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Abstract. We study topological zeta functions of complex plane curve singularities using
toric modifications and further developments. As applications of the research method, we
prove that the topological zeta function is a topological invariant for complex plane curve
singularities, we give a short and new proof of the monodromy conjecture for plane curves.

1. Introduction

Let f be a non-constant complex function on a smooth complex algebraic variety X, and let
X0 be its zero locus. In 1992, using an embedded resolution of singularities Denef and Loeser
[5] introduced the topological zeta function for f . Let h : Y → (X,X0) be an embedded
resolution of singularities of X0, i.e, a proper morphism h : Y → X with Y smooth such
that the restriction Y \ h−1(X0)→ X \X0 is an isomorphism and h−1(X0) is a divisor with
normal crossings. The exceptional divisors and irreducible components of the strict transform
of h are denoted by Ei, where i is in a finite set S. The multiplicities Ni of h∗f on Ei and
the discrepancies νi − 1 of the Jacobian of h are determined respectively in the formulas
h−1(X0) =

∑
i∈S NiEi and KY = h∗KX +

∑
i∈S(νi − 1)Ei. For I ⊆ S we write EI for the

intersection
⋂
i∈I Ei and write E◦I for the set EI \

⋃
j 6∈I Ej . For a closed point x in X0, we

denote Sx := {i ∈ S | h(Ei) = x}. With the function f and the morphism h as above, the
associated topological zeta function is defined as follows

Ztop
f (s) =

∑
I⊆S

χ(E◦I )
∏
i∈I

1

Nis+ νi
.

It was shown that the function Ztop
f (s) is independent of the choice of h (cf. [5, Théorème 3.2]),

and its poles are interesting numerical invariants, which concern the monodromy conjecture.
The local topological zeta function Ztop

f,x (s) associated to (f, x) is also defined in the same way

where the sum over I ⊆ S is replaced by the sum over I ⊆ S satisfying I ∩ Sx 6= ∅.

It is a fact that the monodromy conjecture is one of important problems in singularity
theory, algebraic geometry and other branches of mathematics. In Igusa’s original version,
it is expected to be a bridge that connects geometry and arithmetic of a integer-coefficient
polynomial. The topological version was first stated in [5] using the topological zeta function.

Conjecture 1.1 (Topological monodromy conjecture). If θ is a pole of Ztop
f (s), then exp(2πiθ)

is an eigenvalue of the monodromy of (f, x) for some closed point x in X0.
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Up to now, the positiveness of the conjecture has been confirmed only in particular cases,
and finding a proof for the general case is still a widely open problem. Any proof for this
conjecture can motivate the development of several fields of mathematics.

In this article, we study the local topological zeta function for reduced complex plane curve
singularities (f,O) which have no smooth irreducible components, as well as some related
problems in a practical method using toric modifications. The first result, Theorem 3.10,
describes explicitly Ztop

f,O(s) in terms of the simplified extended resolution graph Gs of (f,O)

defined in [7]. Namely,

Ztop
f,O(s) =

∑
B

[
bB1

(N(PB
root)s+ ν(PB

root))(N(PB
1 )s+ ν(PB

1 ))
+ ZB(s)

]
,

with the sum running over non-top bamboos B of Gs. Each vertex of a bamboo B is attached
with a primitive vector PB

i = (aBi , b
B
i )t, and if the vertex PB

i of Gs is of degree rBi + 1, we
define

ZB(s) =
kB∑
i=1

[
det(PB

i , P
B
i+1)

(N(PB
i )s+ ν(PB

i ))(N(PB
i+1)s+ ν(PB

i+1))
− rBi
N(PB

i )s+ ν(PB
i )

]
.

Here, the numbers N(PB
root), ν(PB

root), N(PB
i ) and ν(PB

i ) concerning the resolution of singu-
larities of (f,O) are also given in Theorem 3.10. Let B0 denote the first bamboo of Gs. The

hypothesis on (f,O) mentioned above means that ai = aB0
i ≥ 2, bi = bB0

i ≥ 2 and (ai, bi) = 1
for all i. Remark that if ai = 1 or bi = 1 for some i, f becomes non-convenient via an analytic
change of coordinates described in [6, Lemma 1.3]. In fact, our method also works well in
this case, and the restriction of study to the case of reducedness and ai ≥ 2, bi ≥ 2 and
(ai, bi) = 1 for all i is simply to simplify the notation. Indeed, if ai = 1 for some i, we meet
the so-called exceptional integral vector (1, bi) which corresponds to the lowest right end edge
of the Newton boundary. In this situation, we add an additional weight vector (1, bi)

t+(0, 1)t,
which is the new right end vertex. If ai = 1 for some i, we may face to this situation several
times in higher bamboos B, i.e. aBj = 1 for some j, while if ai ≥ 2, bi ≥ 2, (ai, bi) = 1 for all

i, it then follows from [2] that aBj ≥ 2, bBj ≥ 2 and (aBj , b
B
j ) = 1 for all bamboos B and all j.

As an application of Theorem 3.10, we prove that the local topological zeta function is a
topological invariant for reduced complex plane curve singularities (Theorem 4.1). This is in
fact not a trivial result because one finds in [3] an example of surface singularities with the
same topological type but different local topological zeta functions.

As another application of Theorem 3.10, we revisit the works by Loeser [9] and Rodrigues
[12] on the monodromy conjecture for curves with some new ideas. Namely, with the method

computing Ztop
f,O(s) we prove Conjecture 1.1 for reduced complex plane curves (Theorem 4.2).

This result was already made in [9] and [12], our contribution is just a new short proof in

terms of an explicit performance of the poles of Ztop
f,O(s). We follow the track A’Campo and

Oka in [2] and Lê in [7, 8] to reach the proof.

2. Nondegenerate complex plane curve singularities

2.1. Toric modifications. Let N be the 2-latice
{

(a, b)t | a, b ∈ Z
}

, and N+ its positive

subgroup
{

(a, b)t ∈ N | a, b ≥ 0
}

. We consider NR = N⊗R and N+
R = N+⊗R. By definition,

a simplicial cone subdivision Σ∗ of N+
R is a sequence (T1, . . . , Tm) of primitive weight vectors

in N+ such that det(Ti, Ti+1) ≥ 1 for all 0 ≤ i ≤ m, with T0 = (1, 0)t and Tm+1 = (0, 1)t. A
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simplicial cone subdivision Σ∗ is said to be regular if det(Ti, Ti+1) = 1 for all 0 ≤ i ≤ m. It is
clear that N+

R is covered by m+ 1 cones C(Ti, Ti+1) = {xTi + yTi+1 | x, y ≥ 0} of Σ∗. These
cones are in one-to-one correspondence with the matrices σi = (Ti, Ti+1); so we shall identify
C(Ti, Ti+1) with σi for all 0 ≤ i ≤ m.

It is a fact that each matrix σ =

(
a b
c d

)
in GL(2,Z) defines a birational map

Φσ : C2 → C2

sending (x, y) to (xayb, xcyd). In toric geometry, one uses such birational map to define
toric modifications. For a regular simplicial cone subdivision Σ∗ with vertices T1, . . . , Tm, we
consider the cones σi = (Ti, Ti+1) and the corresponding toric charts (C2

σi ;xi, yi), 0 ≤ i ≤ m,

with C2
σi a copy of C2. On the disjoint union

⊔m
i=0

(
C2
σi ;xi, yi

)
, as in [11] we consider the

equivalence relation given by (xi, yi) ∼ (xj , yj) if and only if Φσ−1
j σi

(xi, yi) = (xj , yj). Let X

be the quotient of
⊔m
i=0

(
C2
σi ;xi, yi

)
by the previous equivalence relation, which is endowed

with the quotient topology. Then X is a smooth complex manifold of dimension 2, with the
toric charts (C2

σi ;xi, yi) as local coordinates systems. In other words, we can present

X =
m⋃
i=0

(
C2
σi ;xi, yi

)
,

where C2
σi are viewed as open subsets of X, and two charts (C2

σi ;xi, yi) and (C2
σj ;xj , yj) with

nonempty intersection are compatibly glued in such a way that

(xi, yi) ≡ (xj , yj) if and only if (xi, yi) ∼ (xj , yj).(2.1)

We now define π : X → C2 with π(xi, yi) = Φσi(xi, yi) for (xi, yi) in C2
σi , 0 ≤ i ≤ m. This

map is compatible with the glueing and it is called the toric modification associated to the
regular simplicial cone subdivision Σ∗.

As explained in [6], the toric modification π can be decomposed as a composition of finitely
many quadratic blowups. The divisor π−1(O) has simple normal crossings with m irreducible
components E(Ti), named as exceptional divisors, for 1 ≤ i ≤ m. For every 1 ≤ i ≤ m, the
exceptional divisor E(Ti) corresponds uniquely to the vertex Ti of Σ∗, and it is covered by two
charts C2

σi−1
and C2

σi , with the equations yi−1 = 0 and xi = 0 respectively. Therefore, only

E(Ti) and E(Ti+1) intersect for all 1 ≤ i ≤ m − 1, and the the intersections are transversal.
The noncompact components E(T0) = {x0 = 0} and E(Tm+1) = {ym = 0} are isomorphic to
the coordinate axes x = 0 and y = 0 respectively.

2.2. A toric resolution for f(x, y). Let f(x, y) =
∑

(a,b)∈N2 cαβx
αyβ be in C{x, y} such

that f(O) = 0. Denote by Γ or Γf the Newton polyhedron of f(x, y). Clearly, the boundary
of Γ contains finitely many facets each of which is completely defined by a positive primitive
weight vector of the form P = (a, b)t ∈ N+, where (a, b) is a normal vector of the facet. The
singularity f(x, y) at O is said to be nondegenerate with respect to Γ if it has the form

(2.2)

f(x, y) = cxrysf1(x, y) · · · fk(x, y),

fi(x, y) =

ri∏
`=1

(yai + ξi`x
bi) + (higher terms),
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where c 6= 0, and for every 1 ≤ i ≤ k,

(2.3)
(ai, bi) = 1,

ξi` 6= 0, ξi` 6= ξi`′ if ` 6= `′.

For simplicity, we shall assume that c = 1 and r = s = 0 in the formula of f(x, y). Then the
Newton polyhedron Γ has k primitive weight vectors P1 = (a1, b1)

t, . . . , Pk = (ak, bk)
t as k

compact facets. We define an ordering on primitive vectors as follows P < Q if det(P,Q) > 0.
We order the Pi in such a way that P1 < · · · < Pk.

Let Σ∗ be a regular simplicial subdivision with vertices Tj = (cj , dj)
t, 1 ≤ j ≤ m, augmented

by (c0, d0) = (1, 0), (cm+1, dm+1) = (0, 1), with det(Tj , Tj+1) = 1 for all 0 ≤ j ≤ m. We say
that Σ∗ is admissible for f(x, y) if {P1, . . . , Pk} ⊆ {T1, . . . , Tm}. Let π : X → C2 be the toric
modification associated to Σ∗. Then π is said to be admissible for f(x, y) if Σ∗ is admissible
for f(x, y). In this case, π is nothing else than a resolution of singularity of f(x, y) at O,
with simple normal crossing divisors. We respectively denote by N(Tj) and ν(Tj) − 1 the
multiplicity of π∗f and that of π∗(dx ∧ dy) on the exceptional divisor E(Tj), for 1 ≤ j ≤ m.

Since the expression of π on C2
σj is π(xj , yj) = (x

cj
j y

cj+1

j , x
dj
j y

dj+1

j ), we have

π∗(dx ∧ dy)(xj , yj) = x
cj+dj−1
j y

cj+1+dj+1−1
j dxj ∧ dyj

on C2
σj , thus

ν(Tj) = cj + dj ,(2.4)

for all 1 ≤ j ≤ m. It is clear that if F is an irreducible component of the strict transform of
f(x, y), and if f(x, y) is reduced, then ν(F ) = 1.

We are in fact using the ordering defined above by P < Q if det(P,Q) > 0. To compute
the multiplicity N(Tj) of π∗f on E(Tj) we consider the following three cases. The first one
is Pi ≤ Tj < Pi+1, for some 1 ≤ i ≤ k − 1. Since Pt ≤ Tj for all 1 ≤ t ≤ i, it follows from [2,
Section 4.3] that, on the chart (C2

σj ;xj , yj), and for 1 ≤ t ≤ i,

π∗ft(xj , yj) = x
rtbtcj
j y

rtbtcj+1

j

(
rt∏
`=1

(x
atdj−btcj
j y

atdj+1−btcj+1

j + ξt`) + xjRt(xj , yj)

)
,

for some Rt(xj , yj) ∈ C{xj , yj}. Since Tj < Pt for all i + 1 ≤ t ≤ k, it follows similarly as
previous, for i+ 1 ≤ t ≤ k, that

π∗ft(xj , yj) = x
rtatdj
j y

rtatdj+1

j

(
rt∏
`=1

(
1 + ξt`x

btcj−atdj
j y

btcj+1−atdj+1

j

)
+ xjRt(xj , yj)

)
,

for some Rt(xj , yj) ∈ C{xj , yj}. Thus, on the chart (C2
σj ;xj , yj),

π∗f(xj , yj) =

i∏
t=1

π∗ft(xj , yj) ·
k∏

t=i+1

π∗ft(xj , yj) = x
N(Tj)
j y

N(Tj+1)
j u(xj , yj),

with u(xj , yj) a unit in C{xj , yj}, and N(Tj) = cj
∑i

t=1 rtbt + dj
∑k

t=i+1 rtat. In the same

way, for the second case Tj < P1, we get N(Tj) = dj
∑k

t=1 rtat, and for the third case
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Pk ≤ Tj , we get N(Tj) = cj
∑k

t=1 rtbt. Thus, by convention that P0 := T0 = (1, 0)t and
Pk+1 := Tm+1 = (0, 1)t, we can summarize the three cases by a common formula as follows

N(Tj) = cj

i∑
t=1

rtbt + dj

k∑
t=i+1

rtat,(2.5)

where Pi ≤ Tj < Pi+1, for all 1 ≤ j ≤ m.

When Tj = Pi for some i,

π∗fi(xj , yj) = xriaibij y
ribici+1

j

(
ri∏
`=1

(yj + ξi`) + xjRi(xj , yj)

)
,

with Ri(xj , yj) in C{xj , yj}. Therefore, there are ri irreducible components of the strict trans-
form intersecting transversally with E(Pi) at (0,−ξi`), 1 ≤ ` ≤ ri, in the chart (C2

σj ;xj , yj).

If 2 ≤ j ≤ m− 1 and Tj 6= Pi for all 1 ≤ i ≤ k, then E(Tj) intersects with exactly two other
exceptional divisors and does not intersect with the strict transform. Also, if T1 6= P1 (resp.
Tm 6= Pk), then E(T1) (resp. E(Tk)) intersects with only one divisor.

The below is the configuration of the toric resolution for the nondegenerate singularity
f(x, y) at O:

. . .

-E0i1 (1, 1)

-E0i2 (1, 1)

...
-E0iri (1, 1)

E(T2)

. . .
E(Tj+1)

E(Tm)

E(Tj−1) (N(Tj−1), ν(Tj−1))

E(T1) (N(T1), ν(T1))

E(Pi) = E(Tj) (N(Tj), ν(Tj))

2.3. The topological zeta function of a nondegenerate singularity. Let f(x, y) be a
singularity at O nondegenerate with respect to its Newton polyhedron Γ. Assume that f(x, y)
has the form as in (2.2) and (2.3) with c = 1 and r = s = 0. Recall that Pi = (ai, bi)

t for
0 ≤ i ≤ k + 1, with (a0, b0) = (1, 0) and (ak+1, bk+1) = (0, 1).

Theorem 2.1. With f(x, y) nondegenerate as previous, Ztop
f,O(s) equals

k∑
i=0

det(Pi, Pi+1)

(N(Pi)s+ ν(Pi))(N(Pi+1)s+ ν(Pi+1))
− s

s+ 1

k∑
i=1

ri
N(Pi)s+ ν(Pi)

,

where, for every 0 ≤ i ≤ k + 1, ν(Pi) = ai + bi and N(Pi) = ai
∑i

t=1 rtbt + bi
∑k

t=i+1 rtat.

Proof. We use the toric resolution described in Section 2.2 to compute the topological zeta
function. Here is the table with the strata E◦I of π−1(f−1(O)) and their Euler characteristic:
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Strata Euler char. Conditions
E(T1)

◦, E(Tm)◦ 1
E(Tj)

◦ 0 1 < j < m, Tj 6= Pi (∀ 1 ≤ i ≤ k)
E(Pi)

◦ −ri 1 ≤ i ≤ k
E◦0i` 0 1 ≤ i ≤ k, 1 ≤ ` ≤ ri

E0i` ∩ E0i`′ = ∅ 0 1 ≤ i ≤ k, ` 6= `′

E(Tj) ∩ E(Tj+1) = 1pt 1 1 ≤ j < m
E(Tj) ∩ E(Tj′) = ∅ 0 |j − j′| ≥ 2
E(Tj) ∩ E0i` = ∅ 0 1 ≤ i ≤ k, 1 ≤ ` ≤ ri, Tj 6= Pi (∀ i)
E(Pi) ∩ E0i` = 1pt 1 1 ≤ i ≤ k, 1 ≤ ` ≤ ri
E(Pi) ∩ E0i′` = ∅ 0 1 ≤ i 6= i′ ≤ k

By definition, the topological zeta function Ztop
f,O(s) is the sum of the following functions

Z1 =
1

N(T1)s+ ν(T1)
, Z2 =

1

N(Tm)s+ ν(Tm)
, Z3 =

k∑
i=1

−ri
N(Pi)s+ ν(Pi)

,

Z4 =
m−1∑
j=1

1

(N(Tj)s+ ν(Tj))(N(Tj+1)s+ ν(Tj+1))
, Z5 =

k∑
i=1

ri
(s+ 1)(N(Pi)s+ ν(Pi))

.

For all 0 ≤ i ≤ k + 1, let ji be the index with 0 ≤ ji ≤ m+ 1 and Tji = Pi. Then Z4 equals

j1−1∑
j=1

1

(N(Tj)s+ν(Tj))(N(Tj+1)s+ν(Tj+1))
+
m−1∑
j=jk

1

(N(Tj)s+ν(Tj))(N(Tj+1)s+ν(Tj+1))

plus
k−1∑
i=1

ji+1−1∑
j=ji

1

(N(Tj)s+ ν(Tj))(N(Tj+1)s+ ν(Tj+1))
.

Claim 2.2. For 0 ≤ i ≤ k and ji ≤ j ≤ ji+1 − 1,∣∣∣∣N(Tj+1) N(Tj)
ν(Tj+1) ν(Tj)

∣∣∣∣ = Di :=

k∑
t=i+1

rtat −
i∑
t=1

rtbt.

The proof of this claim is trivial, thanks to (2.4), (2.5). If Di 6= 0, then for ji ≤ j ≤ ji+1−1,

1

(N(Tj)s+ ν(Tj))(N(Tj+1)s+ ν(Tj+1))
=

N(Tj+1)/Di

N(Tj+1)s+ ν(Tj+1)
− N(Tj)/Di

N(Tj)s+ ν(Tj)
.

In particular, D0 and Dk are automatically nonzero, since D0 = N(T1) and Dk = −N(Tm).
Moreover, N(P1)/D0 = b1 and N(Pk)/Dk = −ak, hence we have

j1−1∑
j=1

1

(N(Tj)s+ ν(Tj))(N(Tj+1)s+ ν(Tj+1))
=

b1
N(P1)s+ ν(P1)

− Z1,

m−1∑
j=jk

1

(N(Tj)s+ ν(Tj))(N(Tj+1)s+ ν(Tj+1))
=

ak
N(Pk)s+ ν(Pk)

− Z2.
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For 1 ≤ i ≤ k − 1, if Di 6= 0, then

Ii :=

ji+1−1∑
j=ji

1

(N(Tj)s+ ν(Tj))(N(Tj+1)s+ ν(Tj+1))
=

N(Pi+1)/Di

N(Pi+1)s+ ν(Pi+1)
− N(Pi)/Di

N(Pi)s+ ν(Pi)

=
det(Pi, Pi+1)

(N(Pi)s+ ν(Pi))(N(Pi+1)s+ ν(Pi+1))
.

Also, if Di = 0, then for ji ≤ j ≤ ji+1 − 1 we have

1

λjλj+1
= (ai + bi)

(
cj
λj
− cj+1

λj+1

)
for λj :=

N(Tj)

N(Pi)
=
ν(Tj)

ν(Pi)
=
cj + dj
ai + bi

;

hence

Ii =
det(Pi, Pi+1)ν(Pi)/ν(Pi+1)

(N(Pi)s+ ν(Pi))
2 =

det(Pi, Pi+1)

(N(Pi)s+ ν(Pi))(N(Pi+1)s+ ν(Pi+1))
.

In conclusion, by the above computation, Ztop
f,O(s) equals

k∑
i=0

det(Pi, Pi+1)

(N(Pi)s+ ν(Pi))(N(Pi+1)s+ ν(Pi+1))
−

k∑
i=1

ris

(s+ 1)(N(Pi)s+ ν(Pi))
,

and the theorem is proved. �

We can deduce from the proof of Theorem 2.1 that − ν(Pi)
N(Pi)

is a pole of order 2 of the

topological zeta function Ztopf,O(s) if and only if Di = 0. Further, also due to Theorem 2.1, we

can prove the following proposition. We leave the detailed proof to the reader.

Proposition 2.3. With f(x, y) nondegenerate as previous, for any 1 ≤ i ≤ k, the rational

number − ν(Pi)
N(Pi)

is a pole of Ztopf,O(s).

3. General complex plane curve singularities

3.1. Toric resolution tree. Let f be a reduced complex plane curve singularity at O which
has no smooth irreducible components, and let C = f−1(0). Using toric modifications with
centers determined canonically in terms of Tschirnhausen polynomials (see [2]), Q.T. Lê [7]
constructs a resolution of singularity of f at O and a resolution graph Gs for (f,O). His
method allows to arrange the vertices of Gs into an ordering so that we can consider Gs

as a tree. With the help of [7], Gs is quite simple but still sufficiently strong to describe
combinatorially the monodromy zeta function of (f,O). Further, Gs is also used in [8] to
formulate a recurrence formula for the motivic Milnor fiber of (f,O). It is shown explicitly
in this article that we can also compute the topological zeta function and give a new proof of
the monodromy conjecture for plane curves in terms of Gs. However, to reach to this goal,
we have to construct a more complicated graph G, which is useful for the computation.

Write f as follows

(3.1) f = f1 · · · fk, fi = fi1 · · · firi , fi` = fi`1 · · · fi`ri` ,
where for each (i, `, τ), fi`τ is irreducible in C{x}[y] and of the form

(3.2) fi`τ (x, y) = (yai + ξi`x
bi)Ai`τ + (higher terms),

with ξi` being nonzero and distinct. It is clear that (ai, bi) is coprime. In this factorization,
the (Newton) principal parts of fi and fj are weighted homogeneous of different weights for
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i 6= j, the principal parts of fi` and fi`′ are weighted homogeneous of the same weight (this
weight corresponds to (ai, bi)). We assume that

ai ≥ 2, bi ≥ 2 and (ai, bi) = 1 for all 1 ≤ i ≤ k,
the assumption guarantees that f has no smooth branches. In fact, if ai = 1 or bi = 1, one
may use an analytic change of coordinates (cf. [6, Lemma 1.3]) to make f non-convenient,
which we do not want to consider. Put

Ai = Ai1 + · · ·+Airi , Ai` = Ai`1 + · · ·+Ai`ri` .

Then by [2, Section 4.3], the Ai`τ -th Tschirnhausen approximate polynomial of fi`τ (x, y) has
the form

hi`(x, y) = yai + ξi`x
bi + (higher terms).

Put Pi = (ai, bi)
t for 1 ≤ i ≤ k. These weight vectors correspond to the compact facets of the

Newton polyhedron Γ of f(x, y). Suppose that P1 < · · · < Pk. Let Σ∗ be a regular simplicial
cone subdivision with vertices Tj = (cj , dj)

t ∈ N+, for 1 ≤ j ≤ m, such that T1 < · · · < Tm
and {P1, . . . , Pk} ⊆ {T1, . . . , Tm}. We can assume that T1 6= P1 and Tm 6= Pk (see [7]). Let πO
be the toric modification associated to Σ∗. Then we construct the first floor of G as follows:
The vertices correspond to the exceptional divisors E(T1), . . . , E(Tm) of πO, the edges are
edges joining E(Tj) with E(Tj+1), for all 1 ≤ j ≤ m − 1. These vertices and edges form a
subgraph B0 of G, which is named as the first bamboo of G. By convention, the coordinates
(x, y) will be rewritten as (xB0 , yB0).

We construct G by induction. Assume that Bp is a bamboo of G, which consists of vertices

E(T
Bp

1 ), . . . , E(T
Bp

mBp
) with T

Bp

1 < · · · < T
Bp

mBp
. Let πBp : XBp → C2 be the toric modification

constructing Bp, and let fBp(xBp , yBp) be in C{xBp , yBp} for which πBp is admissible. Note

that XBp is covered by the toric charts (C2
Bp,σj

;xBp,j , yBp,j), for 1 ≤ j ≤ mBp , and that, for

simplicity, we sometimes write their coordinates by (xj , yj) instead of xBp,j , yBp,j . Assume
that fBp(xBp , yBp) has the form

fBp(xBp , yBp) = UBp(xBp , yBp)xN
Bp

Bp

kBp∏
i=1

r
Bp
i∏
`=1

r
Bp
i∏̀
τ=1

f
Bp

i`τ (xBp , yBp),

where NBp is in N, UBp(xBp , yBp) is a unit in the ring C{xBp , yBp}, and

f
Bp

i`τ (xBp , yBp) = (y
a
Bp
i

Bp
+ ξ

Bp

i` x
b
Bp
i
Bp

)A
Bp
i`τ + (higher terms)

are irreducible in C{xBp , yBp}, with ξ
Bp

i` 6= 0 distinct. It follows from [2, Section 4.3] that

a
Bp

i ≥ 2, b
Bp

i ≥ 2 and (a
Bp

i ≥ 2, b
Bp

i ≥ 2) = 1 for all 1 ≤ i ≤ kBp ,

because all ai (for 1 ≤ i ≤ k) corresponding to B0 are greater than or equal to 2. Notice
that when Bp = B0, we have UBp(xBp , yBp) = 1, NBp = 0, and fBp is nothing but f .

Put P
Bp

i = (a
Bp

i , b
Bp

i )t for all 1 ≤ i ≤ kBp , and assume that P
Bp

1 < · · · < P
Bp

kBp
. By the

admissibility for fBp(xBp , yBp) of πBp , we have {PBp

1 , . . . , P
Bp

kBp
} ⊆ {TBp

1 , . . . , T
Bp

mBp
}. The

vertices E(P
Bp

1 ), . . . , E(P
Bp

kBp
) are called the principal vertices of Bp. By [2, Section 4.3], the

A
Bp

i`τ -th Tschirnhausen approximate polynomial of f
Bp

i`τ (xBp , yBp) has the form

h
Bp

i` (xBp , yBp) = y
a
Bp
i

Bp
+ ξ

Bp

i` x
b
Bp
i
Bp

+ (higher terms).
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If T
Bp

j = P
Bp

i0
, the pullbacks π∗Bp

fBp and π∗Bp
hi0` on the chart (C2

Bp,σj
;xj , yj) are as follows

π∗Bp
fBp(xj , yj) = ξx

N(P
Bp
i0

)

j y
N(T

Bp
j+1)

j

(
(yj + ξ

Bp

i0`
)
A

Bp
i0` + xjR(xj , yj)

)
and

π∗Bp
h
Bp

i0`
(xj , yj) = x

a
Bp
i0
b
Bp
i0

j y
c
Bp
j+1b

Bp
i0

j (yj + ξ
Bp

i0`
+ xjR

′(xj , yj)),

for some ξ in C∗, R(xj , yj) and R′(xj , yj) in C{xj , yj}. Without loss of generality we can (and
will) assume that ξ = 1. By [2], in this step, there is a canonical way to change of variables

which uses the Tschirnhausen approximate polynomial h
Bp

i0`
, namely

(3.3)

u = xj

v = π∗Bp
h
Bp

i0`
/x

a
Bp
i0
b
Bp
i0

j = y
c
Bp
j+1b

Bp
i

j (yj + ξi0` + xjR
′(xj , yj)).

It is easy to obtain the following lemma.

Lemma 3.1. The inverse modification of (3.3) is of the form{
xj = u

yj = −ξi0` + (−ξi0`)
1/c

Bp
j+1b

Bp
i0 v +R

′′
(u, v),

for some R
′′
(u, v) in C{u, v}.

Fix i0 in {1, . . . , kBp} and `0 in {1, . . . , rBp

i }. Since ξi0`0 6= 0, it follows from Lemma 3.1
that the pullback π∗Bp

fBp is of the following form, in the Tschirnhausen coordinates (u, v),

π∗Bp
fBp(u, v) = U ′(u, v)u

N(P
Bp
i0

)
k′∏
i=1

r′i∏
`=1

r′i∏̀
τ=1

f ′i`τ (u, v),

where U ′(u, v) is a unit in C{u, v}, and

f ′i`τ (u, v) = (va
′
i + ξ′i`u

b′i)A
′
i`τ + (higher terms)

are irreducible in C{u}[v], with ξ′i` ∈ C∗ distinct. The Newton polyhedron of π∗Bp
fBp(u, v)

again gives rise to an admissible toric modification, which constructs a bamboo B whose
vertices are denoted by E(TB

1 ), . . . , E(TB
mB) with TB

1 < · · · < TB
mB . In G, we connect E(TB

1 )

to E(P
Bp

i0
) by a single edge, and this edge is taken into account of B.

Definition 3.2. The graph G is called the toric resolution tree G of (f,O). The bamboo B

constructed as above is called the successor (in G) of Bp at E(P
Bp

i0
) associated to `0. The

bamboo Bp is called the predecessor (in G) of B. A bamboo of G which has no successor
is called a top bamboo of G. A bamboo of G which is not a top bamboo is called a non-top
bamboo of G. Let Bnt denote the set of all the non-top bamboos of G.

Notation 3.3. Since each bamboo B 6= B0 determines uniquely P
Bp

i0
, hence from now on, we

denote PB
root := P

Bp

i0
. Remark again that E(PB

root) is not a vertex of B, it is a vertex of Bp.

Remark that every top bamboo has a unique vertex and a unique edge. The number of top
bamboos of G is nothing else than the number of irreducible components of the singularity
(f,O). The below illustrates a toric resolution tree of a plane curve singularity (where the
bamboos containing a unique white vertex are top bamboos):
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Figure 1. A toric resolution tree of a plane curve singularity

Notation 3.4. It is convenient to denote

(xB, yB) := (u, v), fB := π∗Bp
fBp , UB := U ′,

(aBi , b
B
i ) := (a′i, b

′
i), A

B
i`τ := A′i`τ , ξ

B
i` := ξ′i`, k

B := k′, rBi := r′i, r
B
i` := r′i`.

Then we rewrite the initial expansion of fB(xB, yB) as follows

(3.4)
fB = UBx

N(PB
root)

B · fB1 · · · fBkB , fBi = fBi1 · · · fBirBi , fBi` = fBi`1 · · · fBi`rBi` ,

fBi`τ (xB, yB) = (y
aBi
B + ξBi`x

bBi
B )A

B
i`τ + (higher terms),

where aBi ≥ 2, aBi ≥ 2, (aBi , b
B
i ) = 1, and fBi`τ (xB, yB) are irreducible in C{xB, yB}, and the

complex numbers ξ
Bp

i` are nonzero and distinct.

Notation 3.5. We denote PB
0 := (1, 0)t, PB

kB+1
:= (0, 1)t; also, if B = B0, we write simply k

for kB0 , and Pi for PB0
i , for 0 ≤ i ≤ k + 1.

Remark 3.6. To a bamboo B of G we associate a unique bamboo Bs whose vertices are
the principal vertices of B together with E(TB

1 ) and E(TB
mB). All the edges of Bs consist

of the one connecting E(TB
1 ) with E(PB

1 ), the ones connecting E(PB
i ) with E(PB

i+1) for all

1 ≤ i ≤ kB − 1, and the one connecting E(PB
kB

) with E(TB
mB). Working with the bamboos

Bs and using the method in constructing G we obtain a tree, which recovers the simplified
extended resolution graph Gs in [8].

3.2. Multiplicities and discrepancies. Let B be a bamboo of G and Bp be the predecessor
of B in G. First, using the notation in Section 3.1 (in particular, Notation 3.3) and the same
method of computation as in Section 2.2 we obtain the following lemmas.

Lemma 3.7. For B = B0, and 1 ≤ j ≤ m with Pi ≤ Tj < Pi+1, we have

N(Tj) = cj

i∑
t=1

btAt + dj

k∑
t=i+1

atAt,

where Ai =
∑ri

`=1

∑ri`
τ=1Ai`τ .

As above, suppose that B has all vertices E(TB
j ), with TB

j = (cBj , d
B
j )t and TB

1 < · · · < TB
mB ,

and it has E(PB
1 ), . . . , E(PB

kB
) as the principal vertices.
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Lemma 3.8. For B 6= B0 and 1 ≤ j ≤ mB with PB
i ≤ TB

j < PB
i+1, we have

N(TB
j ) = cBj N(PB

root) + cBj

i∑
t=1

bBt A
B
t + dBj

kB∑
t=i+1

aBt A
B
t ,

where AB
i =

∑rBi
`=1

∑rBi`
τ=1A

B
i`τ .

Consider the Tschirnhausen coordinates (xBp , yBp), which is used to construct Bp, and

consider the 2-form ωBp = dxBp ∧ dyBp on (C2;xBp , yBp) (note that (xB0 , yB0) = (x, y) and

ω := dx ∧ dy). Let πBp : XBp → (C2;xBp , yBp) be the toric modification constructing Bp.

Suppose that j′ is the index such that T
Bp

j′ = PB
root. Then, in the chart (C2

Bp,j′
;xBp,j′ , yBp,j′)

of XBp , we have

Φ∗Bp
ω = x

ν(PB
root)−1

Bp,j′
yν−1Bp,j′

dxBp,j′ ∧ dyBp,j′

for some ν in N∗, where ΦBp is the composition of the toric modifications along the series of
consecutive bamboos from B0 to Bp in G. Via the change of variables in Lemma 3.1, this
form Φ∗Bp

ω becomes

Ũ(xB, yB)x
ν(PB

root)−1
B ωB,

where Ũ(xB, yB) is a unit in C{xB, yB}. Here, due to Notation 3.4, we replace (u, v) by
(xB, yB) when applying Lemma 3.1.

Lemma 3.9. With the previous notation and hypothesis, for B = B0 and 1 ≤ j ≤ m, we
have ν(Tj) = cj + dj; otherwise, for 1 ≤ j ≤ mB,

ν(TB
j ) = cBj ν(PB

root) + dBj .

Proof. The case B = B0 is similar as in the nondegenerate case. Now we consider the case
B 6= B0. In the chart (C2

B,j ;xB,j , yB,j) of XB, we have

π∗B

(
x
ν(PB

root)−1
B ωB

)
= x

cBj ν(P
B
root)+d

B
j −1

B,j y
cBj+1ν(P

B
root)+d

B
j+1−1

B,j dxB,j ∧ dyB,j .

Hence ν(TB
j ) = cBj ν(PB

root) + dBj and the lemma is proved. �

3.3. The topological zeta function. Let f(x, y) be a reduced complex plane curve singu-
larity at O = (0, 0), in which its initial expansion is given in (3.1) and (3.2) (with respect to
B0) and the initial expansion of fB in the Tschirnhausen coordinates (xB, yB) with respect to
B is given in (3.4). The main result can be stated using Gs (i.e., only principal vertices of G)
and proved using G. We use all the notation in Section 3.2. Let B be the set of the bamboos
of G. Note that we can identify B with the set of the bamboos of Gs.

Theorem 3.10. With the previous notation, put ZB(s) = 0 for B being a top bamboo, and

ZB(s) =

kB∑
i=1

[
det(PB

i , P
B
i+1)

(N(PB
i )s+ ν(PB

i ))(N(PB
i+1)s+ ν(PB

i+1))
− rBi
N(PB

i )s+ ν(PB
i )

]
otherwise, where ν(PB

i ) = aBi ν(PB
root) + bBi and

N(PB
i ) = aBi N(PB

root) + aBi

i∑
t=1

bBt A
B
t + bBi

kB∑
t=i+1

aBt A
B
t .
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Then, the topological zeta function of (f,O) is given by

Ztop
f,O(s) =

∑
B∈B

[
bB1

(N(PB
root)s+ ν(PB

root))(N(PB
1 )s+ ν(PB

1 ))
+ ZB(s)

]
,

with N(PB0
root) = 0, ν(PB0

root) = 1, and N(PB
1 ) = ν(PB

1 ) = bB1 = 1 for any top bamboo B.

Proof. Let us regard each bamboo B of G as a subgraph of G with the edge connecting E(TB
1 )

to E(PB
root) included. Remark that the vertex E(PB

root) belongs to the predecessor bamboo
Bp of B in G, and that each top bamboo consists of a unique vertex and a unique edge.

From the definition of Ztop
f,O(s), if for each bamboo B of G which is not a top bamboo, we

define Z ′B(s) as the sum of

δ(B)

N(TB
1 )s+ ν(TB

1 )
,

1− δ(B)

(N(PB
root)s+ ν(PB

root))(N(TB
1 )s+ ν(TB

1 ))
,

1

N(TB
mB)s+ ν(TB

mB)
,

kB∑
i=1

−rBi
N(PB

i )s+ ν(PB
i )
, and Z :=

mB−1∑
j=1

1

(N(TB
j )s+ ν(TB

j ))(N(TB
j+1)s+ ν(TB

j+1))
,

with δ(B0) = 1 and δ(B) = 0 whenever B 6= B0, and if for each top bamboo B, we define

Z ′B(s) =
1

(N(PB
root)s+ ν(PB

root))(s+ 1)
,

then Ztop
f,O(s) =

∑
B∈B Z

′
B(s). Similarly as in the nondegenarate case (Theorem 2.1), we have

Z ′B0
(s) =

k∑
i=0

det(Pi, Pi+1)

(N(Pi)s+ ν(Pi))(N(Pi+1)s+ ν(Pi+1))
−

k∑
i=1

ri
N(Pi)s+ ν(Pi)

.

Now we consider a bamboo B of G which is neither the first bamboo B0 nor a top bamboo.
By the same method of computation as in the proof of Theorem 2.1 we get

Z =
kB−1∑
i=1

det(PB
i , P

B
i+1)

(N(PB
i )s+ ν(PB

i ))(N(PB
i+1)s+ ν(PB

i+1))

+
det(TB

1 , P
B
1 )

(N(TB
1 )s+ ν(TB

1 ))(N(PB
1 )s+ ν(PB

1 ))
+

det(PB
kB
, TB

mB)

(N(PB
kB

)s+ ν(PB
kB

))(N(TB
mB)s+ ν(TB

mB))
.

It follows that

Z ′B(s) =
bB1

(N(PB
root)s+ ν(PB

root))(N(PB
1 )s+ ν(PB

1 ))
+

aB
kB

N(PB
kB

)s+ ν(PB
kB

)

+
kB−1∑
i=1

det(PB
i , P

B
i+1)

(N(PB
i )s+ ν(PB

i ))(N(PB
i+1)s+ ν(PB

i+1))
−

kB∑
i=1

rBi
N(PB

i )s+ ν(PB
i )
.

Since aB
kB

= det(PB
kB
, PB

kB+1
), N(PB

kB+1
) = 0, ν(PB

kB+1
) = 1, the theorem is now proved. �

This theorem gives immediately the following corollary.

Corollary 3.11. Every pole of Ztop
f,O(s) has the form − ν(PB

i )

N(PB
i )

for some B in B and some i

with 1 ≤ i ≤ kB.
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In fact, we can go further to state that every number − ν(PB
i )

N(PB
i )

is a pole of Ztop
f,O(s). However,

its proof is rather long while all we need for the proof of the main theorem (Theorem 4.2) is
only Corollary 3.11. So we skip proving this stronger statement.

4. Applications of Theorem 3.10

4.1. The topological invariance of the zeta function. Recall that two analytic function
germs (f, x) and (g, y) on Cn are topologically equivalent if there are neighborhoods U of x
and V of y in Cn, and a homeomorphism ϕ : U → V such that g ◦ ϕ = f . In [3], Artal
Bartolo, Cassou-Noguès, Luengo and Melle Hernández introduce an example which shows
that the topological zeta function of a germ of a complex hypersurface singularity is not a
topological invariant of the singularity. However, in this section we shall prove that when
n = 2 the topological zeta function of a complex singularity is exactly a topological invariant.

Theorem 4.1. For reduced complex plane curve singularities, the local topological zeta func-
tion is a topological invariant.

Proof. In the toric resolution tree G of the reduced singularity (f,O), consider a sequence of
consecutive bamboos from the first one B0 to a top one, say (B0,B1, . . . ,Bg+1) with Bi is the
predecessor of Bi+1. Then the sequence of vertices

(PB1
root, . . . , P

Bg+1

root )

corresponds one-to-one to an irreducible component D of (f,O), hence by [2, Remark 4.5.4],
to the sequence of Puiseux pairs of the irreducible component of (f,O). Let D′ be another
irreducible component of (f,O), which corresponds to a sequence of consecutive bamboos
(B′0 = B0,B

′
1, . . . ,B

′
g′+1). Let θ be the index such that

PBt
root = P

B′t
root, 0 ≤ t ≤ θ, and P

Bθ+1

root 6= P
B′θ+1

root .

Via Notation 3.3, fixing a bamboo B of G we introduce new notations as follows: If PB
i =

(aBi , b
B
i ) is the weight vector in the initial expansion of Φ∗BD = fBi`τ (for some ` and τ), with

ΦB defined in the paragraph right before Lemma 3.9, then we put

a(PB
i ) := aBi , b(PB

i ) := bBi , AD(PB
i ) = AB

i`τ .

By [2, Lemma 3.4.2], the intersection number I(D,D′;O) is computed as follows

I(D,D′;O) =
θ∑
t=0

a(PBt
root)b(P

Bt
root)AD(PBt

root)AD′(P
B′t
root) + Iθ+1,

where Iθ+1 is equal to

min
{
a(P

Bθ+1

root )b(P
B′θ+1

root )AD(P
Bθ+1

root )AD′(P
B′θ+1

root ), a(P
B′θ+1

root )b(P
B′θ+1

root )AD(P
Bθ+1

root )AD′(P
B′θ+1

root )
}

if θ < min{g, g′}, and

Iθ+1 = b(P
Bθ+1

root )AD(P
Bθ+1

root )AD′(P
B′θ+1

root )

if θ = g′ = min{g, g′}. This means that the simplified extended resolution graph Gs of (f,O)
defined in [8] (see Remark 3.6) completely determines the Puiseux pairs of all the irreducible
components and the intersection numbers of any couple of them. Thus, by Brieskorn [4], Gs

is a topological invariant of the singularity (f,O).
Clearly, the statement in Theorem 3.10 can be stated using Gs (i.e., using data from the

principal vertices of the bamboos B of G). Then the topological zeta function of (f,O) is
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completely determined by Gs of (f,O). Since Gs is a topological invariant of (f,O), so is the
topological zeta function of (f,O). �

4.2. A new proof of the monodromy conjecture for complex plane curves. In 1975,
A’Campo introduced in [1, Theorem 3] a celebrated formula computing the monodromy zeta
function of an isolated singularity in terms of its embedded resolution. For complex plane
curve singularities, a reduced one is always isolated, so we can apply the formula of A’Campo.

Let f(x, y) be a complex plane curve singularity at the origin O of C2. Its Milnor fiber FO
is the intersection of f−1(η) with a small ball around O for η > 0 very small (see Milnor [10]).

The complex vector spaces Hq(FO,C) (resp. H∗(FO,C)) admit an automorphism M
(q)
O (resp.

MO) generated by going once around a loop around O with the starting point η.

Theorem 4.2. Let (f,O) be a reduced complex plane curve singularity. If θ is a pole of

Ztop
f,O(s), then exp(2π

√
−1θ) is an eigenvalue of MO.

Proof. By the Weierstrass preparation theorem, we can assume that f(x, y) is in C{x}[y].
Denote by n the degree of the polynomial f(x, y) in the variable y. It is sufficient to consider

the poles different from 1 of Ztop
f,O(s). By Corollary 3.11, every pole different from 1 is of the

form −ν(PB
i )/N(PB

i ) for some B ∈ Bnt and some i with 1 ≤ i ≤ kB, where Bnt is the set of
all the non-top bamboos of G (see Definition 3.2, in Figure 1 non-top bamboos are bamboos
containing black vertices).

The proof is by induction with many steps. The first step is to verify for the case where
the number k = kB0 of compact facets of Γf is ≥ 2. The second one is to do for k = 1 and the

number r1 = rB0
1 of successors of B0 in G is ≥ 2. Finally, for the case k = r1 = 1 we prove

by induction on n.

Let ∆(1)(t) be the characteristic polynomial of M
(1)
O . By Milnor [10], ∆(1)(t) is symmetric,

hence ∆(1)(t) = (1− t)Zmon
f,O (t), where Zmon

f,O (t) is the monodromy zeta function of (f,O). We

recall the computation of Zmon
f,O (t) in [7, Theorem 3.5], under the light of [1, Theorem 3], as

follows

Zmon
f,O (t) =

1

1− tN(T1)

∏
B∈Bnt

∏kB

i=1(1− tN(PB
i ))r

B
i

1− tN(TB

mB
)

.(4.1)

Notice that N(T1) and N(TB
mB) are independent of T1 and TB

mB for any B in Bnt, because

N(P1) = b1N(T1), N(PB
kB) = aBkBN(TB

mB).(4.2)

Hence, from (4.1), if k = kB0 ≥ 2, then Zmon
f,O (t) equals

(1− tN(P1))r1

1− tN(T1)
· (1− tN(Pk))rk

1− tN(Tm)

k−1∏
i=2

(1− tN(Pi))ri

times ∏
B0 6=B∈Bnt

(1− tN(PB

kB
)
)
rB
kB

1− tN(TB

mB
)

kB−1∏
i=1

(1− tN(PB
i ))r

B
i .

In this formula, observe that the complex numbers exp
(
−2π
√
−1ν(PB

i )/N(PB
i )
)

are surely

eigenvalues of M
(1)
O if either B = B0 and 2 ≤ i ≤ k − 1 or B 6= B0 and 1 ≤ i ≤ kB − 1.
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Also in the case k ≥ 2, we consider the complex numbers t1 = exp
(
−2π
√
−1ν(P1)/N(P1)

)
and tkB = exp

(
−2π
√
−1ν(PB

kB
)/N(PB

kB
)
)

for every B in Bnt. By (4.2) and the recurrence

formula of ν(PB
i ) in Theorem 3.10, we get

t
N(T1)
1 = exp

(
−2π
√
−1(a1 + b1)/b1

)
= exp

(
−2π
√
−1a1/b1

)
and

t
N(TB

mB
)

kB
= exp

(
−2π
√
−1(aBkBν(PB

root) + bBkB)/aBkB
)

= exp
(
−2π
√
−1bBkB/a

B
kB

)
.

Since a1, b1 ≥ 2 and aB
kB
, bB
kB
≥ 2 are coprime pairs for every B in Bnt, it implies that a1/b1

and bB
kB
/aB

kB
is not in Z, hence t1 (resp. tkB) is a zero of

(1− tN(P1))r1

1− tN(T1)
(resp.

(1− tN(PB

kB
)
)
rB
kB

1− tN(TB

mB
)

).

So t1 and tkB , for all B in Bnt, are eigenvalues of M
(1)
O , thus the proof for k ≥ 2 completes.

We now consider the case k = 1, that is, the initial expansion of f(x, y) at O has the form
(ya1 + ξxb1)A + (higher terms), with ξ in C∗ and A in N∗. If r1 ≥ 2, then by (4.2), the same
arguments as in the case k ≥ 2 still holds, and we thus have that exp

(
−2π
√
−1ν(P1)/N(P1)

)
is an eigenvalue of M

(1)
O , where P1 = (a1, b1)

t. Assume that r1 = 1. We are going to prove the
theorem by induction of the degree n = a1A of the polynomial f in the variable y. Obviously,
the theorem holds for A = 1. Assume that the theorem already holds for every function germ
of degree in y less than n. Let B1 be the unique successor of B0. Since N(TB1

1 ) = A, the
function Zmon

f,O (t) equals

(1− ta1b1A)(1− tA)

(1− tb1A)(1− ta1A)
· 1

1− tN(T
B1
1 )
·

∏
B0 6=B∈Bnt

(1− tN(PB

kB
)
)
rB
kB

1− tN(TB

mB
)

kB−1∏
i=1

(1− tN(PB
i ))r

B
i .

By (4.1) we get

Zmon
f,O (t) =

(1− ta1b1A)(1− tA)

(1− tb1A)(1− ta1A)
Zmon
π∗1f,O

′(t),

where O′ is the origin of the system of Tschirnhausen coordinates after the toric modification
π1 admissible for f . Clearly, t1 is a root of the polynomial

(1− ta1b1A)(1− tA)

(1− tb1A)(1− ta1A)
,

and the degree of π∗1f in y is less than n. This completes the proof. �
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