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ABSTRACT. This work concerns a Liouville type result for positive, smooth solution v to
the following higher-order equation

P2m
n (v) = Q2m

n (εv + v−α)

on Sn with m ≥ 2, 3 ≤ n < 2m, 0 < α ≤ (2m + n)/(2m − n), and ε > 0. Here
P2m

n is the GJMS operator of order 2m on Sn and Q2m
n = P2m

n (1) is constant. We
show that if ε > 0 is small and 0 < α ≤ (2m+n)/(2m−n), then any positive, smooth
solution v to the above equation must be constant. The same result remains valid if ε = 0

and 0 < α < (2m+ n)/(2m− n). In the special case n = 3, m = 2, and α = 7, such
Liouville type result was recently conjectured by F. Hang and P. Yang (Int. Math. Res.
Not. IMRN, 2020). As a by-product, we obtain the sharp (subcritical and critical) Sobolev
inequalities( �

Sn
v1−αdµSn

) 2
α−1

�
Sn

vP2m
n (v)dµSn ≥

Γ(n/2 +m)

Γ(n/2−m)
|Sn|

α+1
α−1

for the GJMS operator P2m
n on Sn under the conditions n ≥ 3, n = 2m − 1, and

α ∈ (0, 1) ∪ (1, 2n + 1]. A log-Sobolev type inequality, as the limiting case α = 1, is
also presented.

1. INTRODUCTION3

Let n ≥ 3 be an odd integer, 2m > n, and 0 < α ≤ (n+2m)/(2m− n). In this work,4

we consider the following equation5

P2m
n (v) = Q2m

n (εv + v−α) in Sn. (1.1)ε6
7

Here P2m
n is the well-known GJMS operator on Sn equipped with the standard metric gSn ,8

which is given as follows9

P2m
n :=

m−1∏
i=0

(
−∆gSn − (i+

n

2
)(i− n

2
+ 1)

)
,10

see [GJMS92], and11

Q2m
n := P2m

n (1) =
Γ(n/2 +m)

Γ(n/2−m)
12

is a non-zero constant representing the so-called Q-curvature of (Sn, gSn), perhaps up to13

a constant multiple. A special case of the operator P2m
n , which has often been studied14

over the last two decades, is the well-known Paneitz operator, which is of fourth order.15

This example of a higher-order conformal operator gains interest because of its role in16

conformal geometry; see [CGY02, HY16]. On (S3, gS3), the Paneitz operator is given by17

P4
3 = ∆2

gS3
+

1

2
∆gS3

− 15

16
,18
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2 A. HYDER AND Q.A. NGÔ

and therefore Q4
3 = Γ(7/2)/Γ(−1/2) = −15/16. Using the above recursive formula for19

P2m
n we can compute higher dimensional cases, for example20

P6
3 = −∆3

gSn
− 23

4
∆2

gSn
− 27

16
∆gSn +

315

64
on (S3, gS3)21

with Q6
3 = 315/64 and22

P6
5 = −∆3

gSn
+

13

4
∆2

gSn
+

93

16
∆gSn − 945

64
on (S5, gS5)23

with Q6
5 = −945/64. One should pay attention on the sign difference of Q6

3 and Q6
5.24

Our motivation of working on the equation (1.1)ε traces back to a recent conjecture by F.25

Hang and P. Yang in [HY20] that we are going to describe now. This conjecture concerns26

the following sharp critical Sobolev inequality on S327

∥ϕ−1∥2L6(S3)

�
S3

[
(∆gS3

ϕ)2 − 1

2
|∇gS3

ϕ|2 − 15

16
ϕ2

]
dµS3 ≥ −15

16
|S3|4/3 (1.2)28

for any ϕ ∈ H2(S3) with ϕ > 0, which was already proved in [YZ04] by symmetrization29

argument and in [HY04] by variational argument. Apparently, the inequality (1.2) can be30

rewritten as follows31

∥ϕ−1∥2L6(S3)

�
S3
ϕP4

3(ϕ)dµS3 ≥ −15

16
|S3|4/3 (1.3)32

for any 0 < ϕ ∈ H2(S3), because the integral in (1.2) is nothing but
�
S3 ϕP4

3(ϕ)dµS3 . In33

(1.3) and what follows, |Sn| denotes the surface area of Sn. Besides, by Morrey’s theorem,34

functions in H2(S3) are continuous and therefore the condition ϕ > 0 is understood in35

pointwise sense. By direct calculation, one can easily verify that equality in (1.3) occurs if36

ϕ is any positive constant. This tells us that the Paneitz operator P4
3 on the standard sphere37

S3 is no longer positive; see [XY02] for the assumption on the positivity of the Paneitz38

operator on closed 3-manifolds.39

In an effort to provide a new proof for (1.3) with the sharp constant, the authors in40

[HY20] propose a new way to prove the above Sobolev inequality by considering the41

following minimizing problem42

inf
0<ϕ∈H2(S3)

∥ϕ−1∥2L6(S3)

[ �
S3
ϕP4

3(ϕ)dµS3 + ε

�
S3
ϕ2dµS3

]
(1.4)43

for small ε > 0. Thanks to the small perturbation ε∥ϕ∥2L2(S3), it is standard and straightfor-44

ward to verify that the extremal problem (1.4) has a minimizer. Such a minimizer, denoted45

by vε, eventually solves46

P4
3(vε) + εvε = −v−7

ε47

on S3, up to a constant. Here is the key observation: if the above equation only admits48

constant solution for small ε > 0, namely vε ≡ const., then one immediately has49

∥ϕ−1∥2L6(S3)

[ �
S3
ϕP4

3(ϕ)dµS3 + ε

�
S3
ϕ2dµS3

]
≥ |S3|1/3

[ �
S3

P4
3(1)dµS3 + ε|S3|

]
50

for any 0 < ϕ ∈ H2(S3). Having this and as P4
3(1) = Q4

3 = −15/16, letting ε ↘ 051

yields (1.3). The novelty of this new approach is that it automatically implies the sharp52

form of (1.3) with the precise sharp constant.53

The above observation leads Hang and Yang to propose the following conjecture.54

The Hang–Yang conjecture ([HY20, page 3299]). Let ε > 0 be a small number. If v is a55

positive smooth solution to56

P4
3(v) + εv = −v−7

57

on S3, then v must be a constant function.58
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In a recent work Zhang [Zha21] provides an affirmative answer to the above conjecture.59

The idea behind Zhang’s proof is first to transfer the differential equation on S3 to some60

differential equation on R3 and then to classify solutions to that equation on R3. More61

precisely, let πN : S3 → R3 be the stereographic projection from the north pole N ; see62

subsection 2.1 below. The pullback (π−1
N )∗ enjoys63

(ϕ−1)∗(gS3) =
( 2

1 + |x|2
)2
dx2

64

and for any smooth solution v on S3 there holds65

P2m
n (v) ◦ π−1

N =
( 2

1 + |x|2
)−7/2

∆2
(( 2

1 + |x|2
)−1/2

v ◦ π−1
N

)
.66

(Here and in the sequel, ∆ is the usual Laplacian on Euclidean spaces.) Therefore, under67

the following change of variable68

u(x) :=
(1 + |x|2

2

)1/2(
v ◦ π−1

N

)
(x), (1.5)69

if v solves P4
3(v) + εv = −v−7 in S3, then u solves70

∆2u(x) = ε
( 2

1 + |x|2
)4
u(x) + u−7(x)71

in R3. Via a dedicated argument based on the method of moving planes and techniques72

from potential theory, which are rather involved, it is proved that u is radially symmetric.73

Finally, with the help of a Kazdan–Warner type identity, the function v must be constant.74

Inspired by the work of Zhang described above, we are interested in Hang–Yang’s con-75

jecture in higher dimensional cases, namely we want to seek for a suitable Liouville type76

result for positive, smooth solution to equations involving GJMS operators. This leads us77

to investigate solutions to (1.1)ε. Very similar to situation studied by Hang and Yang, our78

motivation to study the equation (1.1)ε comes from the higher-order sharp critical Sobolev79

inequality; see Theorem 1.2 below. Using the perturbation approach introduced in [HY20],80

we are forced to establish a Liouville type result for solutions to (1.1)ε.81

Toward a suitable Liouville type result, let us first describe some preliminary results82

on (1.1)ε. Our first observation concerns the admissible range for ε. As the perturbation83

approach is being used, we require the condition ε ≥ 0; see the proof of Lemma 5.1. Now,84

by integrating both sides of (1.1)ε over Sn and as Q2m
n ̸= 0 we conclude that85

(1− ε)

�
Sn

vdµSn =

�
Sn

v−αdµSn .86

This immediately tells us that ε < 1. Thus, the admissible range for ε is 0 ≤ ε < 1.87

Having this, let us now state the main result of this paper.88

Theorem 1.1. Let n ≥ 3 be odd and m > n/2. Then there exists ε∗ ∈ (0, 1) such
that under one of the following conditions

(1) either ε ∈ (0, ε∗) and 0 < α ≤ (n+ 2m)/(2m− n)
(2) or ε = 0 and 0 < α < (n+ 2m)/(2m− n)

any positive, smooth solution to (1.1)ε must be constant.

We have the following remarks:89

• The above result again confirms the Hang–Yang conjecture for the Paneitz op-90

erator on S3, and generalizes the result of Zhang in the critical setting in higher91

dimensional cases.92
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• Theorem 1.1 can be compared with the Liouville type results obtained by Véron93

and Véron in [VV91, Theorem 6.1] for the Emden equation, see also the work of94

Gidas and Spruck in [GS81]. Note that the condition α < (n + 2m)/(2m − n)95

is sharp for ε = 0 as the result does not hold if α = (n + 2m)/(2m − n). This96

is because in this limiting case the equation (1.1)0 is conformally invariant; see97

section 3.98

• The threshold ε∗ is given in Lemma 4.3.99

• Although for any 0 ≤ ε < 1, equation (1.1)ε always admits the trivial solution100

vε ≡ (1 − ε)−1/(α+1), but it is not clear whether or not the above Liouville type101

result still holds for ε ∈ [ε∗, 1). This seems to be an interesting open question.102

To prove Theorem 1.1, we adopt the strategy used by Zhang. Such strategy can be for-103

mulated as the following two main steps: first to transfer (1.1)ε in Sn to the two equations104

(1.8)ε and the corresponding integral equation in Rn, then to study symmetry properties105

of solutions to these equations for small ε > 0. However, to be able to handle higher-order106

cases, our approach is significantly different from Zhang. One major reason is that less107

results is known for the higher-order cases compared to the case m = 2. For example,108

we do not know if the preliminary results of Hang and Yang mentioned in [Zha21, section109

2] are available for m ≥ 3. Because of this difficulty, instead of the differential equation110

(1.8)ε, we mainly work on the corresponding integral equation on Rn, and directly prove111

compactness results and symmetry properties of solutions. As pays off, our analysis is112

much simpler, and could handle higher-order cases efficiently.113

As the operator P2m
n is conformally covariant, for any smooth function φ on Sn we114

have the following identity (π denotes the stereographic projection from Sn to Rn with115

respect to either the north or the south pole)116

P2m
n (φ) ◦ π−1 =

( 2

1 + |x|2
)−n+2m

2 (−∆)m
(( 2

1 + |x|2
)n−2m

2 φ ◦ π−1
)
;117

see e.g. [Han07, Section 2]. Then, similar to (1.5), by setting118

u(x) :=
( 2

1 + |x|2
)n−2m

2
(
v ◦ π−1

)
(1.6)119

120

and121

Fε,u(x) := ε
( 2

1 + |x|2
)2m

u(x) +
( 2

1 + |x|2
)n+2m

2 +αn−2m
2 u(x)−α (1.7)122

123

we see that u satisfies124

(−∆)mu = Q2m
n Fε,u in Rn. (1.8)ε125

126

In view of (1.6), we know that the function u on Rn has exact growth |x|2m−n at infinity.127

This additional information allows us to transfer the differential equation (1.8)ε into the128

following integral equation129

u(x) = γ2m,n

�
Rn

|x− y|2m−nFε,u(y)dy on Rn
130

for some constant γ2m,n > 0; see Theorem 2.2 below. Notice that in general there might131

be more solutions to (1.8)ε than the above integral equation, see e.g. [HW19] and [DN22].132

Let us emphasize that transferring to an equivalent integral equation on Rn also appears133

in the work of Zhang, but the proof provided in [Zha21] does not seem to work in our134

case. Similar integral representation in the fractional setting also appears in [FKT22]. In135

our work, by exploiting some nice structures on Sn as well as some intriguing properties136

of the stereographic projection, we offer a completely new argument, which is surprisingly137

simpler; see section 2.138
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Having the above integral equation in hand, we use a variant of the method of mov-139

ing planes in the integral form to show that any positive smooth solution u to the above140

integral equation with exact growth |x|2m−n at infinity must be radially symmetric. The141

symmetry of solutions to the integral equation helps us to conclude that the corresponding142

function v, appeared as in (1.6), must be constant. The strategy we just describe seems to143

be very simple and straightforward at the first glance, but there are two major difficulties144

that we want to highlight. First, it is worth emphasizing that the method of moving planes145

and its variants work well in the case of equations with positive exponents; unfortunately,146

our equations, both differential and integral forms, have a negative exponent. Second, by147

analyzing the form of Fε,u in (1.7), one immediately notices that because of our special148

choice of perturbation, there are two powers of u, whose exponents have opposite sign.149

Unless ε = 0, otherwise to run the method of moving planes, one needs to establish certain150

compactness result for solutions to (1.1)ε for suitable small ε, which costs us some energy.151

Concerning classification of solutions to (1.8)ε with ε = 0 and with the RHS depending152

only on u, that is equation of the form (−∆)mu = cu−α we refer to [HW19, Ngo18, Li04]153

and the references therein.154

Finally, to illustrate our finding on a Liouville type result for solutions to (1.1)ε, we155

revisit the sharp critical Sobolev inequality for P2m
n on Sn proved in [Han07]. In fact, we156

offer both critical and subcritical inequalities at once.157

Theorem 1.2. Let n ≥ 3 be an odd integer and m = (n + 1)/2. Then, for any
ϕ ∈ Hm(Sn) with ϕ > 0 and any α ∈ (0, 1) ∪ (1, 2n + 1], we have the following
sharp Sobolev inequality( �

Sn
ϕ1−αdµSn

) 2
α−1

�
Sn

ϕP2m
n (ϕ)dµSn ≥ Γ(n/2 +m)

Γ(n/2−m)
|Sn|

α+1
α−1 . (1.9)

Moreover, the equality occurs if ϕ is any positive constant.

Let us make a few remarks:158

• Apparently, by chosing α = (n+ 2m)/(2m− n) = 2n+ 1, our inequality (1.9)159

includes the following critical Sobolev inequality160 (�
Sn

ϕ− 2n
2m−n dµSn

) 2m−n
n

�
Sn

ϕP2m
n (ϕ)dµSn ≥ Γ(n/2 +m)

Γ(n/2−m)
|Sn| 2mn , (1.10)161

which was already proved in [Han07], see also [HY04] and [FKT22].162

• Although the condition n = 2m−1 is not required in Theorem 1.1, but in our proof163

of (1.9) we heavily use it as in this case we have the advantage of Q-curvature Q2m
n164

being negative. In general, the inequality (1.9) is not true for n < 2m− 3, see e.g.165

[FKT22].166

• For 1 < α < (2m + n)/(2m − n), one cannot directly derive the subcritical167

inequality (1.9) from the critical inequality (1.10) by Hölder’s inequality in the168

following way169 (�
Sn

ϕ− 2n
2m−n dµSn

) 2m−n
n

≲
( �

Sn
ϕ1−αdµSn

) 2
α−1

.170

The reason is because of −2n/(2m − n) < 1 − α < 0. This is one of many171

analytical differences between problems with positive and negative exponents.172

Note that our inequality (1.9) can be rewritten as173 (  
Sn

ϕ1−αdµSn
) 2

α−1

 
Sn

ϕP2m
n (ϕ)dµSn ≥ Γ(n/2 +m)

Γ(n/2−m)
,174
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where
�
Sn := |Sn|−1

�
Sn denotes the average. Using this new form one can easily compute175

the limit as α → 1 to obtain the following corollary.176

Corollary 1.3. Let n ≥ 3 be an odd integer and m = (n + 1)/2. Then, for any ϕ ∈177

Hm(Sn) with ϕ > 0, we have the following sharp Sobolev inequality178

exp
(
− 2

 
Sn

log ϕdµSn
) 

Sn
ϕP 2m

n (ϕ)dµSn ≥ Γ(n/2 +m)

Γ(n/2−m)
. (1.11)179

Moreover, the equality occurs if ϕ is any positive constant.180

Since (1.11) is a direct consequence of (1.9), we omit its proof. Without using averages,181

(1.11) can be rewritten as follows182

exp
(
− 2

|Sn|

�
Sn

log ϕdµSn
)�

Sn
ϕP 2m

n (ϕ)dµSn ≥ Γ(n/2 +m)

Γ(n/2−m)
|Sn|.183

To the best of our knowledge, the above inequality (or the inequality (1.11)) seems to be184

new.185

Our final comment concerns a possible generalization to the fractional setting. Indeed, it186

seems that part of our argument can be quickly extended to the case of fractional operators187

of order 2s > n instead of GJMS operators of integer order 2m > n. However, to maintain188

our work in a reasonable length, we leave this future research.189

Before closing this section, let us mention the organization of the paper.190
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2. SOME AUXILIARY RESULTS203

2.1. Basics of the stereographic projection. As routine, we denote by πN and πS the204

stereographic projections from the north pole N and from the south pole S of the sphere205

Sn respectively. If we denote by (x, xn+1) a general point in Rn+1 = Rn ×R, then we206

have the following expressions for πN207

πN (x, xn+1) =
x

1− xn+1
, π−1

N (x) =
( 2x

|x|2 + 1
,
|x|2 − 1

|x|2 + 1

)
.208
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Likewise, we also have similar expressions for πS . But these expressions for πS can be209

derived quickly from those for πN by changing the sign of the last coordinate. In this210

sense, we arrive at211

πS(x, xn+1) =
x

1 + xn+1
, π−1

S (x) =
( 2x

|x|2 + 1
,−|x|2 − 1

|x|2 + 1

)
.212

The following observation plays some role in our analysis.213

Lemma 2.1. There holds

π−1
N (x) = π−1

S

( x

|x|2
)
, π−1

S (x) = π−1
N

( x

|x|2
)

in Rn \ {0}.

Proof. These identities follows from the above expressions for πN and πS .214

Rn

xn+1

N

x

S

π−1
N (x) ≡ πS(

x
|x|2 )

x
|x|2

FIGURE 1. Relation between π−1
N and πS .

We leave the details for interested readers; also see Figure 1 above. □215

2.2. From differential equations to integral equations. Let v be a positive, smooth so-216

lution to (1.1). Recall from (1.8)ε that the projected function u, defined by (1.6), solves217

(−∆)mu = Q2m
n Fε,u in Rn.218

The main result of this subsection is to show that u actually solves the corresponding219

integral equation (2.1). To achieve this goal, we need certain preparation including the220

introduction of a uniform constant that we are going to describe now.221

Since n is an odd integer, for some dimensional constant c2m,n ̸= 0 we have222

(−∆)m
(
c2m,n|x|2m−n

)
= δ0,223

where δ0 is the Dirac measure at the origin. For convenience, set224

γ2m,n := c2m,nQ
2m
n .225

For simplicity, throughout the paper, we often denote by C a generic constant whose value226

could vary from estimate to estimate. We now state our main result in this subsection.227

Theorem 2.2. We have
228
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γ2m,n > 0

and

u(x) = γ2m,n

�
Rn

|x− y|2m−nFε,u(y)dy (2.1)

where Fε,u is given by (1.7).
229

Notice that the integral in (2.1) is well-defined everywhere in Rn. Indeed, as v is230

positive everywhere on Sn, we have from (1.6) that u(x) ≈ |x|2m−n for |x| ≫ 1, and231

hence232

(1 + |x|2m−n)Fε,u(x) ≤
C

1 + |x|2n
. (2.2)233

234

In order to prove the above theorem we define the following functions associated with the235

projections πN and πS :236

uN (x) :=
(1 + |x|2

2

) 2m−n
2 (v ◦ π−1

N )(x)237

and238

uS(x) :=
(1 + |x|2

2

) 2m−n
2 (v ◦ π−1

S )(x)239

in Rn. In view of the integral equation (2.1), we denote240

ũN (x) := γ2m,n

�
Rn

|x− y|2m−nFε,uN
(y)dy241

and242

ũS(x) := γ2m,n

�
Rn

|x− y|2m−nFε,uS
(y)dy243

in Rn. Our aim is to show that uN ≡ ũN and that γ2m,n > 0. This will be done through244

several steps. Our first observation is as follows.245

Lemma 2.3. We have

uS(x) = |x|2m−nuN

( x

|x|2
)
, uN (x) = |x|2m−nuS

( x

|x|2
)

in Rn.

Proof. This is elementary. Indeed, let us compute uS . Clearly, with help of Lemma 2.1,246

we have247

uS(x) =
(1 + |x|2

2

) 2m−n
2 v

(
π−1
S (x)

)
248

=
(1 + |x|2

2

) 2m−n
2 v

(
π−1
N

( x

|x|2
))

249

= |x|2m−n
(1 + |x/|x|2|2

2

) 2m−n
2 v

(
π−1
N

( x

|x|2
))

250

= |x|2m−nuN

( x

|x|2
)
,251

252

which gives the desired formula for uS . The identity for uN can be verified similarly. □253

Our next observation is similar to that in Lemma 2.3.254

Lemma 2.4. We have

ũS(x) = |x|2m−nũN

( x

|x|2
)
, ũN (x) = |x|2m−nũS

( x

|x|2
)

in Rn \ {0}.
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Proof. This is also elementary but rather involved. Indeed, let us verify the first identity.255

With a change of variable y = z/|z|2 and help of Lemma 2.3 we easily get256

|x|2m−nũN

( x

|x|2
)
= γ2m,n|x|2m−n

�
Rn

∣∣∣ x

|x|2
− y

∣∣∣2m−n

Fε,uN
(y)dy257

= γ2m,n|x|2m−n

�
Rn

∣∣∣ x

|x|2
− z

|z|2
∣∣∣2m−n

Fε,uN
(

z

|z|2
)
dz

|z|2n
258

= γ2m,n

�
Rn

|x− z|2m−nFε,uS
(z)dz259

= ũS(x),260
261

where in the second last equality we have used the following facts:262 ∣∣∣∣ x

|x|2
− z

|z|2

∣∣∣∣ = |x− z|
|x||z|

, Fε,uN
(

z

|z|2
) = |z|2m+nFε,uS

(z).263

The second identity can be verified similarly. □264

Now we are able to examine uN − ũN and uS − ũS .265

Lemma 2.5. The following functions

PN := uN − ũN , PS := uS − ũS

are polynomials in Rn of degree at most 2m− n.

Proof. Before proving, we see that both PN and PS are well-defined everywhere in Rn.266

Now it follows from (2.2) that the function ũN satisfies267

ũN (x) ≤ C(1 + |x|2m−n) for x ∈ Rn.268

This together with the growth of uN implies that |PN (x)| ≤ C(1 + |x|2m−n). Since269

∆mPN = ∆muN −∆mũN = 0,270

we conclude that PN is a polynomial in Rn of degree at most 2m − n; see [Mar09,271

Theorem 5]. A similar argument applies to PS yielding the same conclusion for PS . □272

Finally, we are in a position to prove Theorem 2.2, which simply follows from the next273

two lemmas.274

Lemma 2.6. There hold uN ≡ ũN and uS ≡ ũS everywhere.

Proof. As275

uS(x) = |x|2m−nuN

( x

|x|2
)
, ũS(x) = |x|2m−nũN

( x

|x|2
)

276

we obtain277

PS(x) = |x|2m−nPN

( x

|x|2
)
,278

279

which is a polynomial (of degree at most 2m − n). Surely, as n is odd, this is impossible280

unless PN ≡ PS ≡ 0, which implies that uN ≡ ũN and uS ≡ ũS . This completes the281

proof. □282
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Lemma 2.7. There hold γ2m,n > 0.

Proof. The claim γ2m,n > 0 follows trivially by seeing the both sides of (2.1) as v ≡ 1 is283

a solution to (1.1)0 and Fε,uN
> 0. More precisely, one has the following identity284 ( 2

1 + |x|2
)n−2m

2 = γ2m,n

�
Rn

|x− y|2m−n
( 2

1 + |y|2
)n+2m

2 dy285

everywhere in Rn. □286

We conclude this subsection by noting that our approach to prove Theorem 2.2 can be287

used for the case of equations with positive exponent. For example, without using any288

super polyharmonic property, as in [CLS22], our new approach offers a very simple and289

straightforward proof to convert differential equations on Sn to the corresponding integral290

equations on Rn, detail will appear elsewhere.291

2.3. Pohozaev-type identity. Our last auxiliary result is a Pohozaev-type identity, which292

shall be used in the proof of a compactness type result; see section 3 below. For simplicity,293

we let294

cα := α
2m− n

2
− 2m+ n

2
≤ 0. (2.3)295

Lemma 2.8. Let Q ∈ C1(Rn) be such that

|Q(x)| ≲ (1 + |x|)−n+(α−1)(2m−n)−δ,

for some δ > 0. Let u ≳ (1 + |x|)2m−n be a regular solution to

u(x) =

�
Rn

|x− y|2m−nQ(y)u−α(y)dy. (2.4)

Then, for α ̸= 1, there holds�
Rn

(x · ∇Q)u1−αdx = cα

�
Rn

Qu1−αdx,

provided (x · ∇Q)u1−α ∈ L1(Rn).

Proof. The proof given below is more or less standard. As x = (1/2)(x+ y + x− y) and296

∇x(|x− y|2m−n) = (2m− n)|x− y|2m−n−2(x− y),297

by differentiating under the integral sign in (2.4), we obtain298

x · ∇u(x) =
2m− n

2
u(x) +

2m− n

2

�
R3

|x|2 − |y|2

|x− y|n+2−2m
Q(y)u−α(y)dy.299

Multiplying the above identity by Q(x)u−α(x), and then integrating the resultant on BR300

we arrive at301

1

1− α

�
BR

Q(x · ∇u1−α)dx =
2m− n

2

�
BR

Qu1−α
302

+
2m− n

2

�
BR

Q(x)u−α(x)
(�

Rn

|x|2 − |y|2

|x− y|n+2−2m
Q(y)u−α(y)dy

)
dx.303

304

Integration by parts leads to305 �
BR

Q(x · ∇u1−α)dx = −
�
BR

(x · ∇Q)u1−αdx− n

�
BR

Qu1−αdx+R

�
∂BR

Qu1−αdx.306
307
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Hence,308

R

1− α

�
∂BR

Qu1−αdσ − 2m− n

2

�
BR

�
Rn

|x|2 − |y|2

|x− y|n+2−2m
Q(y)u−α(y)Q(x)u−α(x)dydx

=
1

1− α

[ (2m+ n)− α(2m− n)

2

�
BR

Qu1−αdx+

�
BR

(x · ∇Q)u1−αdx
]
.

(2.5)309

Thanks to the decay assumption on Q, we easily get310

lim
R→∞

(
R

�
∂BR

Qu1−αdσ
)
= 0,311

and clearly312

�
Rn

�
Rn

|x|2 − |y|2

|x− y|n+2−2m
Q(y)u−α(y)Q(x)u−α(x)dydx = 0313

due to the antisymmetry of the integrand. Hence, by sending R → ∞, we conclude that314

the LHS of (2.5) vanishes, giving the desired identity. This completes the proof. □315

3. COMPACTNESS RESULTS316

This section is devoted to a compactness type result for solutions to (1.1)ε, which is of317

interest itself; see Theorem 3.1 below. Heuristically, one should study the compactness318

result for fixed ε and α. However, to derive useful estimates for our analysis, one needs319

certain compactness result which is independent of ε; see the proof of Lemmas 4.2 and 4.3320

below.321

Theorem 3.1. Let ε∗ ∈ (0, 1) and α ∈ (0, (2m + n)/(2m − n)] be arbitrary but
fixed. Assume that vk = vεk is a sequence of positive regular solutions to (1.1)εk for
some εk ∈ (0, ε∗). Then there exists C = C(ε∗) > 0 such that

1

C
≤ vk ≤ C in Sn

for all k. The same conclusion holds true for εk ∈ [0, ε∗) if α ∈ (0, (2m+n)/(2m−
n)).

It is worth noting that the above compactness fails for solutions to (1.1)0 in the case322

α = (n + 2m)/(2m − n) due to the conformally invariant property of the underlying323

equation. More specifically, fixing any solution v to324

P2m
n (v) = Q2m

n v
n+2m
2m−n in Sn325

and let326

vϕ = (v ◦ ϕ)|det(dϕ)|− 1
2n ,327

where ϕ is any conformal transformation on Sn. Then, it is well-known that vϕ solves the328

same equation in Sn. Hence, if one choose a sequence of ϕ in such a way that |det(dϕ)| ↘329

0, then the sequence vϕ is unbounded in Sn.330

In order to prove the above theorem we first need to rule out the possibility that the331

sequence vk will eventually touch zero. This in particular implies the lower estimate in the332

theorem.333

Lemma 3.2. Under the hypothesis of Theorem 3.1 above, we have

inf
k≥1

min
Sn

vk > 0.
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Proof. We assume by contradiction that the lemma is false. Then, up to a subsequence, we334

assume that335

min
S3

vk → 0 as k → ∞.336

Without loss of generality we can further assume that the minimum of vk is attained at the337

south pole. Let uk be defined by (1.6) using πN , and let Fk := Fεk,uk
as in (1.7). In view338

of (1.6) and 2m > n, the function uk achieves its minimum at 0. By Theorem 2.2, the339

function uk satisfies340

uk(x) = γ2m,n

�
Rn

|x− y|2m−nFk(y)dy. (3.1)341
342

To show that this is also not the case, we use the Pohozaev-type result in Lemma 2.8 and343

the role played by εk and α. Indeed, as Fk > 0 we first obtain344

uk(0) = γ2m,n

�
Rn

|y|2m−nFk(y)dy = o(1)k→∞. (3.2)345

Using this one can show that346

lim
k→∞

uk(x) = ∞ for each x ∈ Rn \ {0}. (3.3)347

Indeed, by way of contradiction suppose that there is some x0 ∈ Rn \ {0} such that348

uk(x0) = O(1)k→∞. As349

uk(x0)

γ2m,n
=

�
Rn

|x0 − y|2m−nFk(y)dy350

≥ 2−2m+n+1

�
Rn

|x0|2m−nFk(y)dy −
�
Rn

|y|2m−nFk(y)dy351
352

we obtain353 �
Rn

Fk(y)dy = O(1)k→∞,354

thanks to uk(0) = O(1)k→∞. Hence355 �
Rn

(1 + |y|2m−n)Fk(y)dy = O(1)k→∞. (3.4)356

Consequently, for any x ∈ Rn, one can estimate357

uk(x)

γ2m,n
=

�
Rn

|x− y|2m−nFk(y)dy ≤ 22m−n−1

�
Rn

(|x|2m−n + |y|2m−n)Fk(y)dy,358

359

which leads to360

uk(x) ≤ C(1 + |x|2m−n) in Rn
361

for some constant C > 0. Having this, one can bound Fk from below near the origin. For362

example, for any x ∈ B2, we easily get363

Fk(x) ≥
( 2

1 + |x|2
)−cα

uk(x)
−α ≥ 1

Cα

( 2

1 + |x|2
)n+2m

2 ≥ 1

Cα

(2
5

)n+2m
2

,364

365

thanks to uk(x) ≤ C(1+|x|2)(2m−n)/2 in Rn. However, this violates the fact that uk(0) =366

o(1)k→∞. Indeed,367

uk(0)

γ2m,n
≥
�
B2\B1

|y|2m−nFk(y)dy ≥ 1

Cα

(2
5

)n+2m
2

�
B2\B1

|y|2m−ndy > 0368

369

for all k. Thus, no such a point x0 could exist, hence (3.3) must hold. Notice that the above370

proof also reveals the fact that371

lim
k→∞

�
Rn

Fk(y)dy = ∞, (3.5)372
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otherwise by (3.2) one would again have (3.4) and again this leads to a contradiction. Now373

we normalize uk and Fk as follows374

ũk :=
uk

γ2m,n

�
Rn Fkdy

, F̃k :=
Fk�

Rn Fkdy
.375

Then376

ũk(x) =

�
Rn

|x− y|2m−nF̃k(y)dy,

�
Rn

F̃kdy = 1.377

Having (3.5), it is clear that ũk(0) → 0 and378

|∇ũk(x)| ≤ (2m− n)

�
Rn

|x− y|2m−n−1F̃k(y)dy ≤ C(1 + |x|2m−n−1) in Rn.379

Notice that because of (3.5) for large k there holds F̃k(x) ≤ Fk(x) everywhere. This and380

(3.2) now implies the following381

lim
k→∞

�
Rn\Bδ

F̃k(y)dy → 0 for any fixed δ > 0.382

Once we have the above limit in hand and seeing ũ as a convolution, by standard argument,383

we get that384

ũk → ũ := |x|2m−n in C0
loc(R

n) (3.6)385
386

and at the same time387

1

C
|x|2m−n ≤ ũk ≤ C|x|2m−n in Rn \B1 (3.7)388

389

for some C > 0. Notice that we can write Fk as390

Fk =
(
εkf

2mu1+α
k + f−cα

)
u−α
k =: Qku

−α
k ,391

where we denote392

f(x) :=
2

1 + |x|2
.393

By the Pohozaev-type identity in Lemma 2.8, we get394 �
Rn

(x · ∇Qk)u
1−α
k dx = cα

�
Rn

Qku
1−α
k dx. (3.8)395

396

(Here, the multiplicative constant γ2m,n ̸= 0 cancels out from the both sides, thanks to397

Theorem 2.2.) Let us first compute398

∇
(
εkf

2mu1+α
k

)
= 2mεkf

2m−1u1+α
k ∇f +

1 + α

2
εkf

2muα−1
k ∇u2

k399

and400

∇(f−cα) = −cαf
−cα−1∇f,401

leading us to402

x·∇Qk =
[ (

2mεkf
2m−1u2

k − cαf
−cα−1u1−α

k

)
(x·∇f)+

1 + α

2
εkf

2m(x·∇u2
k)
]
uα−1
k .403

Therefore, from (3.8) we get404

cα

�
Rn

[
εkf

2mu2
k + f−cαu1−α

k

]
dx =

�
Rn

[
2mεkf

2m−1u2
k − cαf

−cα−1u1−α
k

]
(x · ∇f)dx405

+
1 + α

2
εk

�
Rn

f2m(x · ∇u2
k)dx406

=

�
Rn

mεk(1− α)f2m−1u2
k(x · ∇f)dx407

+

�
Rn

εk
1 + α

2
u2
k(x · ∇f2m)dx408
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− cα

�
Rn

f−cα−1u1−α
k (x · ∇f)dx409

+
1 + α

2
εk

�
Rn

f2m(x · ∇u2
k)dx.410

411

By integration by parts, we note that412 �
Rn

[
u2
k(x · ∇f2m) + f2m(x · ∇u2

k)
]
dx413

= lim
R→∞

n∑
i=1

[ �
BR

[
− u2

kf
2m

]
dx+

1

R

�
∂BR

x2
i f

2mu2
kdσ

]
414

= lim
R→∞

[
− n

�
BR

u2
kf

2mdx+R

�
∂BR

f2mu2
kdσ

]
415

= −n

�
Rn

f2mu2
kdx.416

417

Putting the above estimates together we arrive at418

εk

�
Rn

f2m−1u2
k

[
m(1− α)(x · ∇f)−

(n(1 + α)

2
+ cα

)
f
]
dx

= cα

�
Rn

f−cα−1u1−α
k (x · ∇f + f) dx.

(3.9)419

Since420

x · ∇f + f = f
1− |x|2

1 + |x|2
,421

and422

m(1− α) + n
1 + α

2
+ cα = 0,423

the identity (3.9) can be rewritten as424

εkm(1− α)

�
Rn

f2mu2
k

1− |x|2

1 + |x|2
dx = cα

�
Rn

f−cαu1−α
k

1− |x|2

1 + |x|2
dx. (3.10)425

426

Our next step is to show that for large k, the two integrals in (3.10) are non-zero with427

different sign.428

Estimate of the LHS of (3.10). Concerning the integral on the LHS of (3.10), a simple429

calculation shows that430

1

M2
k

�
Rn

f2m(x)u2
k(x)

1− |x|2

1 + |x|2
dx431

=

�
Rn

( 2

1 + |x|2
)2m

ũ2
k(x)

1− |x|2

1 + |x|2
dx432

=

�
B1

( 2

1 + |x|2
)2m 1− |x|2

1 + |x|2
(
ũ2
k(x)− |x|4m−2nũ2

k

( x

|x|2
))

dx,433

434

here we have converted the integral on Rn \B1 into B1 using Kelvin’s transformation. In435

B1 \ {0}, it follows from (3.6) and (3.7) that436

ũ2
k(x)− |x|4m−2nũ2

k

( x

|x|2
)
→ |x|4m−2n − 1 ≤ 0 as k → ∞.437

Notice that438

lim
k→∞

�
B1

( 2

1 + |x|2
)2m 1− |x|2

1 + |x|2
(
ũ2
k(x)− |x|4m−2nũ2

k

( x

|x|2
))

dx439

=

�
B1

( 2

1 + |x|2
)2m 1− |x|2

1 + |x|2
(
|x|4m−2n − 1

)
dx < 0.440

441
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This and εk > 0 give the strictly negative of the integral on the LHS of (3.10) for large k.442

Estimate of the RHS of (3.10). Reasoning as in the previous step we should have443

1

M1−α
k

�
Rn

f−cα(x)u1−α
k (x)

1− |x|2

1 + |x|2
dx444

=

�
B1

( 2

1 + |x|2
)−cα 1− |x|2

1 + |x|2
(
ũ1−α
k (x)− |x|−2cα−2nũ1−α

k

( x

|x|2
))

dx.445

446

In B1, it follows from (3.6) that447

ũ1−α
k (x)− |x|−2cα−2nũ1−α

k

( x

|x|2
)
→ |x|(2m−n)(1−α) − 1 ≥ 0 as k → ∞.448

Now observe that for α > 1449 �
B1

( 2

1 + |x|2
)−cα 1− |x|2

1 + |x|2
(
|x|(2m−n)(1−α) − 1

)
dx > 0,450

451

giving the strictly positive of the integral on the RHS of (3.10) for large k (for certain452

α > 1, the preceding integral could be infinity). Now going back to (3.10), we easily obtain453

a contradiction for α > 1. Indeed, if εk > 0 and for large k, then as εkm(1− α) < 0, the454

LHS of (3.10) becomes strictly positive. However, as cα ≤ 0, the RHS of (3.10) becomes455

non-positive. This is a contradiction. If εk ≥ 0 and for large k, then the LHS of (3.10)456

becomes non-negative. However, as cα < 0, the RHS of (3.10) becomes strictly negative.457

This is again a contradiction. And this completes our proof of the compactness for α > 1.458

Finally we consider the case 0 < α ≤ 1. We set459

ηk(x) :=
uk(rkx)

uk(0)
, rk := uk(0)

1+α
2m → 0.460

Then ηk satisfies ηk ≥ ηk(0) = 1, and461

ηk(x) = γ2m,n

�
Rn

|x− y|2m−n

(
εkr

2m
k f2m(rky)ηk(y) +

f−cα(rky)

ηαk (y)

)
dy. (3.11)462

463

Then it follows that464 �
Rn

|y|2m−n

(
εkr

2m
k f2m(rky)ηk(y) +

f−cα(rky)

ηαk (y)

)
dy =

ηk(0)

γ2m,n
≤ C, (3.12)465

466

and together with ηk ≥ 1,467 �
Rn

(
1 + |y|2m−n

) f−cα(rky)

ηαk (y)
dy ≤ C. (3.13)468

469

Therefore,470

ηk(x) = γ2m,nεkr
2m
k

�
B1

|x− y|2m−nf2m(rky)ηk(y)dy +O(1) for x ∈ B1.471

Integrating the above identity with respect to x in B1, and using that f(rky) = 2 + o(1)472

on B1, we obtain473 �
B1

ηk(x)dx = o(1)

�
B1

ηk(y)dy +O(1),474

and hence475 �
B1

ηkdx ≤ C.476

Combining the above estimates477 �
Rn

(
1 + |y|2m−n

)(
εkr

2m
k f2m(rky)ηk(y) +

f−cα(rky)

ηαk (y)

)
dy ≤ C. (3.14)478

479
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This yields480

|∇ηk(x)| ≤ C(1 + |x|2m−n−1),
1

C

(
1 + |x|2m−n

)
≤ ηk(x) ≤ C

(
1 + |x|2m−n

)
.

(3.15)
481

482

Hence, up to a subsequence,483

ηk → η in C0
loc(R

n).484

From Fatou’s lemma, we get that485

�
Rn

|y|2m−n

ηα(y)
dy < ∞,486

thanks to (3.15). Since η satisfies the second estimate in (3.15), we necessarily have that487

(α− 1)(2m− n) > n,488
489

a contradiction to 0 < α ≤ 1. □490

We are now in a position to prove Theorem 3.1.491

Proof of Theorem 3.1. Since εk ∈ [0, ε∗) and 0 < ε∗ < 1, integrating (1.1) on Sn we get492

that493

0 ≤
�
Sn

vkdµSn ≤ 1

1− ε∗

�
Sn

v−α
k dµSn = O(1)k→∞,494

thanks to Lemma 3.2. Therefore, we arrive at495

P2m
n (vk)− εkQ

2m
n vk = O(1)k→∞ in Sn496

with ∥vk∥L1(Sn) = O(1)k→∞. The theorem follows from standard elliptic estimates. □497

4. MOVING PLANE ARGUMENTS AND PROOF OF THE MAIN RESULT498

This section is devoted to the proof of Theorem 1.1. To obtain the symmetry of solu-499

tions, our approach is based on the method of moving planes with some new ingredients.500

The major difficulty is how to handle the negative exponent. As far as we know, although501

the method of moving planes can be effectively applied to nonlinear equations with positive502

exponents, see [CL91, WX99, CLO06, CLS22] and the references therein, its applications503

to equations with negative exponents are very rare.504

Let us recall some notation and convention often used in the method of moving planes;505

see Figure 2 below. For λ ∈ R we set506

Σλ := {x ∈ Rn : x1 > λ}, Tλ := ∂Σλ.507

Also for any λ ∈ R we let xλ be the reflection of x ∈ Rn about the plane Tλ, namely508

xλ := (2λ− x1, x2, x3, . . . , xn).509

Also for any function f we let fλ be the reflection of f about the plane Tλ, namely510

fλ(x) := f(xλ) = f(2λ− x1, x2, x3, . . . , xn).511
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x1

Tλ
Rn−1

xλ
1

xλ x

x1

y

yλ

Σλ

FIGURE 2. Reflection in the method of moving planes

Throughout this section we let u = uε > 0 be a (smooth) solution to (2.1) with Fε :=512

Fε,u as in (1.7) for fixed 0 < ε < ε∗. For simplicity, we set513

wε,λ(x) := uε(x)− uε(x
λ) for all x ∈ Rn.514

To start moving planes, the following lemma is often required.515

Lemma 4.1. There hold

wε,λ(x) = γ2m,n

�
Rn

[
|x− y|2m−n − |xλ − y|2m−n

]
Fε(y)dy (4.1)

and

wε,λ(x) = γ2m,n

�
Σλ

[
|xλ − y|2m−n − |x− y|2m−n

]
[Fε(y

λ)− Fε(y)]dy (4.2)

for any λ ∈ R.

Proof. The first identity is obvious from the definition of wε,λ. The second identity follows516

from variable changes. Indeed, one can write517

uε(x) =
( �

Σλ

+

�
Rn\Σλ

)
|x− y|2m−nFε(y)dy518

=

�
Σλ

|x− y|2m−nFε(y)dy +

�
Σλ

|x− yλ|2m−nFε(y
λ)dy519

=

�
Σλ

|x− y|2m−nFε(y)dy +

�
Σλ

|xλ − y|2m−nFε(y
λ)dy.520

521

Similarly, one has522

uε(x
λ) =

�
Σλ

|xλ − y|2m−nFε(y)dy +

�
Σλ

|x− y|2m−nFε(y
λ)dy.523

524

By putting the above identities together we arrive at the second identity. □525

Our next step is to show that the method of moving planes can start from a very large526

λ0 > 0, where λ0 is independent of ε.527

Lemma 4.2. Let ε∗ ∈ (0, 1) be fixed. Then there exists λ0 ≫ 1 such that for every
ε ∈ [0, ε∗] we have

wε,λ(x) ≥ 0 in Σλ

for λ ≥ λ0.
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Proof. We start the proof by observing the existence of some constant C > 0 such that for528

each ε ∈ [0, ε∗] we have529

1

C

1

1 + |y|2m+n
≤ Fε(y) ≤ C

1

1 + |y|2m+n
in Rn; (4.3)530

531

see (2.2) for a similar estimate. In the case ε > 0, this simply follows from the uniform532

bound for vε with respect to ε ∈ (0, ε∗] as given by Theorem 3.1. In the case ε = 0, the533

above estimate is trivial because u(x) ≈ |x|2m−n for |x| ≫ 1. By a simple algebraic534

computations we have535

|x− y|2m−n − |xλ − y|2m−n =
|x− y|2 − |xλ − y|2

|x− y|2m−n + |xλ − y|2m−n
P̃λ(x, y),536

537

where the function P̃λ is given as follows538

P̃λ(x, y) :=

2m−n−1∑
k=0

|x− y|2(2m−n−1−k)|xλ − y|2k.539

(It is clear that P̃λ ≡ 1 if 2m− n = 1.) Using (4.1) and540

|x− y|2 − |xλ − y|2 = 4(x1 − λ)(λ− y1)541

we can write542

|x|2+n−2mwε,λ(x)

x1 − λ
=

�
Rn

(λ− y1)Pλ(x, y)Fε(y)dy =: Uε(x),543

where544

Pλ(x, y) := 4γ2m,n
|x|2+n−2m

|x− y|2m−n + |xλ − y|2m−n
P̃λ(x, y). (4.4)545

546

For later use, we note that for x, y ∈ Σλ there holds547

Pλ(x, y) ≤ C|x|2+n−2m |x− y|2(2m−n−1) + |xλ − y|2(2m−n−1)

|x− y|2m−n + |xλ − y|2m−n
548

≤ C


|x|

|x− y|
for 2m− n = 1

1 + |x|2+n−2m|y|2m−n−2 for 2m− n ≥ 3

(4.5)549

≤ C


|x|

|x− y|
for 2m− n = 1

|y|2m−n−2 for 2m− n ≥ 3.

550

551

To conclude the lemma, it suffices to show the existence of λ0 ≫ 1 such that552

Uε(x) > 0 for any x ∈ Σλ ∪ Tλ553

for every λ ≥ λ0. With help of (4.3) we can roughly estimate554

Uε(x) =

�
B1

(λ− y1)Pλ(x, y)Fε(y)dy +

�
Rn\B1

(λ− y1)Pλ(x, y)Fε(y)dy555

≥ 1

C

�
B1

(λ− y1)Pλ(x, y)dy +

�
y1>λ

(λ− y1)Pλ(x, y)Fε(y)dy556

≥ 1

C

�
B1

(λ− y1)Pλ(x, y)dy − C

�
y1>λ

Pλ(x, y)

1 + |y|2m+n−1
dy557

=: I1(x)− I2(x).558
559
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Here to get the term I2 we have used the estimates 0 ≤ y1 − λ ≤ y1 ≤ |y| in the region560

{y ∈ Rn : y1 > λ} and |y|/(1 + |y|2m+n) ≤ 2/(1 + |y|2m+n−1) for all y. Next, we561

estimate I1 from below and I2 from above. For I1, we note that562

Pλ(x, y) ≥
1

C
for y ∈ B1, x ∈ Σλ, λ ≥ λ0 ≫ 1.563

From this we deduce564

I1(x) ≥
λ

C
.565

We now estimate I2. For 2m − n ≥ 3 and as |y|2m−n−2/(1 + |y|2m+n−1) ≤ 2/(1 +566

|y|2n+1) and |y| ≥ y1 > λ we can estimate567

I2(x) ≤ C

�
y1>λ

|y|2m−n−2dy

1 + |y|2m+n−1
≤ C

�
y1>λ

dy

1 + |y|2n+1
≤ C

λn+1
≤ C.568

569

For 2m− n = 1, we split {y1 > λ} as follows570

{y1 > λ} ⊂ A1 ∪A2 ∪A3571

where572

A1 :=
{
y : λ < |y| ≤ |x|/2

}
, A2 := B2|x| \B|x|/2, A3 := Rn \B2|x|.573

(Although |x| > λ as x ∈ Σλ, the set A1 could be empty if |x| < 2λ, but it is not574

important.) Since |x− y| ≥ |x|/2 on A1 ∪A3 and again |y| ≥ y1 > λ, we can estimate575 �
A1∪A3

|x|
|x− y|

dy

1 + |y|2m+n−1
≤ C

λ2m−1
.576

On the remaining set A2 as |x|/2 ≤ |y| ≤ 2|x| we easily get577 �
A2

|x|
|x− y|

dy

1 + |y|2m+n−1
≤ C

|x|2m+n−2

�
A2

dy

|x− y|
≤ C

|x|2m−1
≤ C

λ2m−1
≤ C.578

Putting the above estimate together, we arrive at579

Uε(x) ≥ I1(x)− I2(x) ≥
λ

C
− C580

for some constant C > 0. Thus, the lemma follows by letting λ0 large enough. □581

In Lemma 4.2, we have compared uε(x) and uε(x
λ), via wε,λ(x), in Σλ. As there582

was no restriction on ε > 0, our comparison requires large λ > 0 to hold. In the next583

lemma, we compare Fε(x) and Fε(x
λ) in Σλ. As there will be no restriction on λ > 0, our584

comparison now requires small ε > 0, and this is the place where the constant ε∗ appears.585

Due to the form of Fε to achieve the goal we need the compactness result established586

earlier; see section 3.587

Lemma 4.3. There exists ε∗ ∈ (0, ε∗) small enough such that for arbitrary λ ∈
(0, λ0] but fixed, the conclusion if

wε,λ ≥ 0 in Σλ, (4.6)

then
Fε(x)− Fε(x

λ) ≤ 0 in Σλ (4.7)
holds for each ε ∈ [0, ε∗). In addition, if the inequality (4.6) is strict, then so is the
inequality (4.7).

Proof. Let us first be interested in the existence of ε∗ and ε ∈ (0, ε∗). As |xλ| < |x| for588

λ > 0 and x ∈ Σλ, we obtain589

Fε(x)− Fε(x
λ) = ε

( 2

1 + |x|2
)2m

uε(x)− ε
( 2

1 + |xλ|2
)2m

uε(x
λ)590
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+
( 2

1 + |x|2
)−cα 1

uα
ε (x)

−
( 2

1 + |xλ|2
)−cα 1

uα
ε (x

λ)
591

≤ ε
( 2

1 + |x|2
)2m

(uε(x)− uε(x
λ))592

+
( 2

1 + |x|2
)−cα

( 1

uα
ε (x)

− 1

uα
ε (x

λ)

)
,593

594

where the constant cα ≤ 0 is already given in (2.3). Hence, to prove (4.7) in Σλ, it suffices595

to prove that596

uα
ε (x)− uα

ε (x
λ)

uε(x)− uε(xλ)

1

uα
ε (x)u

α
ε (x

λ)
≥ ε

( 2

1 + |x|2
)(2m−n) 1+α

2 in Σλ, (4.8)597

598

where we have used that599

2m+ cα = (2m− n)
1 + α

2
.600

To this end, for some R ≫ 1 to be specified later, we first split Σλ into two parts as follows:601

Σλ =
[
Σλ ∩BR

]
∪
[
Σλ \BR

]
.602

In the region Σλ \BR, there exists some ε1 > 0 such that (4.8) holds. To see this we need603

to use uniform bounds with respect to ε > 0, see Theorem 3.1, to obtain604

uα
ε (x)− uα

ε (x
λ)

uε(x)− uε(xλ)
≥ ε1

( 2

1 + |x|2
)(2m−n) 1−α

2605

and606
1

uα
ε (x)u

α
ε (x

λ)
≥ ε1

( 2

1 + |x|2
)α

607

for some small ε1 ∈ (0, 1). This is mainly because when R is large enough, we have608

|x| ≈ |xλ| for |x| > R and λ ∈ (0, λ0]. In the region Σλ ∩ BR, by the smoothness of uε,609

there exists some small ε2 ∈ (0, 1) such that610

uα
ε (x)− uα

ε (x
λ)

uε(x)− uε(xλ)

1

uα
ε (x)u

α
ε (x

λ)
≥ ε2

( 2

1 + |x|2
)(2m−n) 1+α

2 (4.9)611

612

for any x ∈ BR. Hence, combining (4.8) and (4.9) yields the desired estimate (4.7) with613

ε∗ =
1

2
min{ε1, ε2}.614

Now we consider the remaining case ε = 0. However, this case is trivial because615

F0(x)− F0(x
λ) =

( 2

1 + |x|2
)−cα

( 1

uα
0 (x)

− 1

uα
0 (x

λ)

)
≤ 0616

617

whenever w0,λ(x) = u0(x) − u0(x
λ) ≥ 0. Finally, from the above calculation, it is clear618

that if the inequality (4.6) is strict, then the inequality (4.7) is also strict. Hence, the lemma619

is proved. □620

Thanks to Lemma 4.2, for each ε > 0 we can set621

λε := inf
{
λ > 0 : wε,µ ≥ 0 in Σµ for every µ ≥ λ

}
.622

Then, still by Lemma 4.2, we necessarily have623

0 ≤ λε ≤ λ0.624

By decreasing λ down to zero we eventually show that λε = 0. This can be done through625

two steps. First we show that if λε > 0, then we must have wε,λε
≡ 0 in Σλε

; see Lemma626

4.5. Finally, we show that λε = 0; see Lemma 4.6.627

Our next lemma is of importance to achieve the first step as it allows us to move λ to628

the left.629
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Lemma 4.4. Let ε ∈ [0, ε∗) and λ̄ ∈ (0, λ0] be such that

0 ̸≡ wε,λ̄ ≥ 0 in Σλ̄.

Then, there exist R ≫ 1 and δ > 0 small, both may depend on wε,λ̄, such that for
every λ ∈ (λ̄− δ, λ̄) we have

wε,λ > 0 in Σλ \BR.

Proof. Using the representation (4.2) and as in the first part of the proof of Lemma 4.2, we630

have631

wε,λ(x)
|x|2+n−2m

x1 − λ
=

�
Σλ

(y1 − λ)Pλ(x, y)[Fε(y
λ)− Fε(y)]dy, (4.10)632

633

where Pλ is given by (4.4). In view of (4.10), it suffices to show that its RHS is positive in634

Σλ \BR for suitable R > 0. For convenience, we recall the following formula for Pλ635

Pλ(x, y) = 4γ2m,n
|x|2+n−2m

|x− y|2m−n + |xλ − y|2m−n

2m−n−1∑
k=0

|x− y|2(2m−n−1−k)|xλ − y|2k.636
637

Hence, there exists some θ > 0 such that for every R1 > 0 fixed638

Pλ(x, y) ⇒ θ uniformly in y ∈ BR1
(4.11)639

640

as |x| → ∞. This is because |x| ≈ |x − y| ≈ |xλ − y| for large |x|. From (4.7) we know641

that642

0 ̸≡ Fε(y
λ̄)− Fε(y) ≥ 0 for y ∈ Σλ̄,643

which implies644 �
Σλ̄

(y1 − λ̄)[Fε(y
λ̄)− Fε(y)]dy ≥ 2c0 > 0,645

for some small constant c0 > 0. Thus, by the dominated convergence theorem, we can find646

some δ > 0 such that647 �
Σλ

(y1 − λ)[Fε(y
λ)− Fε(y)]dy ≥ c0 > 0, (4.12)648

649

for every |λ− λ̄| < δ. To obtain the positivity of the right hand side of (4.10), we split the650

integral
�
Σλ

into two parts as follows651

�
Σλ

=

�
Σλ\BR2

+

�
Σλ∩BR2

652

for some R2 > 0 to be determined later and estimate these integrals term by term; see the653

two estimates (4.14) and (4.15) below. Our aim is to show that the integral
�
Σλ\BR2

is654

negligible.655

We assume for a moment that such a constant R2 exists. We now estimate the integral656 �
Σλ\BR2

. First we initially choose new R0 ≫ 1 in such a way that |y1 − λ| < 2|y| for all657

|y| ≥ R0. Then we find some R1 ≫ R0 such that in Σλ \BR1 we have658 �
Σλ\BR1

dy

1 + |y|2m+n−1
≤ θc0

16C
(4.13)659

and660

Fε(y) + Fε(y
λ) ≤ C

1 + |y|2m+n
661
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for some C > 0 because |y| ≈ |yλ|. By the estimate (4.5) for Pλ, we now claim that there662

are some R3 ≫ 1 and R2 ≫ R1 such that663 �
Σλ\BR2

(y1 − λ)Pλ(x, y)[Fε(y
λ) + Fε(y)]dy ≤ θc0

4
(4.14)664

for |x| ≥ R3. To see this, for clarity, we consider the two cases 2m−n = 1 and 2m−n ≥ 3665

separately.666

Case 1. Suppose 2m − n = 1. In this case our estimate for Pλ becomes Pλ(x, y) ≤667

C|x|/|x− y|. Consequently, there holds668 �
Σλ\BR2

(y1 − λ)Pλ(x, y)[Fε(y
λ) + Fε(y)]dy ≤ C

�
Σλ\BR2

|x|
|x− y|

|y|
1 + |y|2m+n

dy.669

For |x| ≥ R3 ≫ 2R2 to be determined later, we now split
�
Σλ\BR2

as follows670

�
Σλ\BR2

=

�
[Σλ\BR2

]∩[B|x|/2∪(Rn\B2|x|)]

+

�
[Σλ\BR2

]\[B|x|/2∪(Rn\B2|x|)]

.671

Thanks to (4.13), we get672

C

�
[Σλ\BR2

]∩[B|x|/2∪(Rn\B2|x|)]

|x|
|x− y|

|y|
1 + |y|2m+n

dy <
θc0
8

.673

For the remaining integral on [Σλ \ BR2
] \ [B|x|/2 ∪ (Rn \ B2|x|)] which is a subset of674

B2|x| \B|x|/2 because |x| ≥ 2R2, we estimate as follows675

C

�
[Σλ\BR2

]\[B|x|/2∪(Rn\B2|x|)]

≤ C|x|2

1 + |x|2m+n

�
B2|x|\B|x|/2

dy

|x− y|
.676

Since the last integral is of order |x|n and m ≥ 2 we can find some R3 ≫ 1 such that677

C|x|2

1 + |x|2m+n

�
B2|x|\B|x|/2

dy

|x− y|
≤ θc0

8
678

for all x ∈ Σλ ∩ BR3
. Combining the two estimates above gives (4.14). This completes679

the first case.680

Case 2. Suppose 2m− n ≥ 3. This case is easy to handle. Recall that our estimate for Pλ681

becomes Pλ(x, y) ≤ C|y|2m−n−2. Consequently, there holds682

�
Σλ\BR2

(y1 − λ)Pλ(x, y)[Fε(y
λ) + Fε(y)]dy ≤ C

�
Σλ\BR2

|y|2m−n−1

1 + |y|2m+n
dy.683

Seeing (4.13) or as in the proof of Lemma 4.2, we easily obtain the desired estimate.684

Hence, up to this point, we have already shown that there are some R2 ≫ 1 and R3 ≫ 1685

such that the estimate (4.14) holds for |x| ≥ R3. Now we estimate the integral
�
Σλ∩BR2

.686

Keep using the constant R2. By the uniform convergence in (4.11), we can choose R4 ≫687

R2 such that688

Pλ(x, y) ≥
1

2
θ for |x| ≥ R4 and |y| ≤ R2.689

This and (4.12) imply that690 �
Σλ∩BR2

(y1 − λ)Pλ(x, y)[Fε(y
λ)− Fε(y)]dy ≥ θc0

2
(4.15)691

for |x| ≥ R4. We conclude the lemma by combing the two estimates (4.14) and (4.15) and692

choosing R = max{R3, R4}. □693
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We are now in a position to complete the first step, namely, to show that λε = 0. To this694

purpose, we must rule out the case λε > 0 and this is the content of the next two lemmas.695

First, we characterize the function wε,λε
in case λε > 0.696

Lemma 4.5. If λε > 0 for some ε ∈ [0, ε∗), then wε,λε
≡ 0 in Σλε

.

Proof. Let λε > 0 for some ε ∈ [0, ε∗) and assume by contradiction that wε,λε
̸≡ 0 in697

Σλε
. This and the definition of λε imply that698

0 ̸≡ wε,λε
≥ 0 in Σλε

.699

By Lemma 4.4, there exist R ≫ 1 and δ > 0 small enough such that700

wε,λ > 0 in Σλ \BR for every λ ∈ (λε − δ, λε).701

Take a sequence (µk)k convergent to λε such that µk ∈ (λε− δ, λε). Still by the definition702

of λε and as µk < λε we know that wε,µk
is negative somewhere in Σµk

. Since outside703

BR, the function wε,µk
is strictly positive, for each k there is some xk ∈ Σµk

∩ BR such704

that705

wε,µk
(xk) = min

Σµk

wε,µk
< 0.706

In particular, there holds707

wε,µk
(xk)

(xk)1 − µk
< 0.708

Obviously, the sequence (xk) is bounded as xk ∈ BR. Also note that Σλε
⊂ Σµk

and709

Σµk
↘ Σλε

as k ↗ +∞. Therefore, up to a subsequence, we have710

Σλε
∪ Tλε

∋ x∞ := lim
k→∞

xk.711

In particular, by passing to the limit as k → ∞, there holds wε,λε
(x∞) ≤ 0. This and712

(4.10) implies that713

0 ≥ wε,λε
(x∞)

|x∞|2+n−2m

(x∞)1 − λε

=

�
Σλε

(y1 − λε)Pλε
(x∞, y)[Fε(y

λε)− Fε(y)]dy ≥ 0,714

715

thanks to |x∞| > 0 and Fε(y
λε) ≥ Fε(y) in Σλε

by Lemma 4.3. Thus, we must have716

Fε(y
λ̄ε)− Fε(y) = 0 for any y ∈ Σλε

,717

which, by (4.10), now yields wε,λε
≡ 0 in Σλε

. However, this is a contradiction. The proof718

is complete. □719

From the characterization of wε,λε
in the case λε > 0, we are able to show that in fact720

the case λε > 0 cannot happen.721

Lemma 4.6. Let ε ∈ [0, ε∗). There holds λε = 0. In particular, the function uε is
symmetric with respect to the hyperplane {x ∈ Rn : x1 = 0}.

Proof. By way of contradiction, assume that λε > 0. In view of Lemma 4.5, we must have722

0 = wε,λε
(x) = uε(x)− uε(x

λε)723

in Σλε
. This and (4.2) tell us that724 �

Σλε

[
|xλε − y|2m−n − |x− y|2m−n

]
[Fε(y

λε)− Fε(y)]dy = 0725

726
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for any x ∈ Σλε
, thanks to γ2m,n ̸= 0, see Theorem 2.2. But this cannot happen because727

|x− y| ≤ |xλε − y| for any x, y ∈ Σλε
and728

Fε(x)− Fε(x
λε) = ε

[( 2

1 + |x|2
)2m −

( 2

1 + |xλε |2
)2m]

uε(x)729

+
[( 2

1 + |x|2
)−cα −

( 2

1 + |xλε |2
)−cα

] 1

uα
ε (x)

730

< 0,731
732

everywhere in Σλε
, thanks to the estimates uε > 0, −cα ≥ 0, and |x| ≤ |xλε | in Σλε

.733

(Here we also use the fact that if ε = 0, then α < (n+2m)/(2m−n) in order to guarantee734

−cα > 0.) Thus, we must have λε = 0. In particular, we have from the definition of λε735

the following736

uε(x1, x2, ..., xn) ≥ uε(−x1, x2, ..., xn).737

We now apply the method of moving planes in the opposite direction, namely λ < 0, to738

get739

uε(x1, x2, ..., xn) ≤ uε(−x1, x2, ..., xn).740

Hence741

uε(x1, x2, ..., xn) = uε(−x1, x2, ..., xn).742

This establishes the symmetry of uε with respect to the hyperplane {x ∈ Rn : x1 = 0}.743

The proof is now complete. □744

As a consequence of Lemma 4.6 above, we obtain a Liouville type result for positive,745

smooth solution to (1.1)ε for small ε > 0, hence proving Theorem 1.1.746

Lemma 4.7. Any positive, smooth solution vε to (1.1)ε for small ε must be constant.

Proof. Let ε ∈ [0, ε∗) be arbitrary. From Lemma 4.6 we know that the corresponding747

solution uε is symmetric with respect to the hyperplane {x ∈ Rn : x1 = 0}. This together748

with the relation749

uε(x) =
(1 + |x|2

2

) 2m−n
2 (

vε ◦ π−1
N

)
(x)750

tells us that vε depends only on the last coordinate xn+1. However, as the xn+1-axis is751

freely chosen, we conclude that vε must be constant. This completes the proof. □752

Before closing this section, we have a remark. To obtain the symmetry of solutions to753

(1.1)ε for small ε, our approach is based on the method of moving planes in the integral754

form. A natural question is weather or not one can use the method of moving spheres; see755

[LZ95, Li04]. Due to the presence of the weight 2/(1 + |x|2) in (1.7), it is natural to ask756

whether or not the method of moving spheres can still be used. Toward a possible answer757

to this question, we refer the reader to the work [JLX08].758

5. APPLICATION TO THE SHARP SOBOLEV INEQUALITY759

This section is devoted to a proof of Theorem 1.2 which concerns a sharp (critical or760

subcritical) Sobolev inequality. Let ε ∈ (0, 1) and inspired by (1.4) consider the following761

variational problem762

Sε = inf
0<ϕ∈Hm(Sn)

(�
Sn

ϕ1−αdµSn
) 2

α−1

�
Sn

[
ϕP2m

n (ϕ)− εQ2m
n ϕ2

]
dµSn (5.1)763

with m = (n+ 1)/2 and α ∈ (0, 1) ∪ (1, 2n+ 1]. Now as764

P2m
n (1)− εQ2m

n = (1− ε)Q2m
n ̸= 0765
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by testing (5.1) with constant functions we conclude from (5.1) that766

Sε ≤ (1− ε)Q2m
n |Sn|

α+1
α−1 < 0,767

however, Sε could be −∞. Next we show that Sε is finite and is achieved by some smooth768

positive function.769

Lemma 5.1. Assume that m = (n + 1)/2 and α ∈ (0, 1) ∪ (1, 2n + 1]. Then, the
constant Sε in (5.1) is finite and there exists some vε ∈ C∞(Sn) such that vε > 0
and (�

Sn
v1−α
ε dµSn

) 2
α−1

�
Sn

[
vε P

2m
n (vε)− εQ2m

n v2ε
]
dµSn = Sε.

In particular, vε solves

P2m
n (vε)− εQ2m

n vε = Sεv
−α
ε

in Sn with
Sε =

Sε

∥v−1
ε ∥α+1

Lα−1(Sn)
.

Proof. Let (vk)k be a positive, smooth minimizing sequence in H2m(Sn), that is770 (�
Sn

v1−α
k dµSn

) 2
α−1

�
Sn

[
vk P

2m
n (vk)− εQ2m

n v2k
]
dµSn ↘ Sε771

as k → ∞. By the scaling invariant we can assume maxSn vk = 1 which then yields772

∥vk∥2L2(Sn) ≤ |Sn|.773

By seeing P2m
n as a polynomial of −∆gSn , whose coefficient of the leading term is posi-774

tive, it is easy to get that775 �
Sn

vk P
2m
n (vk)dµSn ≥ c1∥vk∥2Hm(Sn) − c2∥vk∥2L2(Sn) ≥ c1∥vk∥2Hm(Sn) − c2|Sn|776

for some c1 > 0 and c2 > 0. Note that Sε < 0 and Q2m
n < 0 would imply777 �

Sn
vk P

2m
n vkdµSn < 0.778

Therefore, the previous estimate leads to779

c1∥vk∥2Hm(Sn) ≤ c2|Sn|,780

giving the boundedness of the sequence (vk) in Hm(Sn). Hence, after passing to a subse-781

quence if necessary, there exists some vε ∈ Hm(Sn) such that782

vk → vε ≥ 0 uniformly in C(Sn)783

by Morrey’s inequality and the Arzelà–Ascoli lemma, and784

vk ⇀ vε weakly in Hm(Sn).785

In particular, there holds maxSn vε = 1. As vε ≥ 0, there are two possibilities. First,786

let us assume that vε vanishes somewhere on Sn. By assuming this we shall obtain a787

contradiction, therefore we must have vε > 0. Indeed, as n = 2m − 1, we can make use788

of [Han07, Corollary 3.1] to conclude that789 �
Sn

vε P
2m
n (vε)dµSn ≥ 0.790

This together with εQ2m
n < 0 and

�
Sn v2εdµSn > 0 help us to get791

0 <

�
Sn

[
vε P

2m
n (vε)− εQ2m

n v2ε
]
dµSn ≤ lim inf

k↗+∞

�
Sn

[
vk P

2m
n (vk)− εQ2m

n v2k
]
dµSn .792



26 A. HYDER AND Q.A. NGÔ

This is a contradiction to Sε < 0. Thus, vε > 0 everywhere. Then, this allows us to gain793

v−1
k → v−1

ε uniformly in C(Sn)794

and consequently795 �
Sn

v1−α
k dµSn →

�
Sn

v1−α
ε dµSn .796

Putting these facts together, we obtain797

Sε ≤
(�

Sn
v1−α
ε dµSn

) 2
α−1

�
Sn

[
vε P

2m
n (vε)− εQ2m

n v2ε
]
dµSn

≤ lim inf
k↗+∞

[( �
Sn

v1−α
k dµSn

) 2
α−1

�
Sn

[
vk P

2m
n (vk)− εQ2m

n v2k
]
dµSn

]
= Sε.

(5.2)798

Hence, on one hand implies that Sε must be finite, on the other hand, yields that vε is a799

minimizer for (5.1). Rest of the proof follows immediately. □800

Having Lemma 5.1 in hand, we are able to prove Theorem 1.2 as we shall do now. By801

seeing our Liouville type result in Theorem 1.1, this is the place we need the smallness of802

ε.803

Proof of Theorem 1.2. Let ε > 0 and α ∈ (0, 1) ∪ (1, 2n + 1]. By Lemma 5.1, there is804

some positive, smooth function vε satisfying805

�
Sn

v1−α
ε dµSn = 1806

and807 �
Sn

[
vε P

2m
n (vε)− εQ2m

n v2ε
]
dµSn = Sε.808

Then, up to a constant multiple, vε solves (1.1)ε in Sn. Therefore, for small ε > 0, it809

follows from Theorem 1.1 that vε is constant. Keep in mind that α ̸= 1. Hence, on one810

hand, as Q2m
n = P2m

n (1), we can compute to get811

Sε = (1− ε)Q2m
n |Sn|

α+1
α−1 ,812

on the other hand, by the definition of Sε we get813 ( �
Sn

ϕ1−αdµSn
) 2

α−1

�
Sn

[
ϕP2m

n (ϕ)− εQ2m
n ϕ2

]
dµSn ≥ (1− ε)Q2m

n |Sn|
α+1
α−1814

for any ϕ ∈ Hm(Sn) with ϕ > 0. Now letting ε ↘ 0 we obtain815 ( �
Sn

ϕ1−αdµSn
) 2

α−1

�
Sn

ϕP2m
n (ϕ)dµSn ≥ Q2m

n |Sn|
α+1
α−1 .816

Recall that Q2m
n = P2m

n (1) = Γ(n/2 + m)/Γ(n/2 − m). This completes the proof of817

Theorem 1.2. □818
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