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Abstract. Linear fractional vector optimization problems are special non-
convex vector optimization problems. They were introduced and first
studied by E. U. Choo and D. R. Atkins in the period 1982–1984. This
paper investigates the properness in the sense of Geoffrion of the effi-
cient solutions of linear fractional vector optimization problems with un-
bounded constraint sets. Sufficient conditions for an efficient solution to
be a Geoffrion’s properly efficient solution are obtained via Benson’s char-
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1 Introduction

Introduced and firstly studied by Choo and Atkins [5, 6, 7], linear fractional vector
optimization problems (LFVOPs) have many applications in management science and
other fields. The problems have noteworthy properties and theoretical importance.

Topological properties of the solution sets of those problems and monotone affine
vector variational inequalities have been studied by Choo and Atkins [6, 7], Benoist [1,
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2 Proper Efficiency in Vector Optimization

2], Yen and Phuong [26], Hoa et al. [10, 11, 12], Huong et al. [13, 15], and other
authors. Necessary and sufficient conditions of the efficient solutions, stability prop-
erties, solution methods, and applications of this class of problems can be seen in
[19, 20, 24, 25].

Geoffrion’s proper efficiency concept [8], which was proposed for vector optimiza-
tion problems with the standard ordering cone (the nonnegative orthant of an Eu-
clidean space), has been extended for the case of problems with an arbitrary closed
convex ordering cone by Borwein [4] and Benson [3]. Borwein’s proper efficiency may
differ from that of Geoffrion even if the ordering cone is the standard one. To rec-
tify this situation, Benson’s concept of proper efficiency [3] coincides with that of
Geoffrion when the ordering cone is the standard one.

It is a well known that there is no difference between efficiency and Geoffrion’s
proper efficiency in linear vector optimization problem (see [23, Corollary 3.1.1 and
Theorem 3.1.4] and [16, Remark 2.4]). By using necessary and sufficient conditions
for efficiency in linear fractional vector optimization, Choo [5] has proved that the
efficient solution set of a solution of a LFVOP with a bounded constraint set coincides
with the Geoffrion’s properly efficient solution set.

Recently, Huong, Yao, and Yen [16] have given sufficient conditions for an efficient
solution of a LFVOP with an unbounded constraint set to be a Geoffrion’s properly
efficient solution via a direct approach. The recession cone of the constraint set and
the derivatives of the scalar objective functions at the point in question are used
in these sufficient conditions. Two new theorems on Geoffrion’s properly efficient
solutions of LFVOPs with unbounded constraint sets and seven illustrative examples
can be found in a subsequent paper [17] of these authors. Provided that all the
components of the objective function are properly fractional, Theorem 3.2 from [17]
gives sufficient conditions for the efficient solution set to coincide with the Geoffrion
properly efficient solution set. Allowing the objective function to have some affine
components, Theorem 3.4 of [17] states sufficient conditions for an efficient solution
to be a Geoffrion’s properly efficient solution.

Verifiable sufficient conditions for an efficient point of a LFVOP to be a Borwein’s
properly efficient point have been obtained in [14].

In the present paper, sufficient conditions for an efficient solution of a LFVOP
with an unbounded constraint set to belong to Geoffrion’s properly efficient solution
set are obtained via Benson’s characterization of Geoffrion’s proper efficiency. The
conditions rely on the recession cone of the constraint set, the derivatives of the scalar
objective functions, and the tangent cone of the constraint set at the efficient solution.
Our result complements Theorems 3.1 and 3.2 of [16] and generalizes the theorem of
Choo [5, p. 218] to the case of LFVOPs with arbitrary polyhedral convex constraint
sets.

We would like to devote this paper to the 75th birthday of Prof. Phan Quoc
Khanh, who has made remarkable research works on proper solutions of vector opti-
mization problems [18] and approximate proper solutions of vector equilibrium prob-
lems [9].

The paper organization is as follows. Section 2 recalls some notations, definitions,
and known results. Section 3 establishes the main result. Illustrative examples are
given in Section 4.
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2 Preliminaries

We denote by N the set of the positive integers. The scalar product and the norm
in Rn are denoted, respectively, by 〈·, ·〉 and ‖ · ‖. Vectors in Rn are represented by
columns of real numbers in matrix calculations, but they are written as rows of real
numbers in the text. If A is a matrix, then AT stands for the transposed matrix of
A. Thus, for any x, y ∈ Rn, one has 〈x, y〉 = xTy.

Let M ⊂ Rn and x̄ ∈ M , where M stands for the topological closure of M . The
Bouligand-Severi tangent cone (see, e.g., [22]) of M at x̄ is the set

T (x̄;M) :=
{
v ∈ Rn : ∃{tk} ⊂ R+ \ {0}, tk → 0, ∃{vk} ⊂ Rn, vk → v,

x̄+ tkv
k ∈M ∀k ∈ N

}
.

It is well known that T (x̄;M) is a closed cone, which may be nonconvex if M is
a nonconvex set. When M is convex, one has T (x̄;M) = cone(M − x̄) with

coneQ = {λu : λ > 0, u ∈ Q}

for any Q ⊂ Rn and coneQ := coneQ.
A nonzero vector v ∈ Rn (see [21, p. 61]) is said to be a direction of recession of

a nonempty convex set M ⊂ Rn if x + tv ∈ M for every t ≥ 0 and every x ∈ M.
The set composed by 0 ∈ Rn and all the directions v ∈ Rn \ {0} satisfying the last
condition, is called the recession cone of M and denoted by 0+M. If M is closed and
convex, then 0+M = {v ∈ Rn : ∃x ∈ Ω s.t. x+ tv ∈M for all t > 0}.

Lemma 2.1 (See, e.g., [16, Lemma 2.10]) Let C ⊂ Rn be closed and convex, x̄ ∈ C,

and let {xp} be a sequence in C \ {x̄} with lim
p→∞
‖xp‖ = +∞. If lim

p→∞

xp − x̄
‖xp − x̄‖

= v,

then v ∈ 0+C.

For any x̄ ∈ K, where K is a convex set, one has 0+K ⊂ TK(x̄). Consider linear
fractional functions fi : Rn → R, i = 1, . . . ,m, of the form

fi(x) =
aTi x+ αi

bTi x+ βi
,

where ai ∈ Rn, bi ∈ Rn, αi ∈ R, and βi ∈ R. Let K be a polyhedral convex set, i.e.,
there exist p ∈ N, a matrix C = (cij) ∈ Rp×n, and a vector d = (di) ∈ Rp such that
K =

{
x ∈ Rn : Cx ≤ d

}
.

We assume that bTi x + βi > 0 for all i ∈ I and x ∈ K, where I := {1, · · · ,m}.
Put f(x) = (f1(x), . . . , fm(x)) and let

Ω =
{
x ∈ Rn : bTi x+ βi > 0, ∀i ∈ I

}
.

Clearly, Ω is open and convex, K ⊂ Ω, and f is continuously differentiable on Ω. The
linear fractional vector optimization problem (LFVOP) given by f and K is formally
written as

(VP) Minimize f(x) subject to x ∈ K.
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Definition 2.2 A point x ∈ K is said to be an efficient solution (or a Pareto solution)
of (VP) if

(
f(K) − f(x)

)
∩
(
− Rm

+ \ {0}
)

= ∅, where Rm
+ denotes the nonnegative

orthant in Rm. One calls x ∈ K a weakly efficient solution (or a weak Pareto solution)
of (VP) if

(
f(K)− f(x)

)
∩
(
− intRm

+

)
= ∅, where intRm

+ abbreviates the topological
interior of Rm

+ .

The efficient solution set (resp., the weakly efficient solution set) of (VP) are
denoted, respectively, by E and Ew.

Lemma 2.3 (See, e.g., [20] and [19, Lemma 8.1]) Let ϕ(x) =
aTx+ α

bTx+ β
be a linear

fractional function defined by a, b ∈ Rn and α, β ∈ R. Suppose that bTx + β 6= 0 for
every x ∈ K0, where K0 ⊂ Rn is an arbitrary polyhedral convex set. Then, one has

ϕ(y)− ϕ(x) =
bTx+ β

bTy + β
〈∇ϕ(x), y − x〉,

for any x, y ∈ K0, where ∇ϕ(x) denotes the Fréchet derivative of ϕ at x.

Definition 2.4 (See [8, p. 618]) One says that x̄ ∈ E is a Geoffrion’s properly efficient
solution of (VP) if there exists a scalar M > 0 such that, for each i ∈ I, whenever
x ∈ K and fi(x) < fi(x̄) one can find an index j ∈ I such that fj(x) > fj(x̄) and

Ai,j(x̄, x) ≤M with Ai,j(x̄, x) :=
fi(x̄)− fi(x)

fj(x)− fj(x̄)
.

For LFVOPs, the ordering cone is the standard one. So, the notion of properly
efficient solution in the sense of Benson [3] is as follows.

Definition 2.5 ([3, Def. 2.4]) An element x̄ ∈ K is called a Benson properly efficient
solution of (VP) if

cone
(
f(K) + Rm

+ − f(x̄)
)
∩
(
−Rm

+

)
= {0}. (2.1)

The Benson properly efficient solution set of (VP) is denoted by EBe. Since (2.1)
surely yields

(
f(K) − f(x̄)

)
∩
(
−Rm

+

)
= {0}, property (2.1) implies that x̄ ∈ E.

Applying [3, Theorem 3.2] to (VP), we get the following result.

Proposition 2.6 One has EGe = EBe, i.e., the Benson properly efficient solution set
of (VP) coincides with the Geoffrion properly efficient solution set of that problem.

The equality EGe = EBe allows us to use the criterion (2.1) to verify whether x̄
is a properly efficient solution of (VP) in the sense of Geoffrion, or not. Sometimes,
checking (2.1) is easier than checking the condition in Definition 2.4. Next theorem
is due to Choo [5].

Remark 2.7 (See [5, p. 218]) If K is bounded, then E = EGe.

The following lemma is straightforward but useful and interesting in itself. We
thank the anonymous reviewer for providing us with this and so Section 3 will have
the shorter proof in our scheme.
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Lemma 2.8 Let A ⊆ Rm. One has

cone
(
A+ Rm

+

)
∩
(
−Rm

+

)
= {0} ⇔ cone

(
A
)
∩
(
−Rm

+

)
= {0}.

Proof. The implication (⇒) is clear because A ⊂ A + Rm
+ . For (⇐), suppose to the

contrary that cone
(
A
)
∩
(
−Rm

+

)
= {0}, but there are some v ∈ −Rm

+ , v 6= 0, tk > 0,
rk ∈ Rm

+ and ak ∈ A, k ∈ N such that

lim
k→∞

[
tk(ak + rk)

]
= v.

Setting uk = tkr
k ∈ Rm

+ , we have

v = lim
k→∞

(
tka

k + uk
)
.

If the sequence {uk} is bounded, we may assume it converge to some u ∈ Rm
+ . This

implies lim
k→∞

tka
k = v − u ∈ −Rm

+ \ {0} − Rm
+ = −Rm

+ \ {0} that contradicts the

hypothesis. Consider the case {uk} is unbounded, by considering a subsequence (if
necessary), we may assume that lim

k→∞
‖uk‖ = +∞ and uk 6= 0 for all k. Furthermore,

there is no loss of generality in assuming that lim
k→∞

(
‖uk‖−1uk

)
= z, where z ∈ Rm

+\{0}.
Then

0 = lim
k→∞

v

‖uk‖
= lim

k→∞

( tk
‖uk‖

ak +
uk

‖uk‖

)
.

We arrive at a contradiction that −z = lim
k→∞

tk
‖uk‖

ak ∈ cone
(
A
)
.

3 Sufficient Conditions for the Geoffrion Proper

Efficiency

In this section, we will establish a new theorem on the Geoffrion proper efficiency
LFVOPs. It is proved by using the criterion of Benson for the Geoffrion proper
efficiency, which has been recalled in Proposition 2.6.

Note that some objective functions of (VP) may be linear (affine, to be more
precise), i.e., one may have fi(x) = aTi x+αi for some i ∈ I. Let I1 := {i ∈ I : bi 6= 0}.
Then, bi = 0 and βi = 1 for all i ∈ I0, where I0 := I \ I1.

Lemma 3.1 If for some u ∈ T (x̄;K) \ {0} where x̄ ∈ K one has 〈∇fi(x̄), u〉 ≤
0 for all i ∈ I and at least one inequality is strict, then x̄ is not efficient.

Proof. Let u ∈ T (x̄;K) \ {0}, x̄ ∈ K. As K is a polyhedral convex set, there is a
number τ > 0 such that [x̄, x̄+τu] ⊂ K. Hence, for any fixed t ∈ (0, τ ], by Lemma 2.3
one has

fi(x̄+ tu)− fi(x̄) =
bTi x̄+ βi

bTi (x̄+ tu) + βi
〈∇fi(x̄), tu〉 (i ∈ I). (3.1)

Since bTi x + βi > 0 for all x ∈ K, i ∈ I and 〈∇fi(x̄), u〉 ≤ 0, for all i ∈ I, from (3.1)
it follows that

fi(x̄+ tu) ≤ fi(x̄) (∀i ∈ I). (3.2)

Since at least one inequality in 〈∇fi(x̄), u〉 ≤ 0, for all i ∈ I, is strict, we have
fi0(x̄+ tū) < fi0(x̄). Combining the latter with (3.2) implies x̄ /∈ E.



6 Proper Efficiency in Vector Optimization

Theorem 3.2 Assume that x̄ ∈ E. If K is bounded, then x̄ ∈ EGe. In the case
where K is unbounded, if the regularity assumptions{

There is no z ∈ T (x̄;K) \ {0} such that
〈∇fi(x̄), z〉 = 0 for all i ∈ I

(3.3)

and {
For any z ∈ (0+K) \ {0}, aTi z > 0 for all i ∈ I0
and bTi z > 0 for all i ∈ I1,

(3.4)

are satisfied, then x̄ ∈ EGe.

Proof. If K is bounded, then by Remark 2.7 one has x̄ ∈ EGe. Now, consider the
situation where K is unbounded. Suppose to the contrary that x̄ /∈ EGe, that is, due
to Lemma 2.8 and Proposition 2.6, there are some v = (v1, . . . .vm) ∈ −Rm

+ \ {0},
vk ∈ cone

(
f(K) − f(x̄)

)
for all k ∈ N with lim

k→∞
vk = v ≤ 0 and there exists i0 ∈ I

such that vi0 < 0. Then, there exist xk ∈ K, τk > 0 such that vki = τk
(
f(xk)− f(x̄)

)
.

By Lemma 2.3 one has

vki =
bTi x̄+ βi
bTi x

k + βi
〈∇fi(x̄), τk(xk − x̄)〉 (i ∈ I). (3.5)

Case 1: The sequence {xk} is bounded. In this case, we may assume that {xk}
converges to a point x̂ ∈ K. Then, we have lim

k→∞

(
bTi x

k + βi
)

= bTi x̂+ βi > 0.

If the sequence {τk(xk−x̄)} is bounded, we may assume that lim
k→∞

[
τk(xk−x̄)

]
= ū,

where ū ∈ Rn. If ū = 0 then, passing (3.5) to limit as k → ∞, we get vi = 0 for all
i ∈ I, which contradict the property v ∈ −Rm

+ \ {0}. If ū 6= 0, then passing (3.5) to
the limit as k →∞ gives

vi =
bTi x̄+ βi
bTi x̂+ βi

〈∇fi(x̄), ū〉 (i ∈ I). (3.6)

This implies that

〈∇fi(x̄), ū〉 =
bTi x̂+ βi
bTi x̄+ βi

vi ≤ 0 (i ∈ I) (3.7)

Since vi0 < 0 from (3.6) it follows that 〈∇fi0(x̄), ū〉 < 0. Combining this with (3.7),
one has x̄ /∈ E by Lemma 3.1.

If {τk(xk − x̄)} is unbounded, we may assume that lim
k→∞

τk‖(xk − x̄)‖ = +∞. Put

zk = ‖xk − x̄‖−1
(
xk − x̄

)
. Hence, by the closedness of the Bouligand-Severi tangent

cone, lim
k→∞

zk = z̄ ∈ T (x̄;K). For every k, from (3.5) it follows that

vki
τk‖(xk − x̄)‖

=
bTi x̄+ βi
bTi x

k + βi

〈
∇fi(x̄), zk

〉
(i ∈ I). (3.8)

Passing the inequalities in (3.8) to limit as k →∞ and note that bTi x+ βi > 0 for all
x ∈ K, i ∈ I, one has

〈∇fi(x̄), w̄〉 = 0 (i ∈ I). (3.9)
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This is in contradiction with assumption (3.3).
Case 2: {xk} is unbounded. By taking a subsequence if necessary we may assume

that lim
k→∞
‖xk‖ = +∞ and xk 6= x̄ for all k ∈ N. By (3.5), one has

vki =
bTi x̄+ βi
bTi x

k + βi
〈∇fi(x̄), τk(xk − x̄)〉 (i ∈ I1). (3.10)

Since bi = 0, βi = 1, and ∇fi(x̄) = ai for all i ∈ I0, by (3.5) one has

vki = aTi [τk(xk − x̄)] (i ∈ I0). (3.11)

From (3.10) it follows that

vki =
bTi x̄+ βi

bTi (xk − x̄)

‖xk − x̄‖
+

βi
‖xk − x̄‖

+
bTi x̄

‖xk − x̄‖

〈
∇fi(x̄), τk

xk − x̄
‖xk − x̄‖

〉
(3.12)

for every i ∈ I1.
If {τk} is bounded, we may assume that lim

k→∞
τk = τ̄ . Clearly, τ̄ ≥ 0. Then

lim
k→∞

τk
xk − x̄
‖xk − x̄‖

= lim
k→∞

τkz
k = τ̄ z̄ with ‖z‖ = 1, and z ∈ (0+K) \ {0}.

First, suppose that τ̄ 6= 0. By the regularity condition (3.4), we have bTi z̄ > 0 for
every i ∈ I1. Taking the limits in (3.12) as k →∞, we get

vi = τ̄
bTi x̄+ βi
bTi z̄

〈∇fi(x̄), z̄〉 (i ∈ I1). (3.13)

This means that

〈∇fi(x̄), z̄〉 = τ̄
bTi z̄

bTi x̄+ βi
vi ≤ 0 (i ∈ I1). (3.14)

From (3.11) it follows that

vki
‖xk − x̄‖

= aTi τk
xk − x̄
‖xk − x̄‖

(i ∈ I0). (3.15)

Taking the limits in (3.15) as k →∞, we get

0 = aTi τ̄ z̄ (i ∈ I0). (3.16)

This means that 〈∇fi(x̄), z̄〉 = 0 for all i ∈ I0. Since vi0 < 0 from (3.14) and
(3.16) it follows that i0 ∈ I1 and 〈∇fi0(x̄), ū〉 < 0. Then, by Lemma 3.1, x̄ /∈ E, a
contradiction.

Now, suppose that τ̄ = 0. Letting k →∞, from (3.12) we get

vi = 0 (i ∈ I1). (3.17)

By (3.11), for every i ∈ I0, one has

vki = τk‖xk − x̄‖aTi
(

xk − x̄
‖xk − x̄‖

)
= τk‖xk − x̄‖〈∇fi(x̄), zk〉. (3.18)
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Since lim
k→∞

zk = lim
k→∞

xk − x̄
‖xk − x̄‖

= z̄, where z̄ is a unit vector belonging to the recession

cone 0+K, by the regularity condition (3.4) we have 〈∇fi(x̄), z̄〉 = aTi z̄ > 0 for every
i ∈ I0. Then, there exists an integer k0 such that τk〈∇fi(x̄), zk〉 > 0 for all k ≥ k0.
For each i ∈ I0, combining this with (3.18) we get vki ≥ 0 for all k ≥ k0. Hence,
passing the inequality vki ≥ 0 to limit as k →∞ gives

vi ≥ 0 (i ∈ I0). (3.19)

The inequalities in (3.17) and (3.19) mean that v ≥ 0. We have thus arrived at a
contradiction, because v ≤ 0 and vi0 < 0.

If {τk} is unbounded, we may assume that lim
k→∞

τk = +∞. From (3.12) it follows

that
vki
τk

=
bTi x̄+ βi

bTi (xk − x̄)

‖xk − x̄‖
+

βi
‖xk − x̄‖

+
bTi x̄

‖xk − x̄‖

〈
∇fi(x̄),

xk − x̄
‖xk − x̄‖

〉
(3.20)

for every i ∈ I1. By (3.11), one has

vki
τk‖xk − x̄‖

= aTi

(
xk − x̄
‖xk − x̄‖

)
(i ∈ I0). (3.21)

By condition (3.4), bTi z̄ > 0 for every i ∈ I1. Since lim
k→∞
‖xk‖ = +∞, one has

lim
k→∞
‖xk − x̄‖ = +∞. Not that z̄ ∈ (0+K) \ {0} ⊂ T (x̄;K) \ {0}. Passing (3.20) to

limit as k →∞, we get
〈∇fi(x̄), z̄〉 = 0 (i ∈ I1). (3.22)

Passing (3.21) to limit as k →∞, we get 0 = aTi z̄ (i ∈ I0). Hence

〈∇fi(x̄), z̄〉 = 0 (i ∈ I0). (3.23)

(3.22) and (3.23) give a contradiction with (3.3). 2

4 Illustrative Examples

To show the usefulness of Theorem 3.2, we will apply it to some examples, which
were analyzed in [16] by other results and methods.

Example 4.1 (See [7, Example 2]) Consider problem (VP) with

K =
{
x = (x1, x2) ∈ R2 : x1 ≥ 2, 0 ≤ x2 ≤ 4

}
,

f1(x) =
−x1

x1 + x2 − 1
, f2(x) =

−x1
x1 − x2 + 3

.

It is well known that E = Ew =
{

(x1, 0) : x1 ≥ 2} ∪ {(x1, 4) : x1 ≥ 2
}
. Since

I1 = I and 0+K = {v = (v1, 0) : v1 ≥ 0}, condition (3.4) is fulfilled. For any
x = (x1, x2) ∈ K, one has

∇f1(x) =

 −x2 + 1

(x1 + x2 − 1)2
x1

(x1 + x2 − 1)2

 , ∇f2(x) =


x2 − 3

(x1 − x2 + 3)2
−x1

(x1 − x2 + 3)2

 .
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So, for any x̄ ∈ {(x̄1, 0) : x̄1 ≥ 2} ∪
{

(x1, 4) : x1 ≥ 2
}

and v = (v1, v2) ∈ R2, one
sees that {

〈∇f1(x̄), v〉 = 0
〈∇f2(x̄), v〉 = 0

⇐⇒
{
v1 = 0
v2 = 0.

Hence, condition (3.3) is satisfied for any x̄ ∈ E. Thus, by Theorem 3.2 we can assert
that EGe = E.

Example 4.2 (See [11, p. 483]) Consider problem (VP) where n = m = 3,

K =
{
x ∈ R3 : x1 + x2 − 2x3 ≤ 1, x1 − 2x2 + x3 ≤ 1,

−2x1 + x2 + x3 ≤ 1, x1 + x2 + x3 ≥ 1
}
,

and

fi(x) =
−xi +

1

2

x1 + x2 + x3 −
3

4

(i = 1, 2, 3).

According to [11], one has

E = Ew = {(x1, x2, x3) : x1 ≥ 1, x3 = x2 = x1 − 1}
∪{(x1, x2, x3) : x2 ≥ 1, x3 = x1 = x2 − 1}
∪{(x1, x2, x3) : x3 ≥ 1, x2 = x1 = x3 − 1}.

(4.1)

Since 0+K = {v = (τ, τ, τ) : τ ≥ 0} and I1 = I, it is easy to verify that condition (3.4)

is satisfied. Now, setting p(x) =
(
x1 + x2 + x3 −

3

4

)2
, one has

∇f1(x) =
1

p(x)

(
−x2 − x3 +

1

4
, x1 −

1

2
, x1 −

1

2

)
,

∇f2(x) =
1

p(x)

(
x2 −

1

2
,−x1 − x3 +

1

4
, x2 −

1

2

)
,

∇f3(x) =
1

p(x)

(
x3 −

1

2
, x3 −

1

2
,−x1 − x2 +

1

4

)
.

Given any x̄ ∈ E and v = (τ, τ, τ) ∈ 0+K, by (4.1) we see that one of the following
situations must occur: (i) x1 ≥ 1, x3 = x2 = x1−1; (ii) x2 ≥ 1, x3 = x1 = x2−1; (iii)
x3 ≥ 1, x2 = x1 = x3 − 1. If (i) occurs (resp., (ii), or (iii) occurs), then the equality
〈∇f1(x̄), v〉 = 0 (resp., 〈∇f2(x̄), v〉 = 0, or 〈∇f3(x̄), v〉 = 0) means that 1

4
τ = 0. Thus,

condition (3.3) is fulfilled for any x̄ ∈ E, and we have EGe = E by Theorem 3.2.

Example 4.3 (See [11, pp. 479–480]) Consider problem (VP) where n = m, m ≥ 2,

K =
{
x ∈ Rm : x1 ≥ 0, x2 ≥ 0, . . . , xm ≥ 0,

m∑
k=1

xk ≥ 1
}
,

and

fi(x) =
−xi +

1

2
m∑
k=1

xk −
3

4

(i = 1, . . . ,m).
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Note that 0+K = Rm
+ . Setting q(x) =

(
m∑
k=1

xk −
3

4

)2

, we have

∇fi(x) =
1

q(x)

(
xi −

1

2
, ...,−

∑
k 6=i

xk +
1

4
, ..., xi −

1

2

)

where the expression −
∑
k 6=i

xk +
1

4
is the i−th component of ∇fi(x). Hence, the

equality EGe = E can be proved by using Theorem 3.2 similarly as it has been done
in the preceding example.

Example 4.4 (See [16, Example 2.6]) Consider the problem (VP) where

K =
{
x = (x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0

}
,

f1(x) = −x2, f2(x) =
x2

x1 + x2 + 1
.

As it has been shown in [16], E = {(x1, 0) : x1 ≥ 0} and EGe = ∅. To check the
conditions in Theorem 3.2, note that I0 = {1}, I1 = {2}, a1 = (0,−1)T , b2 = (1, 1)T ,
and 0+K = K. For every efficient solution x̄ = (x̄1, 0), x̄1 > 0, one has

∇f1(x̄) = (0,−1)T , ∇f2(x̄) =

 0
1

x̄1 + 1

 ,

and TK(x̄) = {v = (v1, v2) : v1 ∈ R, v2 ≥ 0}. Hence (3.3) and (3.4) are violated if one
choses v = (1, 0) ∈ (0+K) \ {0} ⊂ TK(x̄) \ {0}. For x̄ = (0, 0) we have TK(x̄) = R2

+.
Conditions (3.3) and (3.4) are violated if one choses v = (1, 0). The violation of the
regularity conditions in Theorem 3.2 is a reason for x̄ /∈ EGe.

Example 4.5 (See [16, Example 4.7]) Consider problem (VP) with m = 3, n = 2,

K =
{
x = (x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0

}
,

f1(x) = −x1 − x2, f2(x) =
x2

x1 + x2 + 1
, f3(x) = x1 − x2.

According to [16], E =
{
x = (x1, x2) : x1 ≥ 0, x2 ≥ 0, x2 < x1 + 1

}
, while

Ew =
{
x = (x1, x2) : x1 ≥ 0, x2 ≥ 0, x2 ≤ x1 + 1

}
.

Let us prove that EGe = ∅. Taking any x̄ = (x̄1, x̄2) ∈ E, one has x̄1 ≥ 0, x̄2 ≥ 0 and
x̄2 < x̄1 + 1. Since (1, 1) ∈ 0+K, we see that xp := x̄ + p(1, 1) belongs to K for any
p ∈ N. One has f1(x

p) < f1(x̄) and f2(x
p) > f2(x̄), while f3(x

p) = f3(x̄). As observed
in Section 2, we will have x̄ /∈ EGe if for every scalar M > 0 there exist x ∈ K and
i ∈ I with fi(x) < fi(x̄) such that, for all j ∈ I satisfying fj(x) > fj(x̄), one has
Ai,j(x̄, x) > M . For each p ∈ N , we choose i = 1. Then, fi(x

p) < fi(x̄) and j = 2 is
the unique index in I satisfying fj(x

p) > fj(x̄). Moreover, for (i, j) = (1, 2), we have

Ai,j(x̄, x
p) = A1,2(x̄, x

p) =
f1(x̄)− f1(xp)
f2(xp)− f2(x̄)

=
−x̄1 − x̄2 − (−x̄1 − x̄2 − 2p)

x̄2 + p

x̄1 + x̄2 + 1 + 2p
− x̄2
x̄1 + x̄2 + 1

=
2(x̄1 + x̄2 + 1 + 2p)(x̄1 + x̄2 + 1)

x̄1 + 1− x̄2
.
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Since x̄1 ≥ 0, x̄2 ≥ 0 and x̄2 < x̄1 + 1, one has lim
p→∞

A1,2(x̄, x
p) = +∞. So, for every

M > 0, there exist p ∈ N and i ∈ I with fi(x
p) < fi(x̄) such that, for all j ∈ I

satisfying fj(x
p) > fj(x̄), one has Ai,j(x̄, x

p) > M . This proves that x̄ /∈ EGe.
The fact that EGe = ∅ can also be proved by using Proposition 2.6. Indeed, take

an element x̄ = (x̄1, x̄2) ∈ E and construct the sequence {xp} ⊂ K as above. We
need to show that (2.1) is not satisfied. For every p ∈ N, choosing up = (0, 0, 0) ∈ R3

+

and tp =
1

p
, one has

lim
p→∞

tp(f(xp) + up − f(x̄)) = lim
p→∞

1

p

f1(x̄+ p(1, 1))− f1(x̄)
f2(x̄+ p(1, 1))− f2(x̄)
f3(x̄+ p(1, 1))− f3(x̄)


= lim

p→∞

1

p


−2p

p(x̄1 + 1− x̄2)
(x̄1 + x̄2 + 1 + 2p)(x̄1 + x̄2 + 1)

0

 =

−2
0
0

 ∈ −R3
+.

This means that cone
(
f(K) +Rm

+ − f(x̄)
)
∩
(
−Rm

+

)
6= {0}. Thus x̄ is not a Benson’s

properly efficient solution of (VP). So, by Proposition 2.6, x̄ /∈ EGe. Since x̄ ∈ E can
be chosen arbitrarily, we can assert that EGe = ∅.

Now, let us check the regularity conditions (3.3) and (3.4) in Theorem 3.2. One
has I0 = {1, 3}, I1 = {2}, and 0+K = K = R2

+. Since ∇f1x̄) = (−1,−1) and
∇f3(x̄) = (1,−1) for every x̄ = (x̄1, x̄2) ∈ E, one simultaneously has 〈∇f1(x̄), z〉 = 0
and 〈∇f3(x̄), z〉 = 0 for z = (z1, z2) ∈ T (x̄;K) \ {0} only if z = (0, 0). So, (3.3) is
fulfilled for all x̄ ∈ E. However, choosing i = 3 and z = (1, 1) ∈ (0+K) \ {0}, one has
i ∈ I0 and aTi z = 0. Hence, (3.4) is violated.

We thank the anonymous reviewers for their valuable suggestions and great help.
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