then, for every

d ∈ Rm, by using Theorem 1 in [12] for the problem (P’), one gets

ϕ(b+ td) = inf{cTx : x ∈ Rn, Ax ≥K b+ td}

= inf{cTx : x ∈ Rn, BAx ≥Rk
+
Bb+ tBd}

= ϕ(b) + t sup{(Bd)T z : z ∈ Rk
+, (BA)T z = c, (Bb)T z = ϕ(b)}

= ϕ(b) + t sup{dT (BT z) : z ∈ Rk
+, A

T (BT z) = c, bT (BT z) = ϕ(b)}

for any t > 0 sufficiently small. Denote BT z = y, we have

ϕ(b+ td) = ϕ(b) + t sup{dT y : y ∈ BT (Rk
+), AT y = c, bT y = ϕ(b)}. (20)

On the other hand, since K = {y ∈ Rm : Biy ≥ 0, i = 1, 2, . . . , k}, where Bi

denotes the i-row of the matrix B, one has

K∗ =

{
k∑

i=1

λiB
T
i : λi ≥ 0, i = 1, 2, . . . , k

}

by Proposition 2.42 in [7]; hence K∗ = BT (Rk
+). Combining the later and the

equation (20), we can assert that (19) holds. 2

Remark 5.1 Theorem 5.2 is a generalization of Theorem 1 in [12], where the

case K = Rm
+ was treated.
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The following two examples are designed as illustrations for Theorem 5.1.

Example 5.1 Consider the conic problem (P) with x = (x1, x2)T ∈ R2, K is

the Lorentz cone in R3, A =


0 0

0 1

1 0

, b = (−1, 0, 0)T , c = (1, 0)T . We have

F(P) =
{
x ∈ R2 : x1 ≥

√
1 + x2

2

}
. (21)

Clearly, ϕ(b) = 1 and S(P) =
{

(1, 0)T
}
. Note that AT y = c iff y2 = 0 and

y3 = 1. In addition K∗ = K. It follows that

F(D) = {y = (y1, 0, 1)T ∈ R3 : −1 ≤ y1 ≤ 1}.

Obviously, S(D) = {(−1, 0, 1)T }. Given d ∈ R3 with d1 > 0, and for every

t > 0, one has Ax ≥K b+ td iff x1 ≥
√

(1− td1)2 + (x2 − td2)2 + td3. On one

hand, for t small enough,

ϕ(b+ td) =
√

(1− td1)2 + td3 = |1− td1|+ td3 = 1 + t(d3 − d1).

On the other hand, ϕ(b) + t sup{dT y : y ∈ S(D)} = 1 + t(d3 − d1) and

ϕ(b) + t sup{dT y : y ∈ F(D)} = 1 + t sup{d1y1 + d3 : −1 ≤ y1 ≤ 1}

= 1 + t(|d1|+ d3).

Example 5.2 Consider the conic problem (P) with x ∈ R, K is the Lorentz

cone in R3, A =


1

0

0

, b = (0, 0,−1)T , c = 1, and d = (0, 1,−1)T . Clearly,

the condition Ax ≥K b + td is equivalent to 1 + t ≥
√
x2 + t2. For t > 0
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is small enough, the latter can be rewritten as x2 ≤ 2t + 1. It follows that

F(Pt) =
[
−
√

2t+ 1;
√

2t+ 1
]

and ϕ(b+ td) = −
√

2t+ 1. Meanwhile,

F(D) =

{
y = (1, y2, y3)T ∈ R3 : y3 ≥

√
1 + y2

2

}

and S(D) =
{

(1, 0, 1)T
}

. Therefore, ϕ(b) + t sup{dT y : y ∈ F(D)} = −1 − t

and

ϕ(b) + t sup{dT y : y ∈ S(D)} = −1.

It is clear that −1− t ≤ −
√

2t+ 1 < −1 for every t ∈ (0, 1).

6 Properties of the Function ψ(·)

In this section, differentiability properties of the function ψ(·) and some incre-

ment estimates will be obtained.

Theorem 6.1 Suppose that both problems (P) and (D) are strictly feasible.

Then, one has

ψ′(c;h) =


inf

x∈S(P)
xTh if h ∈ AT (Rm)

−∞ if h /∈ AT (Rm).

(22)

Proof By the assumed strict feasibility of (P) and (D) (see Definition 2.1),

there exist x0 ∈ Rn and y0 ∈ Rm such that Ax0 >K b, y0 >K∗ 0, and

AT y0 = c. Since ψ′(c; 0) = 0, formula (22) is valid for h = 0. Fix a vector

h ∈ Rn \ {0} and define the function g : R→ R by

g(t) := −ψ(c+ th) = − inf{(c+ th)Tx : x ∈ Rn, Ax ≥K b} (t ∈ R).



Parametric Conic Linear Programming 27

Note that g(t) 6= −∞ for all t ∈ R and ψ′(c;h) = −g′(0; 1). Thanks to the

weak duality theorem in [5, Theorem 2.4.1 (assertion 2)], we have

cTx0 ≥ v(P) ≥ v(D) ≥ bT y0.

It follows that v(P) > −∞ and v(D) < +∞. So, by Lemma 2.1, (P) and (D)

have solutions, and v(D) = v(P). Hence, the relations g(0) = −ψ(c) = −v(P)

imply that the value g(0) is finite. Clearly, g(t) ≥ −(c+ th)Tx0 for any t ∈ R.

If h ∈ AT (Rm), then h = AT v for some v ∈ Rm. Note that

AT (y0 + tv) = AT y0 + tAT v = c+ th.

Since y0 >K∗ 0, one can find τ > 0 such that y0 + tv >K∗ 0 for every

t ∈ (−τ, τ). For any t ∈ (−τ, τ), applying the weak duality theorem in [5,

Theorem 2.4.1 (assertion 2)] for the conic linear problem

min
{

(c+ th)Tx : x ∈ Rn, Ax ≥K b
}

(23)

and its dual

max
{
bT y : y ∈ Rm, AT y = c+ th, y ≥K∗ 0

}
, (24)

one has (c + th)Tx ≥ bT (y0 + tv) for all x ∈ Rn satisfying Ax ≥K b. Con-

sequently, inf
{

(c + th)Tx : x ∈ Rn, Ax ≥K b
}
≥ bT (y0 + tv). So, we have

g(t) ≤ −bT (y0 + tv). Since g(t) ≥ −(c + th)Tx0 for all t ∈ R, this implies

that g(t) is finite for every t ∈ (−τ, τ). Now, fixing a number t ∈ (−τ, τ) and

applying Lemma 2.1 for the problems (23) and (24), one has

inf
{

(c+ th)Tx : x ∈ Rn, Ax ≥K b}

= sup{bT y : y ∈ Rm, AT y = c+ th, y ≥K∗ 0
}
.
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Therefore,

g(t) = − sup
{
bT y : y ∈ Rm, AT y = c+ th, y ≥K∗ 0

}
= inf

{
(−b)T y : y ∈ Rm, AT y = c+ th, y ≥K∗ 0

}
.

(25)

To apply a result from [3], we define a function f : R× Rm → R by setting

f(t, y) = (−b)T y ∀(t, y) ∈ R× Rm.

Clearly, f is convex and continuous on R × Rm. Let G : R ⇒ Rm be the

multifunction given by G(t) :=
{
y ∈ Rm : AT y = c + th, y ≥K∗ 0

}
. Note

that G is a convex multifunction. Consider the convex optimization problem

min{f(t, y) : y ∈ G(t)}, (26)

which depends on the parameter t ∈ R, and observe by (25) that g(·) is the

optimal value function of this problem. According to a remark given in [3,

p. 113], g(·) is a convex function. Let ȳ be a solution of (D). Then, it is easy

to verify that ȳ is a solution of the parametric problem (26) at t̄ := 0. Hence,

applying [3, Theorem 4.2] for (26) yields

∂g(0) =
⋃

(t∗,y∗)∈∂f(0,ȳ)

{
t∗ +D∗G(0, ȳ)(y∗)

}
.

Since ∂f(t, y) =


 0

−b


, this implies that

∂g(0) = D∗G(0, ȳ)(−b). (27)

By the definition of coderivative for convex multifunctions,

D∗G(0, ȳ)(−b) = {t∗ ∈ R : (t∗, b) ∈ N((0, ȳ), gph G)}

=
{
t∗ ∈ R : t∗t+ bT (y − ȳ) ≤ 0 ∀(t, y) ∈ gph G

}
.
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Hence,

D∗G(0, ȳ)(−b)

=
{
t∗ ∈ R : bT y + t∗t ≤ bT ȳ ∀(t, y) s.t. AT y − th = c, y ≥K∗ 0

}
. (28)

Let

b̃ :=

 b
t∗

 , Ã :=

 A

−hT

 , ỹ :=

y
t

 , K̃ := K × {0}, α := bT ȳ.

Since K̃∗ = K∗×R, the system


AT y − th = c

y ≥K∗ 0

is equivalent to


ÃT ỹ = c

ỹ ≥K̃∗ 0.

Hence, from (28) one gets

D∗G(0, ȳ)(−b) =
{
t∗ ∈ R : b̃T ỹ ≤ α ∀ỹ with ÃT ỹ = c, ỹ ≥K̃∗ 0

}
. (29)

Setting ỹ0 :=

y0

0

, we have ÃT ỹ0 = c and ỹ0 >K̃∗ 0. Hence, by the Farkas-

type result in Lemma 2.2(b), we can assert that the inequality b̃T ỹ ≤ α holds

for every ỹ ∈ Rm × R satisfying ÃT ỹ = c, ỹ ≥K̃∗ 0 iff there exists x ∈ Rn

satisfying Ãx ≥K̃ b̃ and cTx ≤ α. Since Ãx =

 Ax

−hTx

, one sees that the

inequality Ãx ≥K̃ b̃ is equivalent to the system of conditions Ax ≥K b and

−hTx = t∗. Therefore, combining (29) with the description of the feasible
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region of (P), we have

D∗G(0, ȳ)(−b) = {t∗ ∈ R : ∃x ∈ Rn s.t. Ãx ≥K̃ b̃, cTx ≤ α}

= {t∗ ∈ R : ∃x ∈ Rn s.t. Ax ≥K b, −hTx = t∗, cTx ≤ α}

= {−hTx : x ∈ Rn, Ax ≥K b, cTx ≤ bT ȳ}

= {−xTh : x ∈ F(P), cTx ≤ bT ȳ}.

Hence,

D∗G(0, ȳ)(−b) =
{
− xTh : x ∈ F(P), cTx ≤ v(D)

}
. (30)

Since v(D) = v(P), by (30) one has

D∗G(0, ȳ)(−b) = {−xTh : x ∈ F(P), cTx ≤ v(P)} = {−xTh : x ∈ S(P)}.

From this and (27) it follows that ∂g(0) = {−xTh : x ∈ S(P)}. Then, since

g(·) is a proper convex function and 0 ∈ int(dom g), by [28, Theorem 23.4] we

have

g′(0; 1) = sup
s∈∂g(0)

s = sup
x∈S(P)

(−xTh). (31)

As ψ′(c;h) = −g′(0; 1), (31) yields

ψ′(c;h) = − sup
x∈S(P)

(−xTh) = inf
x∈S(P)

xTh.

We have thus proved the first assertion in (22).

Now, let h /∈ AT (Rm). In this case, we have g(t) = +∞ for every t ∈ R\{0}.

Indeed, if g(t) ∈ R for some t ∈ R \ {0}, then the objective function of the

minimization problem (23) is bounded from below. So, applying Lemma 2.1

for the problems (23) and (24), we can assert that (24) has a solution y1.

Since AT y1 = c + th and AT y0 = c, one gets h = AT
[
t−1(y1 − y0)

]
. This is
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impossible because h /∈ AT (Rm). Thus, g(t) = +∞ for every t ∈ R \ {0}. It

follows that g′(0; 1) = +∞. Then we have ψ′(c;h) = −g′(0; 1) = −∞. 2

Remark 6.1 The second anonymous referee of this paper has noticed that

Yildirim [40, Corollary 5.1] gave a formula for computing the directional

derivative of the optimal value function of a linear conic program where the

cost vector is a subject to change. Since the problem setting and the assump-

tions used in [40] are different from ours, Theorem 6.1 and Corollary 5.1 in [40]

are independent results. Namely, as observed in Remark 4.4, Yildirim consid-

ered linear conic programs of canonical form, while we consider linear conic

programs of standard form. In [40], the right-hand-side of the linear equality

Ax = b and the cost vector c are perturbed. The key assumptions of [40,

Corollary 5.1] are that the primal problem and the dual problem satisfy the

primal–dual Slater condition [40, pp. 409–410] and the linear operator A is

surjective [40, p. 406]. From these assumptions it follows that both primal

problem and dual problem have nonempty and bounded solution sets. Mean-

while, Theorem 6.1 does not require the surjectivity of A and the assumptions

made need not imply that S(P) is bounded.

Proposition 6.1 For every h ∈ Rm and t > 0, one has

ψ(c+ th) ≥ ψ(c) + t inf
x∈F(P)

hTx, (32)

and

ψ(c+ th) ≤ ψ(c) + t inf
x∈S(P)

hTx. (33)
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Proof Let h ∈ Rm and t > 0 be given arbitrarily. Clearly,

ψ(c+ th) = inf
{

(c+ th)Tx : x ∈ F(P)
}

≥ inf
{
cTx : x ∈ F(P)

}
+ inf

{
thTx : x ∈ F(P)

}
= ψ(c) + t inf

{
hTx : x ∈ F(P)

}
.

So, the inequality in (32) is valid. In addition,

ψ(c+ th) = inf
{

(c+ th)Tx : x ∈ F(P)
}

≤ inf
{

(c+ th)Tx : x ∈ S(P)
}

= ψ(c) + t inf
x∈S(P)

hTx.

This means that the estimate (33) holds. 2

Example 6.1 Consider problem (P) in the setting and notations of Exam-

ple 5.1. Choose h = (0,−1)T . For 0 < t < 1, using (21) one has

ψ(c+ th) = inf
{
x1 − tx2 : x = (x1, x2) ∈ R2, x1 ≥

√
1 + x2

2

}
= inf

{√
1 + x2

2 − tx2 : x2 ∈ R
}

=
√

1− t2.

Note that ψ(c) = ϕ(b) = 1. Since F(P) =
{
x ∈ R2 : x1 ≥

√
1 + x2

2

}
, (32)

gives the trivial lower estimate ψ(c+ th) ≥ −∞ for every t > 0. Meanwhile, as

S(P) =
{

(1, 0)T
}

, (33) gives the upper estimate ψ(c+ th) ≤ 1 for every t > 0.

Therefore, both estimates (32) and (33) are strict for all t ∈ (0, 1).

The next increment formula for ψ is a generalization of the corresponding

result stated in [12, p. 119], where the case K = Rm
+ was considered.
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Theorem 6.2 Suppose that K is a polyhedral convex cone, (P) is feasible,

and (D) is strictly feasible. Then, for every h ∈ AT (Rm), there exists τ > 0

such that

ψ(c+ th) = ψ(c) + t inf
x∈S(P)

hTx. (34)

for all t ∈ (0, τ).

Proof By our assumptions, there exists y0 ∈ Rm such that AT y0 = c and

y0 >K∗ 0. Since h ∈ AT (Rm), there is v ∈ Rm satisfying h = AT v. Then, one

has AT (y0 + tv) = AT y0 + tAT v = c+ th. As y0 >K∗ 0, there exists a number

τ ′ > 0 such that y0 + tv >K∗ 0 for all t ∈ (−τ ′, τ ′). For each t ∈ (−τ ′, τ ′), the

linear optimization problem min
{

(c + th)Tx : x ∈ Rn, Ax ≥K b
}

and its

dual max
{
bT y : y ∈ Rm, AT y = c + th, y ≥K∗ 0

}
are feasible. Therefore,

by the well-known strong duality theorem in linear programming one has

ψ(c+ th) = inf
{

(c+ th)Tx : x ∈ Rn, Ax ≥K b
}

= sup
{
bT y : y ∈ Rm, AT y = c+ th, y ≥K∗ 0

}
and ψ(c+ th) is finite. So,

ψ(c+ th) = − inf
{

(−b)T y : y ∈ Rm, AT y = c+ th, y ≥K∗ 0
}

= − inf
{

(−b)T y : y ∈ Rm, AT y ≥ c+ th,

−AT y ≥ −(c+ th), y ≥K∗ 0
}

= − inf
{

(−b)T y : y ∈ Rm, My ≥L c̃+ th̃
}
,

(35)

where

M :=


AT

−AT

Em

 ∈ R(2n+m)×m, c̃ :=


c

−c

0

 ∈ R2n+m, h̃ :=


h

−h

0

 ∈ R2n+m,
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Em denotes the unit matrix in Rm×m, and L := Rn
+ × Rn

+ × K∗. Clearly,

L is a polyhedral convex cone. So, applying Theorem 5.2 to the problem

inf
{

(−b)T y : y ∈ Rm, My ≥L c̃ + th̃
}
, one finds a number τ ∈ (0, τ ′)

such that for any t ∈ (0, τ) one has

inf
{

(−b)T y : y ∈ Rm, My ≥L c̃+th̃
}

= inf
{

(−b)T y : y ∈ Rm, My ≥L c̃
}

+ t sup
{
h̃T z : z ∈ R2n+m, MT z = −b, z ≥L∗ 0, c̃T z = inf

My≥Lc̃
(−b)T y

}
.

Combining this with (35), we have

ψ(c+ th) = ψ(c)

− t sup
{
h̃T z : z ∈ R2n+m, MT z = −b, z ≥L∗ 0, c̃T z = −ψ(c)

}
, (36)

where the equality ψ(c) = inf
{

(−b)T y : y ∈ Rm, My ≥L c̃
}

follows from (35)

if one takes t = 0. Substituting z =


u

v

w

 with u, v ∈ Rn and w ∈ Rm into (36),

one gets

ψ(c+ th) = ψ(c)− t sup
{
hTu− hT v : u, v ∈ Rn

+, w ∈ K,

Au−Av + w = −b, cTu− cT v = −ψ(c)
}
.

Setting x := v − u, one has

ψ(c+ th) = ψ(c)

− t sup
{
− hTx : x ∈ Rn, w ∈ K,w = Ax− b, −cTx = −ψ(c)

}
= ψ(c) + t inf

{
hTx : x ∈ Rn, w ∈ K,w = Ax− b, cTx = ψ(c)

}
= ψ(c) + t inf

{
hTx : x ∈ Rn, Ax ≥K b, cTx = ψ(c)

}
= ψ(c) + t inf

x∈S(P)
hTx.
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This proves that (34) holds. 2

7 Conclusions

Based on strict feasibility conditions and the duality theory in the conic lin-

ear programming, we have shown that two optimal value functions of a conic

linear program, where either the inequality constraint is linearly perturbed or

the objective function is linearly perturbed, have some nice continuity and dif-

ferentiability properties. It turns out that if the convex cone is non-polyhedral,

then the behaviors of the optimal value functions in question are more com-

plicated than that of the corresponding optimal value functions of a linear

program.

It would be interesting to have any example showing that the strict feasi-

bility assumption cannot be dropped in the formulation of Theorem 4.1.

Properties of the solution maps of parametric conic linear programs and

generalizations of our results for infinite-dimensional conic linear programming

deserve further investigations. It would be reasonable to start from the duality

theories given by Bonnans and Shapiro [7, pp. 125–132] and Shapiro [34] for

conic linear programs on paired locally convex topological vector spaces.
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