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ABSTRACT
In this paper, the problem of solvability and stability for switched discrete-time linear
singular (SDLS) systems under Lipschitz perturbations is studied. We first prove
the unique existence of solution of SDLS systems under Lipschitz perturbations
with different switching rules on two sides. The solution manifold is also described.
Secondly, we derive some conditions for stability of these systems. Finally, some
examples are given to illustrate the obtained results.
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1. Introduction

In this paper we study solvability and stability of switched discrete-time linear singular
(SDLS) systems of the form

Eσ(k+1)x(k + 1) = Aσ(k)x(k) + fσ(k)(x(k)), (1.1)

where σ : N ∪ {0} → N := {1, 2, . . . , N}, N ∈ N, denotes the switching signal that
determines which of the N ∈ N modes is active at time k.

Singular switched systems are models arising in diverse real-life applications such as
power electronics and systems, air traffic and aircraft control, network control systems,
robot manipulators, multibody systems, economic systems and so forth, (see, e.g.
[6, 12, 16, 18, 20]). These systems consist of a family of singular subsystems and a rule
that controls the switching between them which in recent years have attracted a good
deal of attention from researchers. On the other hand, the advent of many modern-
day sampled-data control systems (or the dynamic Leontief system in economic) has
necessitated a study of discrete-time singular systems because they can only change
at discrete instants of time (see, e.g. [5, 11, 13–15, 17, 19]). These lead switched
discrete-time singular systems. They can also be obtained from switched continuous-
time singular systems by some discretization methods.
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Recently, we have investigated solvability and stability of SDLS systems of the form
Eσ(k)x(k + 1) = Aσ(k)x(k) in [2, 3], where the switching rules in matrices E and A
are same. If the switching rules in matrices E and A are not same then it is more
complicated. In [9], some first results on this case have considered for homogenous
SDLS systems which have no perturbations. However, to the best of our knowledge,
there are still no results about solvability and stability for SDLS systems of the form
(1.1) under Lipschitz perturbations f .

The purpose of the present paper is to fill this gap. We will consider SDLS systems of
the form (1.1) with the different switching rules in matrices E and A. The singularity
of the leading coefficients make the analysis of system (1.1) difficult since computation
of solutions is impossible at first sight. Even the solvability of the initial value problem
is doubtful. Due to the fact that the dynamics of (1.1) are constrained and combined
between singular systems, some extra difficulties appear in the analysis of solvability as
well as stability characterized by index concepts of singular systems (see, e.g. [4, 8, 10]).
Thus, in this paper, we will develop and modify the approach in [1, 3, 9] to investigate
solvability and stability of SDLS systems under Lipschitz perturbations. The unique
existence of solution of (1.1) will be proved by using the contraction mapping principle.
After that characterizations for stability of (1.1) will be derived by using methods of
the Lyapunov functions and the solution evaluation.

The paper is organized as follows. In Section 2, we summarize some preliminary
results of SDLS systems of index-1 and the discrete Gronwal inequality. In Section
3, we study solvability and a formula of solution of SDLS systems under Lipschitz
perturbations. Section 4 deals with stability of these systems. The last section gives
some conclusions.

2. Preliminary

For N ∈ N, denote N = {1, 2, . . . , N} and O by the zero matrix. Consider the homo-
geneous SDLS systems

Eσ(k+1)x(k + 1) = Aσ(k)x(k) (2.1)

is of index-1 ([4], [9]), i.e., the folllowing hypotheses are assumed to be fulfilled:

(i) rankEi = r < n, ∀i ∈ N ,
(ii) Sij ∩ kerEi = {0},∀i, j ∈ N , where Sij = A−1

i (ImEj) = {ξ ∈ Rn : Aiξ ∈ ImEj}.

It is proved that from hypothesis (ii) we have

Sij ⊕ kerEi = Rn,∀i, j ∈ N,

see, e.g. [3, 9]. Let the matrix Vij = {s1ij , . . . , srij , h
r+1
i , . . . , hni }, whose columns form

bases of Sij and kerEi, respectively, and Q = diag(Or, In−r), P = In −Q. Here Or is
the r × r zero matrix and In−r stands for the (n− r)× (n− r) identity matrix. Then
the matrix Qij := VijQV

−1
ij defines a projection onto kerEi along Sij (i.e., Q2

ij = Qij

and ImQij = kerEi), and Pij := In −Qij = VijPV
−1
ij is the projection onto Sij along

kerEi. Further we define the so-called connecting operators Qijm := VijQV
−1
jm .

Theorem 2.1. ([9]). For switched discrete-time linear singular homogeneous system
of index-1 (2.1), the following assertions hold:
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(i) Gijm = Ej +AiQijm is non-singular ;
(ii) EjPjm = Ej;
(iii) Pjm = G−1

ijmEj;

(iv) V −1
jmG

−1
ijmAiVijQ = Q.

for all i, j,m ∈ N .

We need to use the following discrete Gronwall inequality to study the exponential
stability of SDLS systems in Section 4.

Theorem 2.2. ([7]) Assume that {ym}, {fm}, {gm} are nonnegative sequences such
that

ym ≤ fm +
∑

0≤i<m

giyi, ∀m ≥ 0.

Then

ym ≤ fm +
∑

0≤i<m

figi
∏

i<j<m

(1 + gj).

3. Solvability

Consider a switched discrete-time singular system of the form:

Eσ(k+1)x(k + 1) = Aσ(k)x(k) + fσ(k)(x(k)) (3.1)

where σ : N ∪ {0} → N, is a switching signal taking values in the finite set N ,
Ei, Ai ∈ Rn×n and fi : Rn → Rn, i ∈ N, are perturbations, x(k) ∈ Rn is state vector
at time k ∈ N. Suppose that the matrices Ei are singular for all i ∈ N . Let us associate
system (3.1) with the initial condition

Pσ(k0)σ(k0+1)x(k0) = Pσ(k0)σ(k0+1)γ, (3.2)

where γ is a given vector in Rn and k0 is a fixed nonnegative integer.

Theorem 3.1. Let fσ(k)(x) be a Lipschitz continuous function with a sufficient small
Lipschitz coefficient, i.e.,

∥fi(x)− fi(x̃)∥ ≤ Li∥x− x̃∥, ∀x, x̃ ∈ Rn, i ∈ N, (3.3)

and

ωi := Limax{∥QijmG
−1
ijm∥ : j,m ∈ N} < 1,∀i ∈ N. (3.4)

Then the IVP (3.1), (3.2) has a unique solution.

Proof. Multiplying on both sides of equation (3.1) from the left by

Pσ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2) and Qσ(k+1)σ(k+2)G

−1
σ(k)σ(k+1)σ(k+2),
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respectively and observing that

G−1
σ(k)σ(k+1)σ(k+2)Eσ(k+1) = Pσ(k+1)σ(k+2),

Pσ(k+1)σ(k+2)Qσ(k+1)σ(k+2) = Qσ(k+1)σ(k+2)Pσ(k+1)σ(k+2) = O,

we get

Pσ(k+1)σ(k+2)x(k + 1) = Pσ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)Aσ(k)x(k)

+ Pσ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)fσ(k)(x(k)),

(3.5)

Qσ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)Aσ(k)x(k) = −Qσ(k+1)σ(k+2)G

−1
σ(k)σ(k+1)σ(k+2)fσ(k)(x(k)).

(3.6)
Let u(k) = Pσ(k)σ(k+1)x(k), v(k) = Qσ(k)σ(k+1)x(k), (k ∈ N) we get

Pσ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)Aσ(k)v(k)

= Pσ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)Aσ(k)Qσ(k)σ(k+1)x(k)

= Pσ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)Aσ(k)Qσ(k)σ(k+1)σ(k+2)Vσ(k+1)σ(k+2)QV

−1
σ(k)σ(k+1)x(k)

= Pσ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)(Gσ(k)σ(k+1)σ(k+2) − Eσ(k+1))Vσ(k+1)σ(k+2)QV

−1
σ(k)σ(k+1)x(k)

= (Pσ(k+1)σ(k+2) − Pσ(k+1)σ(k+2)Pσ(k+1)σ(k+2))Vσ(k+1)σ(k+2)QV
−1
σ(k)σ(k+1)x(k)

= 0,

and from (3.5)

u(k + 1) = Pσ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)Aσ(k)(u(k) + v(k))

+ Pσ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)fσ(k)(u(k) + v(k))

= Pσ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)Aσ(k)u(k)

+ Pσ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)fσ(k)(u(k) + v(k)).

(3.7)

By item (iv) of Theorem 2.1,

Qσ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)Aσ(k)Qσ(k)σ(k+1) = Vσ(k+1)σ(k+2)QV

−1
σ(k)σ(k+1).

Therefore, the left side of (3.6) can be expressed as

Qσ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)Aσ(k)x(k) = Qσ(k+1)σ(k+2)G

−1
σ(k)σ(k+1)σ(k+2)Aσ(k)(u(k) + v(k))

= Qσ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)Aσ(k)u(k) + Vσ(k+1)σ(k+2)QV

−1
σ(k)σ(k+1)x(k).
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Hence, it follows from (3.6) that

Vσ(k+1)σ(k+2)QV
−1
σ(k)σ(k+1)x(k)

= −Qσ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)Aσ(k)u(k)−Qσ(k+1)σ(k+2)G

−1
σ(k)σ(k+1)σ(k+2)fσ(k)(x(k)).

Now multiplying on both sides of this relation by Qσ(k)σ(k+1)σ(k+2) from the left we
obtain

v(k) = Qσ(k)σ(k+1)x(k) = Qσ(k)σ(k+1)σ(k+2)Vσ(k+1)σ(k+2)QV
−1
σ(k)σ(k+1)x(k)

= −Qσ(k)σ(k+1)σ(k+2)Qσ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)Aσ(k)u(k)

−Qσ(k)σ(k+1)σ(k+2)Qσ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)fσ(k)(x(k))

= −Qσ(k)σ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)Aσ(k)u(k)

−Qσ(k)σ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)fσ(k)(x(k))

= −Qσ(k)σ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)(fσ(k)(u(k) + v(k)) +Aσ(k)u(k)). (3.8)

By equation (3.7), suppose that u := u(k)(k ≥ k0) is known, where

u(k0) = Pσ(k0)σ(k0+1)x(k0) = Pσ(k0)σ(k0+1)γ

is given. We consider an operator Tijm : ImQij → ImQij defined by

Tijm(v) := −QijmG
−1
ijm[fi(u+ v) +Aiu].

Since

∥Tijm(v)− Tijm(ṽ)∥ = ∥QijmG
−1
ijm[fi(u+ v)− fi(u+ ṽ)∥

≤ ∥QijmG
−1
ijm∥∥fi(u+ v)− fi(u+ ṽ)∥

≤ ∥QijmG
−1
ijm∥Li∥v − ṽ∥ ≤ ωi∥v − ṽ∥ < ∥v − ṽ∥,

the operator Tijm is contractive. Therefore equation (3.8) has a unique solution given
by a mapping gσ(k)σ(k+1) : ImPσ(k)σ(k+1) → ImQσ(k)σ(k+1), gσ(k)σ(k+1)(u(k)) = v(k).
Moreover, it is easy to show that gσ(k)σ(k+1) is a Lipschitz continuous mapping having
the Lipschitz constant

Kσ(k) := ωσ(k)(Lσ(k) + ∥Aσ(k)∥)L−1
σ(k)(1− ωσ(k))

−1. (3.9)

Thus, the IVP (3.1), (3.2) has a unique solution given by

x(k) = u(k) + gσ(k)σ(k+1)(u(k)), (3.10)

with u(k0) = Pσ(k0)σ(k0+1)γ. The proof is complete.
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We define the Cauchy operator associated with system (3.1)

Φσ(k, h) =

k∏
l=h+1

Pσ(l)σ(l+1)G
−1
σ(l−1)σ(l)σ(l+1)Aσ(l−1) and Φσ(h, h) = Pσ(h)σ(h+1).

(3.11)
Then, it is easy to see that Φσ(k, h) satisfies the relation

Φσ(k, h) = Φσ(k, l)Φσ(l, h), ∀k ≥ l ≥ h.

Now, the variation of constants formula for the solution of system (3.1) is derived in
the following corollary.

Corollary 3.2. The unique solution of system (3.1) with the initial conditions (3.2)
satisfies the equation

x(k) =Φσ(k, k0)Pσ(k0)σ(k0+1)γ +

k−1∑
i=k0

Φσ(k, i+ 1)Pσ(i+1)σ(i+2)G
−1
σ(i)σ(i+1)σ(i+2)fσ(i)(x(i))

−Qσ(k)σ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)(fσ(k)(x(k)) +Aσ(k)Pσ(k)σ(k+1)x(k)).

(3.12)

Proof. By equation (3.7), we imply that the solution u(k) is given by the formula

u(k) = Φσ(k, k−1)Pσ(k0)σ(k0+1)γ+

k−1∑
i=k0

Φσ(k, i+1)Pσ(i+1)σ(i+2)G
−1
σ(i)σ(i+1)σ(i+2)fσ(i)(x(i))

and by equation (3.8), we have

v(k) = −Qσ(k)σ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)(fσ(k)(x(k)) +Aσ(k)Pσ(k)σ(k+1)x(k)).

Since x(k) = u(k) + v(k), we obtain formula (3.12).

In what follows, without loss of generality, assume that fi(0) = 0,∀i ∈ N . This
implies that gσ(k)σ(k+1)(0) = 0 and equation (3.1) possesses a trivial solution x(k) ≡ 0.
It follows from (3.10) that each solution x(k) of the IVP (3.1), (3.2) satisfies x(k) =
Pσ(k)σ(k+1)x(k) + gσ(k)σ(k+1)(Pσ(k)σ(k+1)x(k)) or equivalently,

Qσ(k)σ(k+1)x(k) = −Qσ(k)σ(k+1)σ(k+2)G
−1
σ(k)σ(k+1)σ(k+2)(fσ(k)(x(k)) +Aσ(k)Pσ(k)σ(k+1)x(k)).

Let

∆i := {x ∈ Rn : Qijx = −QijmG
−1
ijm(fi(x) +AiPijx), for some j,m ∈ N}. (3.13)

If x = x(k) is any solution of the IVP (3.1), (3.2), then obviously, x(k) ∈ ∆σ(k)(k ≥ k0).
Conversely, for each θ ∈ ∆i, there exists a solution of (3.1) passing θ. Indeed, let σ
be a switching signal satisfying σ(k) = i and x(m, k; θ)(m ≥ k) be a solution of (3.1)
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satisfying the initial condition Pσ(k)σ(k+1)x(k) = Pσ(k)σ(k+1)θ. Clearly,

x(k, k; θ) = Pσ(k)σ(k+1)x(k) + gσ(k)σ(k+1)(Pσ(k)σ(k+1)x(k))

= Pσ(k)σ(k+1)θ + gσ(k)σ(k+1)(Pσ(k)σ(k+1)θ)

= Pσ(k)σ(k+1)θ +Qσ(k)σ(k+1)θ = θ.

(3.14)

We will prove that the set ∆i does not depend on the choice of projections in the
following proposition.

Proposition 3.3. Let the solution manifold ∆i be defined in (3.13). Then, the fol-
lowing hold:

(i) ∆i = {x ∈ Rn : fi(x) +Aix ∈ ImEj , for some j ∈ N}.
(ii) ∆i ∩ kerEi = {0}.

Proof. i) Letting x ∈ ∆i, then there exists j,m ∈ N such that

Qijx = −QijmG
−1
ijm(fi(x) +AiPijx),

hence

x = Pijx+Qijx = −QijmG
−1
ijmfi(x) + (I −QijmG

−1
ijmAi)Pijx.

From this relation we have

fi(x) +Aix = (I −AiQijmG
−1
ijm)fi(x) +Ai(I −QijmG

−1
ijmAi)Pijx.

Note that

Ai(I −QijmG
−1
ijmAi)Pijx = (I −AiQijmG

−1
ijm)AiPijx.

Therefore

fi(x) +Aix = (I −AiQijmG
−1
ijm)(fi(x) +AiPijx).

Since

AiQijmG
−1
ijm = (Gijm − Ej)G

−1
ijm = I − EjG

−1
ijm,

it follows that

fi(x) +Aix = EjG
−1
ijm{fi(x) +AiPijx} ∈ ImEj .

Hence x ∈ ∆i.
Conversely, let x ∈ Rn such that fi(x) + Aix ∈ ImEj for some j ∈ N . Then there

exists ξ ∈ Rn, j ∈ N such that fi(x) +Aix = Ejξ. We will prove that for m ∈ N,

Qijx = −QijmG
−1
ijm(fi(x) +AiPijx),
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or equivalent

x =−QijmG
−1
ijm(fi(x) +Aix) +QijmG

−1
ijmAiQijx+ Pijx.

Denoting the right-hand side of this relation by wij and note that

Q−1
ijmG

−1
ijm(fi(x) +Aix) = Q−1

ijmG
−1
ijmEjξ = Q−1

ijmPjmξ

= VijQV
−1
jm VjmPV

−1
jm ξ = VijQPV

−1
jm ξ = 0,

by Theorem 2.1 we get

wij = QijmG
−1
ijmAiQijx+ Pijx

= Q−1
ijmG

−1
ijmAiVijQV

−1
jm VjmQV

−1
ij x+ Pijx

= QijmG
−1
ijm(Gijm − Ej)VjmQV

−1
ij x+ Pijx

= QijmVjmQV
−1
ij x−QijmG

−1
ijmEjVjmQV

−1
ij x+ Pijx

= VijQV
−1
jm VjmQV

−1
ij x− VijQV

−1
jm PjmVjmQV

−1
ij x+ Pijx

= VijQQV
−1
ij x− VijQPQV

−1
ij x+ Pijx

= Qijx+ Pijx = x.

Thus, x ∈ ∆i and the item (i) of Lemma 3.3 is proved.
(ii) Let x ∈ ∆i ∩ kerEi. Then we have x ∈ ∆i and Pijx = 0 for all j ∈ N . Since

x ∈ ∆i, it implies that

Qijx = gij(Pijx) = 0

and hence

x = Pijx+Qijx = 0.

The proof is complete.

Since G−1
σ(k0+2)σ(k0)σ(k0+1)Eσ(k0) = Pσ(k0)σ(k0+1), it is easy to see that the initial

condition (3.2) is equivalent to the condition

Eσ(k0)x(k0) = Eσ(k0)γ,∀k0 ∈ N. (3.15)

which is independent of the choice of projections. Thus both initial conditions (3.2)
and (3.15) are equivalent for all k0 ∈ N . The unique solution of the IVP (3.1), (3.2)
or (3.1), (3.15) will be denoted by x(k) = x(k, k0; γ).

4. Stability

In this section the notions of stability of trivial solution are introduced and the nec-
essary and sufficient conditions for stability of SDLS systems are established.

Definition 4.1. The trivial solution of (3.1) is said to be
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(i) stable if for each ϵ > 0, any k0 ≥ 0 and for all switching signals there exists a
δ = δ(ϵ, k0) ∈ (0, ϵ] such that ∥Pσ(k0)σ(k0+1)γ∥ < δ implies ∥x(k, k0; γ)∥ < ϵ for
all k ≥ k0, uniformly stable if it is stable and δ does not depend on k0;

(ii) asymptotically stable if it is stable and for any k0 ≥ 0 and for all switching
signals there exists a δ = δ(k0) > 0 such that the inequality ∥Pσ(k0)σ(k0+1)γ∥ < δ
implies ∥x(k, k0; γ)∥ → 0 as k → +∞);

(iii) exponentially stable if there exist M > 0, 0 < λ < 1 such that ∥x(k, k0; γ)∥ ≤
Mλk−k0∥Pσ(k0)σ(k0+1)γ∥ for all k ≥ k0 and switching signals.

Remark 4.2. In the above definition, if replacing the initial condition Pσ(k0)σ(k0+1)γ
by Eσ(k0)γ then we get notions of E-stability, E-asymptotical stability and E-

exponential stability (respectively). However, since the relation G−1
ijmEj = Pjm and

EjPjm = Ej for all i, j, k ∈ N , it is easy to show that they are equivalent to above
notions (respectively).

Denote by K the class of all increasing functions ψ from [0,∞) into itself such that
ψ(0) = 0, ψ(x) > 0 for x ̸= 0 and lim

x→0+
ψ(x) = 0.

Lemma 4.3. The trivial solution of (3.1) is stable if and only if there exists a function
ψ ∈ K, such that for each nonnegative integer k0 and for all switching signals, there
holds the inequality

∥x(k)∥ ≤ ψ(∥x(k0)∥), ∀k ≥ k0. (4.1)

Proof. Suppose first that for all switching signals and for each nonnegative integer
k0, there exists a function ψ ∈ K satisfying condition (4.1). Since ψ is increasing and
continuous at 0, for each positive ϵ there exists δ = δ(ϵ) ∈ (0, ϵ] such that ψ(δ) < ϵ.
Let K = maxi∈N Ki, where Ki is given by (3.9). If x(k) is an arbitrary solution of

(3.1) satisfying |Pσ(k0)σ(k0+1)x(k0)∥ < δ1 :=
δ

K + 1
then

∥x(k0)∥ = ∥Pσ(k0)σ(k0+1)x(k0) + gσ(k0)σ(k0+1)σ(k0+2)(Pσ(k0)σ(k0+1)x(k0))∥
≤ ∥Pσ(k0)σ(k0+1)x(k0)∥+ ∥gσ(k0)σ(k0+1)σ(k0+2)(Pσ(k0)σ(k0+1)x(k0))∥
≤ ∥Pσ(k0)σ(k0+1)x(k0)∥(1 +Kσ(k0)) ≤ ∥Pσ(k0)σ(k0+1)x(k0)∥(1 +K) < δ.

(4.2)

This implies that

∥x(k)∥ ≤ ψ(∥x(k0)∥) ≤ ψ(δ) < ϵ, ∀k ≥ k0, ∀σ,

which implies that trivial solution of (3.1) is stable.
Conversely, suppose that the trivial solution of (3.1) is stable, i.e., for each positive

ϵ there exists a δ = δ(ϵ) ∈ (0, ϵ], such that if x(k) is any solution of (3.1) satisfying
the inequality ∥Pσ(k0)σ(k0+1)x(k0)∥ < δ for all switching signals then ∥x(k)∥ < ϵ for all
k ≥ k0. Denote by α(ϵ) the supremum of such δ(ϵ). Clearly, if ∥Pσ(k0)σ(k0+1)x(k0)∥ <
α(ϵ) for some k0 and for all σ, then ∥x(k)∥ < ϵ for all k ≥ k0. Further, the function

α(ϵ) is positive and increasing and moreover, α(ϵ) ≤ ϵ. Putting β(ϵ) :=
ϵα(ϵ)

(ϵ+ 1)H
for

ϵ ≥ 0, where H := max{∥Pij∥ : i, j ∈ N}. It is easy to see that 0 < β(ϵ) <
α(ϵ)

H
≤ ϵ

H
,

β is strictly increasing and continuous at 0. Then there exists the strictly increasing
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inverse of β from Imβ to [0,∞) which can be expanded to ψ ∈ K. Let x(k) be a
solution of (3.1) and k0 be a fixed nonegative integer. Set ϵk := ∥x(k)∥ and consider
two possibilities. If ∥x(k)∥ = 0 then ∥x(k)∥ = 0 ≤ ψ(∥x(k0)∥) since ψ is nonnegative.
Now suppose that ϵk := ∥x(k)∥ > 0. If ∥x(k0)∥ < β(ϵk) then

∥Pσ(k0)σ(k0+1)x(k0)∥ ≤ Hβ(ϵk) < α(ϵk).

This implies that ∥x(k)∥ < ϵk = ∥x(k)∥, ∀k ≥ k0, which is contradiction. Therefore
∥x(k0)∥ ≥ β(ϵk) which is equivalent to

∥x(k)∥ = ϵk ≤ β−1(∥x(k0)∥) = ψ(∥x(k0)∥).

The proof is complete.

Remark 4.4. The above lemma is developed and modified from Lemma 3.3 in [1].
Here, ψ is a function of ∥x(k0)∥ which doesn’t depend of the choice of projections and

ψ ∈ K containing the class of all continuous and strictly increasing functions ψ̂ from
[0,∞) into itself, such that ψ̂(0) = 0. Moreover, to prove converse, we have constructed
the function ψ which is different from Lemma 3.3 in [1].

Theorem 4.5. The existence of the Lyapunov functions Vσ : N × Rn → R+ being
continuous in the second variable at γ = 0 and the functions a, ψk ∈ K, such that

(i) a(∥y∥) ≤ Vσ(k, y) ≤ ψk(∥y∥), ∀k ≥ 0,∀y ∈ ∆σ(k), ∀σ,
(ii) ∆Vσ(k, y(k)) := Vσ(k+1, y(k+1))−Vσ(k, y(k)) ≤ 0,∀k ≥ 0, ∀σ, for any solution

y(k) of (3.1) corresponding σ,

is a necessary and sufficient condition for the stability of the trivial solution of the
SDLS system (3.1).

Proof. Necessity. Suppose that the trivial solution of (3.1) is stable. For each k0, then
according to Lemma 4.3, there exist functions ψk0

∈ K (k0 ≥ 0), such that for any
solution x(k) of (3.1),

∥x(k)∥ ≤ ψk0
(∥x(k0)∥), ∀k ≥ k0, ∀σ. (4.3)

We define the Lyapunov function

Vσ(k0, γ) := sup
m∈N

∥xσ(k0 +m, k0; γ)∥, for each γ ∈ Rn, k0 ∈ N, (4.4)

where xσ(k0+m, k0; γ) is the unique solution of (3.1) corresponding to switching signal
σ satisfying the initial condition Pσ(k0)σ(k0+1)xσ(k0) = Pσ(k0)σ(k0+1)γ. Inequality (4.3)
ensures the correctness of definition (4.4). By (4.2), we have

∥xσ(k0)∥ ≤ (K + 1)∥Pσ(k0)σ(k0+1)xσ(k0)∥ = (K + 1)∥Pσ(k0)σ(k0+1)γ∥ ≤ (K + 1)H∥γ∥,

where the constants K,H are given Lemma 4.3. Define ψ̂k0
(t) := ψk0

((K + 1)Ht) for
t ≥ 0. Then we imply that

Vσ(k0, γ) ≤ ψk0
(∥xσ(k0)∥) ≤ ψk0

((K + 1)H∥γ∥) = ψ̂k0
(∥γ∥),∀k0 ≥ 0,∀γ ∈ Rn, ∀σ.
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This implies that Vσ(k0, 0) = 0 and the continuity of the function V w.r.t the second
variable at γ = 0. For each y ∈ ∆σ(k0), by (3.14), we have

Vσ(k0, y) = sup
l∈N

∥xσ(k0 + l, k0; y)∥ ≥ ∥xσ(k0, k0; y)∥ = ∥y∥ := a(∥y∥). (4.5)

On the other hand, for each k0 ≥ 0 due to the unique solvability of (3.1)-(3.2), it is
easy to see that

{xσ(k0 + l, k0; y(k0)) : l ≥ 0} = {y(k0 + l) : l ≥ 0)}
⊃ {y(k0 + l) : l ≥ 1)} ⊃ {xσ(k0 + 1 + l, k0 + 1; y(k0 + 1)) : l ≥ 0},

(4.6)

where σy(k) is the switching signal corresponding y(k). Thus

Vσ(k + 1, y(k + 1)) = sup
l≥0

∥xσ(k + 1 + l, k + 1; y(k + 1))∥

≤ sup
l≥0

∥xσ(k + l, k; y(k))∥ = Vσ(k, y(k)),

which implies ∆Vσ(k, y(k)) ≤ 0. The necessity part is proved.
Sufficiency. We argue by contradiction by assuming that trivial solution of (3.1)

is not stable, i.e., there exist a positive ϵ0, a nonnegative integer k0 and a switching
signal σ, such that for all δ ∈ (0, ϵ0], there exists a solution xσ(k) of (3.1) satisfying
the inequalities ∥Pσ(k0)σ(k0+1)xσ(k0)∥ < δ and ∥xσ(k1)∥ ≥ ϵ0 for some k1 ≥ k0.

Since Vσ(k0, 0) = 0 and Vσ(k0, γ) is continuous at γ = 0, there exists a δ
′

0 =
δ

′

0(ϵ, k0) > 0, such that for all ξ ∈ Rn, ∥ξ∥ < δ
′

0 and for all σ we have Vσ(k0, ξ) <

ϵ1 := a(ϵ0). Choosing δ0 ≤ { δ
′
0

K+1 , ϵ0} we can find solution xσ(k) of (3.1) satisfy-
ing ∥Pσ(k0)σ(k0+1)xσ(k0)∥ < δ0, however ∥xσ(k1)∥ ≥ ϵ0 for some k1 ≥ k0. Since

∥Pσ(k0)σ(k0+1)xσ(k0)∥ < δ0 ≤ δ
′
0

K+1 , ∥xσ(k0)∥ < δ
′

0 and one gets Vσ(k0, xσ(k0)) < ϵ1.
On the other hand, using the properties of the function V , we find

Vσ(k0, xσ(k0)) ≥ Vσ(k1, xσ(k1)) ≥ a(∥xσ(k1)∥) ≥ a(ϵ0) = ϵ1,

which leads to a contradiction. The proof of Theorem 4.5 is complete.

If the trivial solution of (3.1) is uniformly stable then the function ψk in the above
theorem can be chosen independently on k. Therefore, a similar argument as in the
above proof leads to the next result.

Theorem 4.6. The trivial solution of (3.1) is uniformly stable if and only if there
exist two functions a, b ∈ K and the Lyapunov functions Vσ : N×Rn → R+, such that

(i) a(∥y∥) ≤ Vσ(k, y) ≤ b(∥y∥), ∀k ≥ 0,∀y ∈ ∆σ(k), ∀σ,
(ii) ∆Vσ(k, y(k)) := Vσ(k+1, y(k+1))−Vσ(k, y(k)) ≤ 0,∀k ≥ 0, ∀σ, for any solution

y(k) of (3.1) corresponding σ.

Now, we derive a theorem on the asymptotical stability of the trivial solution of
(3.1).

Theorem 4.7. Suppose that there exist the functions a, c, ψk ∈ K and the Lyapunov
functions Vσ : Z+ × Rn → R+, such that
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(i) a(∥y∥) ≤ Vσ(k, y) ≤ ψk(∥y∥), ∀k ≥ 0,∀y ∈ ∆σ(k), ∀σ,
(ii) ∆Vσ(k, y(k)) := Vσ(k + 1, y(k + 1)) − Vσ(k, y(k)) ≤ −c(∥y(k)∥),∀k ≥ 0,∀σ, for

any solution y(k) of (3.1) corresponding σ.

Then the trivial solution of (3.1) is asymptotically stable.

Proof. From Theorem 4.5, we have the trivial solution of (3.1) is stable. By item (ii),
{Vσ(k, y(k))} is a decreasing sequence and is below bounded by 0. Therefore there
exists the limit limk→∞ Vσ(k, y(k)). This implies that

lim
k→∞

Vσ(k + 1, y(k + 1))− Vσ(k, y(k)) = 0

and hence limk→∞ c(∥y(k)∥) = 0. Since c ∈ K, it implies that limk→∞ ∥y(k)∥ = 0.
Indeed, assume that limk→∞ ∥y(k)∥ ≠ 0. Then for some ϵ > 0, there exists a sequence
{km} ⊂ N such that km → ∞ and ∥y(km)∥ > ϵ. This implies that c(∥y(km)∥) ≥ c(ϵ) >
0 which is a contradiction. The proof is complete.

We define

µ = max{Li(1 +Ki)∥PjmG
−1
ijm∥ : i, j,m ∈ N}.

Theorem 4.8. Assume that there exist M > 0, 0 < λ < 1 such that

∥Φσ(k, h)∥ ≤Mλk−h, ∀k ≥ h ≥ k0,

and Mµ < 1− λ. Then the trivial solution of (3.1) is exponentially stable.

Proof. From formula (3.7), we have

u(k) = Φσ(k, k0)u(k0) +

k−1∑
i=k0

Φσ(k, i+ 1)Pσ(i+1)σ(i+2)G
−1
σ(i)σ(i+1)σ(i+2)fσ(i)(u(i) + v(i)).

This implies that

∥u(k)∥ =Mλk−k0∥u(k0)∥+
k−1∑
i=k0

Mλk−i−1∥Pσ(i+1)σ(i+2)G
−1
σ(i)σ(i+1)σ(i+2)∥Lσ(i)∥u(i) + v(i)∥

=Mλk−k0∥u(k0)∥+
k−1∑
i=k0

Mλk−i−1∥Pσ(i+1)σ(i+2)G
−1
σ(i)σ(i+1)σ(i+2)∥Lσ(i)(1 +Kσ(i))∥u(i)∥

≤Mλk−k0∥u(k0)∥+
k−1∑
i=k0

Mλk−i−1µ∥u(i)∥.

This is equivalent to

∥u(k)∥
λk−k0

≤M∥u(k0)∥+
k−1∑
i=k0

Mµ

λ

∥u(i)∥
λi−k0

,∀k ≥ k0.
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Therefore, if we put ym =
∥um+k0

∥
λm

, fm = M∥u(k0)∥, gm =
Mµ

λ
for all m ≥ 0. Then

we have

ym ≤ fm +
∑

0≤i<m

giyi, ∀m ≥ 0.

By Theorem 2.2, we get

ym ≤ fm +
∑

0≤i<m

figi
∏

i<j<m

(1 + gj)

≤M∥u(k0)∥+
∑

0≤i<m

M∥u(k0)∥
Mµ

λ

(
1 +

Mµ

λ

)m−i−1

=M∥u(k0)∥+M∥u(k0)∥
((

1 +
Mµ

λ

)m

− 1

)
=M∥u(k0)∥

(
1 +

Mµ

λ

)m

.

(4.7)

This implies that

∥u(k)∥ ≤M∥u(k0)∥
(
1 +

Mµ

λ

)k−k0

λk−k0 =M∥u(k0)∥(λ+Mµ)k−k0 ,∀k ≥ k0.

Hence

∥x(k)∥ = ∥u(k) + v(k)∥ ≤ (1 +K)∥u(k)∥ ≤ (1 +K)M∥u(k0)∥(λ+Mµ)k−k0 , ∀k ≥ k0.

Since λ +Mµ < 1, the trivial solution of (3.1) is exponentially stable. The proof is
complete.

Example 4.9. Consider the SDLS (3.1) with switching signal σ : N ∪ {0} →
{1, 2, ..., N} = IN and

Ei =

(
0 i
0 i+ 1

)
; Ai =

(
i+ 1 1
−i− 1 1

)
and

fi(x) =
sinx2
i

(1,−1)T ; x = (x1, x2)
T ∈ R2, i ∈ IN .

We have kerEi = span{(1, 0)T}, ImEi = span{(0, 1)T} and Sij = span{(0, 1)T}. There-
fore, Sij ∩ kerEi = {0} and rankEi = 1 < 2, hence the SDLS (3.1) is of index-1.
Clearly,

Vij =

(
0 1
1 0

)
, ∀i, j ∈ IN ; Q =

(
0 0
0 1

)
.
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This implies that

Qij = VijQV
−1
ij =

(
1 0
0 0

)
= P ; Pij = In −Qij =

(
0 0
0 1

)
.

A simple calculation shows that Qijm = VijQV
−1
jm = Qij = P,∀i, j,m ∈ IN and

Gijm = Ej +AiQijm =

(
i+ 1 j
−i− 1 j + 1

)
; G−1

ijm =
1

(i+ 1)(2j + 1)

(
j + 1 −j
i+ 1 i+ 1

)
.

Further, the function fi(x) is Lipschitz continuous with the Lipschitz coefficient Li =√
2

i
. Indeed, we have

∥fi(x)− fi(y)∥ = ∥sinx2
i

(1,−1)T − sin y2
i

(1,−1)T ∥

≤ 1

i+ 1
|x2 − y2|∥(1,−1)T ∥ =

√
2

i
|x2 − y2|

≤
√
2

i

√
(x1 − y1)2 + (x2 − y2)2 =

√
2

i
∥x− y∥,

where we use the Euclidean norms of vectors. Moreover, fi(0) = 0 and

ωi = Limax{∥QijmG
−1
ijm∥ : j,m ∈ N}

= max{
√

4j2 + 4j + 2

2j + 1
: j ∈ N} 1

i(i+ 1)

<

√
10

3i(i+ 1)
< 1,∀i ∈ IN .

According to Theorem 3.1, the SDLS (3.1), (3.2) has unique solution. From the defi-
nition of ∆i, we have x ∈ ∆i if only if

Qijx = −VijQV −1
jmG

−1
ijm[fi(x) +AiPijx].

This relation leads to x1 = − sinx2
i(i+ 1)

− x2
(i+ 1)(2j + 1)

. Thus,

∆i =
{
x = (x1, x2)

T : x1 = − sinx2
i(i+ 1)

− x2
(i+ 1)(2j + 1)

, j ∈ N
}
.

Consider a function Vσ(k, γ) := 2∥Pσ(k)σ(k+1)γ∥ for all γ ∈ R2. We get for each y ∈ ∆i,

∥y∥ =
√
y21 + y22 =

√(
sin y2
i(i+ 1)

+
y2

(i+ 1)(2j + 1)

)2

+ y22

≤

√(
1

i(i+ 1)
+

1

(i+ 1)(2j + 1)

)2

y22 + y22

≤ 2|y2| = 2∥Pσ(k)σ(k+1)y∥ = Vσ(k, y).
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Moreover, Vσ(k, y) = 2∥Pσ(k)σ(k+1)y∥ = 2|y2| ≤ 2∥y∥. Thus item (i) of Theorem 4.6 is
satisfied. We suppose that y(k) is a solution of (3.1) and putting y(k) = u(k) + v(k),
where u(k) = Pσ(k)σ(k+1)y(k); v(k) = Qσ(k)σ(k+1)y(k), we have

∆V (k, y(k)) = 2(∥Pσ(k+1)σ(k+2)y(k + 1)∥ − ∥Pσ(k)σ(k+1)y(k)∥) = 2(∥u(k + 1)∥ − ∥u(k)∥)

Using equation (3.7) we find

u(k + 1) = PjmG
−1
ijmAiu(k) + PjmG

−1
ijmfi(x(k)) =

(
0 0
0 2

2j+1

)
u(k),

hence, ∥u(k + 1)∥ =
2

2j + 1
∥u(k)∥ and leading to ∥u(k + 1)∥ − ∥u(k)∥ ≤ 0. According

to Theorem 4.6, the trivial solution of (3.1) is uniformly stable. Moreover, since

∥u(k + 1)∥ − ∥u(k)∥ ≤ 1− 2j

2j + 1
∥u(k)∥ ≤ 1− 2j

2(2j + 1)
∥y(k)∥ ≤ −1

2(2N + 1)
∥y(k)∥.

Thus, by Theorem 4.7, the trivial solution of (3.1) is asymptotically stable.

Example 4.10. In this example we will use the infinity-norms of matrices. Consider
the SDLS (3.1) with switching signal σ : N ∪ {0} → {1, 2} = N , and

E1 =

3 −2 0
0 3 0
0 0 0

 ; E2 =

4 3 0
1 6 0
0 0 0


A1 =

1 −1 0
0 1 0
0 0 1

 ; A2 =

−1 0 0
1 1 0
0 0 1


and fi(x) =

2x1 + 3 sin x2

4

3(i+ 1)(i+ 2)
(0, 0, 1)T , x = (x1, x2)

T ∈ R2, i ∈ N. A simple compu-

tation shows that

kerE1 = kerE2 = span{(0, 0, 1)T},
S11 = span{(1, 0, 0)T, (0, 1, 0)T},S12 = span{(3, 2, 0)T, (0, 1, 0)T},
S21 = span{(−1, 1, 0)T, (0, 1, 0)T},S22 = span{(−1, 3, 0)T, (0, 1, 0)T}.

Clearly Sij ∩ kerEi = {0},∀i, j ∈ N and rankEi = 2 < 3, hence homogenous SDLS
systems respectively with (3.1) with above data is of index-1. We have

V11 =

1 0 0
0 1 0
0 0 1

 ; V12 =

3 0 0
2 1 0
0 0 1

 ; V21 =

−1 0 0
1 1 0
0 0 1

 ; V22 =

−1 0 0
3 1 0
0 0 1


Q =

0 0 0
0 0 0
0 0 1

 ; Qij = Q; Pij = I3 −Qij =

1 0 0
1 0 0
0 0 0

 ; Qijm = Q,∀i, j,m ∈ N.
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It is easy to compute that

Gi1m =

3 −2 0
0 3 0
0 0 1

 ; G−1
i1m =

1/3 2/9 0
0 1/3 0
0 0 1

 ;

Gi2m =

4 3 0
1 6 0
0 0 1

 ; G−1
i2m =

 2/7 −1/7 0
−1/21 4/21 0

0 0 1

 ;∀i,m ∈ N.

Futher, the function fi(x) is Lipschitz continuos with the Lipschitz coefficient Li =
11

12(i+ 1)(i+ 2)
, i ∈ N . We calculate

ωi := Limax{∥QijmG
−1
ijm∥} = Li,Ki := ωi(Li + ∥Ai∥)L−1

i (1− ωi)
−1,

hence K1 =
25

11
, K2 =

49

23
; ∥P1mG

−1
i1m∥ =

5

9
, ∥P2mG

−1
i2m∥ =

3

7
. Therefore µ =

max{Li(1 +Ki)∥PjmG
−1
ijm∥ : i, j,m ∈ N} = max

{
5

18
;
3

14
;
55

414
;
33

322

}
=

5

18
. Putting

Φijm := PjmG
−1
ijmAi = Pσ(l)σ(l+1).G

−1
σ(l−1)σ(l)σ(l+1)Aσ(l−1),

we have

Φ11m =

1/3 −1/9 0
0 1/3 0
0 0 0

 ; Φ21m =

−1/9 2/9 0
1/3 1/3 0
0 0 0

 ;

Φ12m =

 2/7 −3/7 0
−1/21 5/21 0

0 0 0

 ; Φ22m =

−3/7 −1/7 0
5/21 4/21 0
0 0 0

 ;

∥Φ11m∥ =
4

9
; ∥Φ21m∥ =

2

3
; ∥Φ12m∥ =

5

7
; ∥Φ22m∥ =

4

7
.

Thus if we choose λ = max{∥Φijm∥ : i, j,m ∈ N} =
5

7
and M = 1 then

∥Φσ(k, h)∥ ≤
k∏

l=h+1

∥Pσ(l)σ(l+1)G
−1
σ(l−1)σ(l)σ(l+1)Aσ(l−1)∥ ≤

(
5

7

)k−h

=Mλk−h,

for all k ≥ h ≥ k0. Moreover we have

Mµ =
5

18
< 1− λ =

2

7
.

Thus, by Theorem 4.8, the SDLS system with the above data {(Ei, Ai, fi)}i=1,2 is
exponentially stable.
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5. Conclusion

In this paper, we have studied SDLS systems subject to Lipschitz perturbations. We
derive solvability and establish a formula of solution for these equations. The stability
of SDLS systems is investigated by using methods of the Lyapunov functions and the
solution evaluation.
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