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Nomenclature

Rm×n set of all m×n matrix
C− = { λ ∈ C | Reλ < 0 }
‖x‖ the Euclidean norm of x ∈ Rn

1. Introduction

(adding later).....

2. Preliminaries

Consider the linear systems

d
dt

Ex(t) = Ax(t)+Bu(t), t ≥ 0,

x(0) = x0,

(1)

where E, A ∈ Rn×n, B ∈ Rn×m, x(t) ∈ Rn is the state vector,
u(t) ∈ Rm is the control vector, rankE = r < n.

Definition 2.1. A matrix pair (E,A), E,A ∈Rn×n is called reg-
ular if there exists s ∈C such that det(sE−A) is different from
zero. Otherwise, if det(sE−A) = 0 for all s ∈ C, then we say
that (E,A) is singular.

If (E,A) is regular, then a complex number λ is called a
(generalized finite) eigenvalue of (E,A) if det(λE − A) = 0.
The set of all (finite) eigenvalues of (E,A) is called the (finite)
spectrum of the pencil (E,A) and denoted by σ(E,A). If E is
singular and the pair is regular, then we say that (E,A) has the
eigenvalue ∞.
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Regular pairs (E,A) can be transformed to Weierstraß-
Kronecker canonical form, see [2, 4], i.e., there exist nonsin-
gular matrices W, T ∈ Rn×n such that

E =W
[

Ir 0
0 N

]
T−1, A =W

[
J 0
0 In−r

]
T−1, (2)

where Ir, In−r are identity matrices of indicated size, J ∈ Rr×r,
and N ∈R(n−r)×(n−r) are matrices in Jordan canonical form and
N is nilpotent. If E is invertible, then r = n, i.e., the second
diagonal block does not occur.

Definition 2.2. Consider a regular pair (E,A) with E,A∈Rn×n

in Weierstraß-Kronecker form (2). If r < n and N has nilpotency
index ν ∈ {1,2, . . .}, i.e., Nν = 0, Ni 6= 0 for i = 1,2, . . . ,ν −
1, then ν is called the index of the pair (E,A) and we write
index(E,A) = ν . If r = n then the pair has index ν = 0.

We note that ν = index(E,A) does not depend on the special
transformation to canonical form. If E ∈ Rn×n then the quan-
tity ν = index(E, I) is called index (of nilpotency) of E and is
denoted by ν = index(E).

Definition 2.3. The regular system (1) with u(t) = 0 is said to
be asymptotically stable if there exist positive numbers M,α
such that

‖x(t)‖ ≤Me−αt‖x0‖, t > 0.

Definition 2.4. Let E ∈ Rn×n have ν = indexE. A matrix X ∈
Rn×n satisfying

EX = XE, (3a)
XEX = X , (3b)

XEν+1 = Eν , (3c)

is called a Drazin inverse of E.

Theorem 2.5. Every E ∈ Rn×n has one and only one Drazin
inverse ED. Moreover, if E ∈ Rn×n is nonsingular then

ED = E−1, (4)
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and for arbitrary nonsingular T ∈ Rn×n, we have

(T−1ET )D = T−1EDT. (5)

Theorem 2.6. Let E ∈Rn×n with ν = indexE. There is one and
only one decomposition

E = C̃+ Ñ (6)

with the properties

C̃Ñ = ÑC̃ = 0, Ñν = 0, Ñν−1 6= 0, indexC̃ ≤ 1. (7)

In particular, the following statements hold:

C̃DÑ = 0, ÑC̃D = 0, (8a)

ED = C̃D, (8b)

C̃C̃DC̃ = C̃, (8c)

C̃DC̃ = EDE, (8d)

C̃ = EEDE, Ñ = E(I−EDE). (8e)

Theorem 2.7. Let E,A ∈Rn×n satisfy AE = EA. Then we have

EAD = ADE, EDA = AED, EDAD = ADED. (9)

Moreover, if
kerE ∩kerA = {0} (10)

then we have

(I−EDE)ADA = I−EDE. (11)

Note that for the commuting matrices E and A, condition
(10) is equivalent to the regularity of (E,A) and in formula (2)
we can choose T =W .

In order to formulate an explicit solution representations of
(1), the matrices E and A are required commuting. If they do not
commute, we can obtain commuting matrices by multiplication
with a scaling factor. Indeed, because of the regularity of matrix
pencil (E,A), there exists λ0 ∈ C with det(λ0E−A) 6= 0. Set

Ẽ = (λ0E−A)−1E,

Ã = (λ0E−A)−1A,

B̃ = (λ0E−A)−1B.

It is easy to check that ẼÃ= ÃẼ and the system (1) is equivalent
to

Ẽẋ(t) = Ãx(t)+ B̃u(t), t ≥ 0,

x(0) = x0.
(12)

In what folows, without lost of generality, we will assume that
E and A are commutative. We recall the system (1)

Eẋ(t) = Ax(t)+Bu(t), t ≥ 0,

x(0) = x0,

According to Theorem 2.6, we have decomposition E = C̃ +

Ñ with the properties of C̃ and Ñ as given there. We get the
following lemma.

Lemma 2.8 (see [4]). Equation (1) with EA = AE is equivalent
to the system

C̃ẋ1(t) = Ax1(t)+EDEBu(t), (13a)

Ñẋ2(t)= Ax2(t)+(I−EDE)Bu(t), (13b)

where

x1(t) = EDEx(t), x2(t) = (I−EDE)x(t), (14)

and ẋ2(tk) is understood by the Dini upper-right derivative of x2
at tk. Moreover, equation (13a) is equivalent to the differential
equation

ẋ1(t) = EDAx1(t)+EDBu(t). (15)

Remark 2.9. By the Lemma 2.8, a solution of the DAE (1) can
be expressed by sum of a solution of the classical differential
equation (15) and a solution of the DAE (13b) with the nilpotent
leading matrix.

3. Event-triggered control

The goal of this section is to develop an event-triggered
state feedback control law which has been introduced in [5] for
positive descriptor systems as follow

u(t) = u(tk) =−Kx(tk) for t ∈ [tk, tk+1) (16)

where the sequence {tk}k∈N represents the instants at which
(16) is re-computed and the actuator signals are updated. We
refer to these instants as the triggering times.

Since, the inputs to be held constant in between the suc-
cessive recomputations of (16), the closed-loop system is then
written during the interval [tk, tk+1) by

Eẋ(t) = Ax(t)+Bu(tk), t ∈ [tk, tk+1),

x(0) = x0,
(17)

or

Eẋ(t) = (A+BK)x(t)+BKe(t), t ∈ [tk, tk+1),

x(0) = x0,
(18)

Theorem 3.1. Let the matrix pair (E,A) ∈ (Rn×n)2 be regular
and commute. Then, for t ∈ [tk, tk+1), the solution of equation
(13b) has only the form

x2(t) =−(I−EDE)ADBu(tk), (19)

and the consistent condition of u(0),x0 for solvability of (17) is

(I−EDE)
(
x0 +ADBu(0)

)
= 0.
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Proof. By using Theorem 2.6, we obtain

AÑ = AE(I−EDE) = E(I−EDE)A = ÑA,

Ñ(I−EDE) = E(I−EDE)(I−EDE) = E(I−EDE) = Ñ.

Since Ñ is a nilpotent matrix of degree ν , from (13b) it follows
that

0 = Ñν ẋ2(t) = Ñν−1Ñdx2(t)

= Ñν−1(Ax2(t)+(I−EDE)Bu(t))

= AÑν−1x2(t)+ Ñν−1(I−EDE)Bu(t).

Take the Dini upper-right derivative on two sides, we obtain

0 = AÑν−1ẋ2(t)+ Ñν−1(I−EDE)Bu̇(t)

Since the Dini upper-right derivative u̇(t) = 0 for all t ≥ t0, it
implies that AÑν−1ẋ2(t) = 0 for all t ≥ t0. Multiplying this
equation by (I−EDE)AD, we get

(I−EDE)ADAÑν−1ẋ2(t) = 0,

By Theorem 2.6 and x2(t) = (I−EDE)x(t), we obtain

Ñν−1ẋ2(t) = Ñν−1(I−EDE)ẋ2(t) = (I−EDE)Ñν−1ẋ2(t)

= (I−EDE)ADAÑν−1ẋ2(t) = 0.

Applying this procedure continuously yields

Ñẋ2(t) = 0

which implies that

Ax2(t)+(I−EDE)Bu(t) = 0.

Multiplying this equation by (I−EDE)AD we obtain

(I−EDE)ADAx2(t)+(I−EDE)AD(I−EDE)Bu(t) = 0.

By Theorem 2.6 and x2(t) = (I−EDE)x(t), it implies that

x2(t) =−(I−EDE)ADBu(t) =−(I−EDE)ADBu(tk),

for all tk ≤ t ≤ tk+1. For t = t0, x2(t0) = (I−EDE)x0 and we
obtain the consistent condition of u(0),x0

(I−EDE)(x0 +ADBu(0)) = 0.

Hence, the system (17) during the interval [tk, tk+1) is re-
duced to

ẋ1(t) = EDAx1(t)+EDBu(tk),

x2(t) =−(I−EDE)ADBu(tk)
(20)

We note that

u(tk) = Kx(tk) = K[x1(tk)+ x2(tk)].

On the interval [tk, tk+1), we get that

x2(t) = x2(tk) =−(I−EDE)ADBK[x1(tk)+ x2(tk)].

This implies

x2(tk) =−
(
I +(I−EDE)ADBK

)−1
(I−EDE)ADBKx1(tk).

Thereafter,

x(tk)=
[
I−
(
I +(I−EDE)ADBK

)−1
(I−EDE)ADBK

]
x1(tk)

=
(
I +(I−EDE)ADBK

)−1
x1(tk).

The state measurement error is defined by

e(t) = e1(t)+ e2(t) = x(tk)− x(t)

= [x1(tk)− x1(t)]+ [x2(tk)− x2(t)],
(21)

for t ∈ [tk, tk+1). We obtain the closed-loop system

ẋ1(t) =
[
EDA+EDBK

(
I +(I−EDE)ADBK

)−1
]

x1(t)

+EDBK
(
I +(I−EDE)ADBK

)−1
e1(t). (22)

The event-triggered condition is generated by

‖e1‖2 = ‖EDEe‖2 ≥ σ‖EDEx‖2 = σ‖x1‖2, (23)

where σ is a constant satisfying σ > 0. The event-triggered
mechanism means that the control input u(t) is updated when
the condition (23) holds. We note that the triggering times
{tk}k∈N is implicitly defined by (23) as follow

t0 = 0, tk+1 = inf
{

t > tk | ‖EDEe‖2 ≥ σ‖EDEx‖2} , (24)

where σ > 0.

Remark 3.2. If index(E,A) = 0 or E is invertible, then ED =
E−1. This implies that I−EDE = 0. Thereafter, the system
(22) simplify to

ẋ(t) = E−1 (A+BK)x(t)+E−1BKe(t).

Furthermore, the triggered condition reduce to

‖e‖ ≥ σ‖x‖.

This becomes exactly the linear case of the problem mentioned
in [5].

4. Main results

Before showing the main results of this paper, we give a
following technical lemma which is useful in implementing our
controller gain.

Lemma 4.1. Suppose that M ∈ Rn×m and N ∈ Rm×n then we
have (In−MN) is invertible if and only if (Im−NM) is invert-
ible.
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Proof. We prove that if (In−MN) is invertible, then (Im−NM)
is invertible. Seeking a contradiction, suppose that (Im−NM)
is singular. Then there exists a vector v 6= 0, v ∈ Rm such that

(Im−NM)v = 0.

This leads to
NMv = v.

Then
MN(Mv) = Mv or (I−MN)(Mv) = 0.

Refer to (In−MN) is non-singular, this implies that Mv = 0.
Then v = NMv = 0, a contradiction. Hence, (Im−NM) is non-
singular. The reverted statement is proved by similarity. In
conclusion, (In−MN) is non-singular if and only if (Im−NM)
is non-singular.

Lemma 4.2. Provided that there exists a symmetric semi-
positive definite matrix Q satisfied im(Q) ⊇ im(EDE), then
there exists a symmetric positive definite matrix P such that

(i) PQ = QP.

(ii) QP is a projection, i.e, (QP)2 = QP.

(iii) im(QP) = im(Q)⊇ im(EDE).

Proof. Since Q is the symmetric semi-positive definite matrix,
we can diagonalize Q as follow

Q = T



λ1 · · · 0 0 · · · 0
...

. . .
...

... · · ·
...

0 · · · λk 0 · · · 0
0 · · · 0 0 · · · 0
... · · ·

...
...

. . .
...

0 · · · 0 0 · · · 0


T>

with T is a orthogonal matrix. Thereafter, we set

P = T



λ
−1
1 · · · 0 0 · · · 0
...

. . .
...

... · · ·
...

0 · · · λ
−1
k 0 · · · 0

0 · · · 0 1 · · · 0
... · · ·

...
...

. . .
...

0 · · · 0 0 · · · 1


T>.

Then, we have

PQ = QP = T



1 · · · 0 0 · · · 0
...

. . .
...

... · · ·
...

0 · · · 1 0 · · · 0
0 · · · 0 0 · · · 0
... · · ·

...
...

. . .
...

0 · · · 0 0 · · · 0


T>.

This also implies that QP is a projection. Moreover, im(QP) =
im(Q). Hence, it follows that im(QP) = im(Q) ⊇ im(EDE).

We mention a well-known lemma that is also useful for the
proof of our results.

Lemma 4.3 (Schur complement lemma). For any matrices
X ,Y,Z of appropriate dimensions, X = X>, Y = Y> > 0, then[

X Z>

Z −Y

]
≤ 0 (25)

if and only if the so-called Schur complement X + Z>Y−1Z
is semi-positive definite. Furthermore, if the strict inequality
holds for (25) then the Schur complement is positive definite.

Now, we are in the position to introduce the main results of
this paper.

Theorem 4.4. Assume that, for a given σ > 0, and symmet-
ric semi-positive definite matrix Q satisfied im(Q)⊇ im(EDE),
there exits a matrix Z ∈ Rm×n such that following conditions
are all satisfied(

I− (I−EDE)ADBZ
)

is invertible, (26a)[
Q(EDA+EDBZ)>+(EDA+EDBZ)Q EDBZQ Q

QZ>B>(ED)> −2εQ+ε2I 0
Q 0 −σ−1I

]
≤ 0. (26b)

Then, the closed-loop system (18) is asymptotically stable,
where the control gain K is given by

K =
(
Im−Z(I−EDE)ADB

)−1
Z. (27)

Proof. Using Lemma (4.1), we can see the fact that if condi-
tion (26a) holds, then

(
Im−Z(I−EDE)ADB

)
is invertible or(

Im−Z(I−EDE)ADB
)−1 exists.

In order to get presentation of Z, we need to show that[
I +(I−EDE)ADBK

]
is invertible. Indeed, we have

K =
(
Im−Z(I−EDE)ADB

)−1
Z.

So we need to prove that[
I +(I−EDE)ADB

(
Im−Z(I−EDE)ADB

)−1
Z
]

is invertible.

Refer to Lemma (4.1), it equivalent to[
Im +

(
Im−Z(I−EDE)ADB

)−1
Z(I−EDE)ADB

]
is invertible.

On the other side,

Im +
(
Im−Z(I−EDE)ADB

)−1
Z(I−EDE)ADB

=
(
Im−Z(I−EDE)ADB

)−1
.

This means that[
Im +

(
Im−Z(I−EDE)ADB

)−1
Z(I−EDE)ADB

]
is invertible.
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Therefore, we deduce

Z = K
(
I +(I−EDE)ADBK

)−1
.

In order to prove that the system (18) is asymptotically stable,
we will first show that the system (22) is asymptotically stable.
Seeking of simplicity, let us denote A1 =EDA, B1 =EDB. Then
we can rewrite the system (22) as follows

ẋ1(t) = [A1 +B1Z]x1(t)+B1Ze1(t). (28)

Since the Lemma 4.2, then there exists a symmetric positive
definite matrix P such that

(i) PQ = QP.

(ii) QP is a projection, i.e, (QP)2 = QP.

(iii) im(QP) = im(Q)⊇ im(EDE).

Now, we consider the Lyapunov function V (x1) = x>1 Px1 with
the note that x1 = EDEx. It follows that

d
dt

V (x1) = x>1
[
(A1 +B1Z)>P+P(A1 +B1Z)

]
x1

+ e>1 (B1Z)>Px1 + x>1 PB1Ze1

Hence,

d
dt

V (x1) =
(
x>1 e>1

)
[
(A1 +B1Z)>P+P(A1 +B1Z) PB1Z

(B1Z)>P 0

](
x1
e1

)
. (29)

On the other hand, we can rewrite the condition (26b) by the
term of A1 and B1 as followingQ(A1 +B1Z)>+(A1 +B1Z)Q B1ZQ Q

Q(B1Z)> −2εQ+ ε2I 0
Q 0 −σ−1I

≤ 0.

By using Schur complement lemma (4.3), this is equivalent to[
Q(A1 +B1Z)>+(A1 +B1Z)Q+σQ2 B1ZQ

Q(B1Z)> −2εQ+ ε2I

]
≤ 0.

Since,
Q2 ≥ 2εQ− ε

2I,

it implies that[
Q(A1 +B1Z)>+(A1 +B1Z)Q+σQ2 B1ZQ

Q(B1Z)> −Q2

]
≤ 0.

Then we have[
P 0
0 P

][
Q(A1 +B1Z)>+(A1 +B1Z)Q+σQ2 B1ZQ

Q(B1Z)> −Q2

]
[

P 0
0 P

]
≤ 0,

or [
PQ(A1+B1Z)>P+P(A1+B1Z)QP+σPQ2P PB1ZQP

PQ(B1Z)>P −PQ2P

]
≤ 0

Note that PQ = QP, (PQ)2 = PQ, im(QP) = im(Q) ⊇
im(EDE) and im(ED) = im(EDE), we have

QPx1 =QPEDEx=EDEx= x1, QPe1 =QPEDEe=EDEe= e1.

Then, we obtain

(
x>1 e>1

)[PQ(A1+B1Z)>P+P(A1+B1Z)QP+σPQ2P PB1ZQP
PQ(B1Z)>P −PQ2P

](x1
e1

)
=
(
x>1 e>1

)[ (A1+B1Z)>P+P(A1+B1Z)+σ I PB1Z
(B1Z)>P −I

](x1
e1

)
≤ 0.

To cooperate with triggered condition (23), it leads to

(
x>1 e>1

)[(A1 +B1Z)>P+P(A1 +B1Z) PB1Z
(B1Z)>P 0

](
x1
e1

)
≤
(
x>1 e>1

)[−σ I 0
0 I

](
x1
e1

)
= ‖e1‖2−σ‖x1‖2 ≤ 0,

To combine with (29), we obtain that the system (22) is asymp-
totically stable. Moreover, for all t ∈ [tk, tk+1)

x2(t) = x2(tk) =−
(
I +(I−EDE)ADBK

)−1

(I−EDE)ADBKx1(tk).

So,
‖x2(t)‖ ≤ γ‖x1(tk)‖,

where γ = ‖
(
I +(I−EDE)ADBK

)−1
(I − EDE)ADBK‖.

Hence, x2 is bounded and lim
t→∞
‖x2(t)‖ = 0. Therefore,

x(t) = x1(t)+ x2(t) is asymptotically stable. This means that
the system (18) is asymptotically stable.

Remark 4.5.

• If index(E,A)= 0 or E is invertible, then ED =E−1. This
implies that I−EDE = 0. It follows that the condition
(26a) is trivial.

• The condition (26b) can be implemented as follow LMI
condition,[

QA>1 +A1Q+Y>B>1 +B1Y B1Y Q
Y>B>1 −2εQ+ε2I 0

Q 0 −σ−1I

]
≤ 0, (30)

with variables Y , and Q≥ 0. Then the matrix Z is recov-
ered by solving the matrix equation ZQ = Y .

We will show that the Zeno behavior does not happen,
which mean that there exists a time τ > 0 such that tk+1−tk > τ

for any k ∈ N. The technique use to prove follow theorem is
conventional and has been mentioned in many paper written
about even-triggered control, namely but a few [5, 3, 1].
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Theorem 4.6. Given system (1) and the controller gain K
which is given in Theorem 4.4, then there exists a time τ > 0
such that for any consistent initial value x0, the inter-execution
time {tk+1− tk}k∈N implicitly defined by the execution rule (24)
are lower bounded by τ .

Proof. Recall the system (22)

ẋ1(t) =
[
EDA+EDBK

(
I +(I−EDE)ADBK

)−1
]

x1(t)

+EDBK
(
I +(I−EDE)ADBK

)−1
e1(t).

Therefore,

‖ẋ1‖ ≤
∥∥∥EDA+EDBK

(
I +(I−EDE)ADBK

)−1
∥∥∥‖x1‖

+
∥∥∥EDBK

(
I +(I−EDE)ADBK

)−1
∥∥∥‖e1‖.

Or
‖ẋ1‖ ≤ a‖x1‖+b‖e1‖, (31)

where a =
∥∥∥EDA+EDBK

(
I +(I−EDE)ADBK

)−1
∥∥∥, and b =∥∥∥EDBK

(
I +(I−EDE)ADBK

)−1
∥∥∥.

We can bound the inter-event time by looking at the dy-
namic of ‖e1‖

‖x1‖

d
dt
‖e1‖
‖x1‖

=
d
dt

(e>1 e1)
1/2

(x>1 x1)1/2

=− e>1 ẋ1

‖e1‖‖x1‖
− x>1 ẋ1

‖x1‖2
‖e1‖
‖x1‖

( by ẋ1 =−ė1)

≤ ‖e1‖‖ẋ1‖
‖e1‖‖x1‖

+
‖x1‖‖ẋ1‖
‖x1‖2

‖e1‖
‖x1‖

=

(
1+
‖e1‖
‖x1‖

)
‖ẋ1‖
‖x1‖

≤ a+(a+b)
‖e1‖
‖x1‖

+b
(
‖e1‖
‖x1‖

)2

( by (31)).

Consequently, the inter-event times are lower bounded by time
τ satisfying

φ(τ,0) = σ ,

where φ(t,φ0) is the solution of

φ̇ = a+(a+b)φ +bφ
2

satisfying φ(0,φ0) = φ0. As a result, τ =
1

a−b
ln

a+aσ

a+bσ
> 0,

and tk+1− tk ≥ τ , for all k ∈ N.

5. Simulation

To demonstrate the application of our controller, we con-
sider an example of a simple RLC electrical circuit in Figure 1
which has been shown in [4, Example 2.52]. Seeking the sim-
plicity, we choose the resistance R = 1, inductance L = 1, and

−vS(t)

I(t) R

L

C

Figure 1: A simple RLC circuit.

capacitance C = 1. The corresponding voltage drops are de-
noted by vR, vL, and vC, respectively, and I denotes the current.
We obtain the circuit equation

1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0




İ
v̇L
v̇C
v̇R

=


0 1 0 0
1 0 0 0
−1 0 0 1
0 1 1 1




I
vL
vC
vR

+


0
0
0
−1

vS.

(32)
We read that the system (32) is regular, and has index = 2 with

E =


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , A =


0 1 0 0
1 0 0 0
−1 0 0 1
0 1 1 1

 .
However, E,A does not commute. Thereafter, we multiple both
sides of (32) with matrix (E +A)−1 in order to get a new sys-
tems having commuting condition.

1 0 1 0
0 0 −1 0
−1 0 0 0
1 0 1 0




İ
v̇L
v̇C
v̇R

=


0 0 −1 0
0 1 1 0
1 0 1 0
−1 0 −1 0




I
vL
vC
vR

+


1
−1
−1
1

vS.

(33)
With the system (33), we denote

Enew =


1 0 1 0
0 0 −1 0
−1 0 0 0
1 0 1 0

 , Anew =


0 0 −1 0
0 1 1 0
1 0 1 0
−1 0 −1 0

 .
It is easy to check that EnewAnew = AnewEnew and
index(Enew,Anew) = 2.
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Figure 2: Solution x(t) and triggering point on [0,10].

By solving the LMI (30) we obtain

Y =
[
−65.4198 71.5116 −6.0801 −65.4267

]
,

Q =


17.6651 −13.9796 −3.6824 17.6620
−13.9796 15.1144 −1.1277 −13.9819
−3.6824 −1.1277 4.8121 −3.6796
17.6620 −13.9819 −3.6796 17.6663

 ,
Z =

[
−1.7505 2.9472 −1.9298 −0.0228

]
,

K =
[
−1.75052.9472−1.9298−0.0228

]
.

The solution x(t) to system (1) is constructed by solving the
coupled-system (22) and take x(t) = x1(t)+ x2(t). We notice,
that the dimension of the couple system (22) is two times big-
ger than the dimension of system (1). With the initial condition
x0 =

[
0.3500 0.1966 0.2511 0.6160

]>, the numerical so-
lution is illustrated in Figure 2. Here we choose ε = 20 and
σ = 0.01.
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