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Features of RL

Versatility (linh hoat)
Autonomous Decision-Making
and Handling Uncertainty

e Sequential Decision-Making

e Exploration and Exploitation

e Continuous Learning

Applications of RL

Game Playing
Robotics Control
Autonomous Vehicles
Resource Management
Trading policy
Conversational agents
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Machine Learning types

MACHINE LEARNING

Supervised Unsupervised Reinforcement
Learning Learning Learning




Supervised Learning?

® Supervised Learning (SP): The primary goal of supervised learning is to learn a
mapping between inputs and corresponding outputs based on the labeled training data.
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Examples of Reinforcement Learning

RL is used for decision making
problem;

The model learns to make a

sequence of decisions that lead
to desirable outcomes over time.

Exit




Examples of Reinforcement Learning

C)

Agent

reward
R, ‘ﬁ] Q‘

action

Environment




Supervised Learning vs Reinforcement Learning

e Supervision/Instruction
o Supervised Learning: labels by human
o Reinforcement Learning: rewards by the environment

e Goal
o Supervised Learning: Learn model to map Xto Y
o RL: Learn a playing policy (sequence of decisions) to win game
m Adjust, not fully supervised
m Gradually adjust to the dynamic changes (of the environment)



Supervised Learning vs Reinforcement Learning

Environment




Supervised Learning vs Reinforcement Learning

Supervised
Learning
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What is the mission of RL model

Current
State

RL Model




What is the mission of RL model

Current

RL Model
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Policy Function of RL

There are two types of policy of determining the next action:

*Deterministic: a policy at a given state will always
return the same action.

a = 7(s)

Stochastic: output a probability distribution over

 x(als) = P[Als]

-—— — =
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Markov Decision Process (MDP)

A Markov decision process is a 4-tuple (S, A, P,, R, ), where:

¢ S is a set of states called the state space,

A is a set of actions called the action space (alternatively, A is the set of actions
available from state s),

e P,(s,8') =Pr(sy11 = s | 8t = s,a; = a) is the probability that action a in
state s at time ¢ will lead to state s’ attime ¢ + 1,

R, (s, s') is the immediate reward (or expected immediate reward) received after
transitioning from state s to state s’, due to action a

The state and action spaces may be finite or infinite, for example the set of real

numbers. Some processes with countably infinite state and action spaces can be
reduced to ones with finite state and action spaces. (!

A policy function 7 is a (potentially probabilistic) mapping from state space (S) to
action space (A).

15




What is the State?

e (Observations/States are the information the Agent/Model gets from the
environment.

State: complete description of Observation: partial description
the state of the world (no of the state of the world.
hidden |nformat|on

16




What are the Action?

e The Action space is the set of all possible actions in an environment.
e The actions can come from a discrete or continuous space:

Action Space

Discrete: finite number of Continuous: infinite number of
possible actions possible actions

30838 .00 MIRE" TIHE




Notations

Symbol
ses
a€c A
reR

St7At7Rt

Y
Gy

P(s',r|s,a)

m(als)

Meaning
States.
Actions.
Rewards.

State, action, and reward at time step ¢ of one trajectory. | may occasionally use
S¢, a4, T3 @s well.

Discount factor; penalty to uncertainty of future rewards; 0 < v < 1.
Return; or discounted future reward; G; = E;‘;O ')’th+k+1-

Transition probability of getting to the next state s’ from the current state s with
action a and reward 7.

Stochastic policy (agent behavior strategy); 7r9(. ) is a policy parameterized by 6.
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Notations

Symbol
V(s)
V7(s)
Q(s, a)
Q"(s,a)

A(s,a)

Meaning

State-value function measures the expected return of state s; Vw(. ) is a value
function parameterized by w.

The value of state s when we follow a policy 7; V™(s) = Eqwr[G¢|St = s].

Action-value function is similar to V(s), but it assesses the expected return of a pair
of state and action (s, a); Q. (. ) is a action value function parameterized by w.

Similar to V'™ (. ), the value of (state, action) pair when we follow a policy ;

Qw(sva) — EGNW[GtISt = 8, A = a].

Advantage function, A(s,a) = Q(s, a) — V(s); it can be considered as another
version of Q-value with lower variance by taking the state-value off as the baseline.

19



What is the Objective Function of RL?

e The Cumulative Reward at each time step t can be written as:

Gt = ree1 + yree + Vs + Yoria + o+ r
= 11 + V(T2 + Yrees + ’72T't+4 T wes T ”)’T_27°T)
= ret1 + Y(Gey1)

« The rewards that come sooner (at the beginning of the game) are more likely
to happen since they are more predictable than the long-term future reward.

20



0-Learning Algorithm

e Q-learning was introduced by Chris Watkins in 1989. A convergence proof was
presented by Watkins and Peter Dayan in 1992.

Bellman Equation

Q(St, At) = Rep1 +ymax Q(Si1,a)

27



https://www.geeksforgeeks.org/bellman-equation/

0-Learning Algorithm

Actions
r - R

Q-learning was introduced by Chris Ay Ay Ay
Watkins in 1989. -
Q-learning finds an optimal policy in S1  |QIS1 A1) [Q(S1. Ag) Q(S1. Aw)
the sense of maximizing the expected ) PR PR E— ——
value. £ 4
Q-learning is an off-policy Temporal -
Difference (TD) control algorithm

L. SN |Q(Sn. A1) |Q(Sn. A2)[ ..  [QUSn. Aw)

Q(Si, Ay) + Q(St, At) + « [Rt+1 T ym(?x Q(Sty1,a) — Q(St, At)]
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0-Learning Algorithm

new

Q(St, At) = Rt—l—l T ’Ymc?XQ(St-I-la CL)

Q(St: Ar) = Q(St, Ar) + @ | Resy +ymaxQ(Sh1,0) — Q(Si, Ar)]

new old

! 1

Difference
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Q-Learning Algorithm: update the Q-Table

Q(St, At) — Q(St, At) = a[Rt+1 a3 7mamaQ(St+1a a) - Q(St, At)]

New Former Learning Immediate Discounted Estimate Former
Q-value Q-value Rate Reward optimal Q-value Q-value
estimation estimation of next state estimation

TD Target
D Error

https://huggingface.co/learn/deep-rl-course/unit3/deep-g-algorithm?fw=pt
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0-Learning Algorithm: an Example

The scoring/reward system is as below:

1. Therobot loses 1 point at each step. This is done so that the robot

takes the shortest path and reaches the goal as fast as possible. o - o
2. If the robot steps on a mine, the point loss is 100 and the game ends. °
° q
3. Ifthe robot gets power -, it gains 1 point.
End

4. If the robot reaches the end goal, the robot gets 100 points.

https://www.freecodecamp.org/news/an-introduction-to-g-
learning-reinforcement-learning-14ac0b4493cc/
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0-Learning Algorithm: Q-Table

uP
1
3 g% RIG
v ° LEE R_! ;’Hb
g1
Down
‘P ‘P
4 End

Actions : T — l —

Start

Nothing / Blank

Power

Mines

END
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Q-Learning Algorithm:

Step 1: initialize the Q-Table
We will initialise the values at 0.

Actions : T — l —

satl 0 [ 0| 0| O

‘ After a lot of Iterations,
Nothing/Blank| o [ o | O | O a good Q-table is ready

Power 0 0 0 0

Mines 0 0 0 0

enol O | O O O

h

Initialize Q-table
l
Choose an action
l
Perform action
!
l
Update Q-table

27



0-Learning
Algorithm:

Algorithm 1: Epsilon-Greedy ()-Learning Algorithm

Data: a: learning rate, v: discount factor, e: a small number
Result: A Q-table containing Q(S,A) pairs defining estimated
optimal policy 7*

/* Initialization */

Initialize Q(s,a) arbitrarily, except Q(terminal,.);

Q(terminal,.) « 0;

/* For each step in each episode, we calculate the
Q-value and update the Q-table */

for cach episode do

/* Initialize state S, usually by resetting the
environment */

Initialize state S;

for cach step in episode do

do

/* Choose action A from S using epsilon-greedy
policy derived from Q */

A + SELECT-ACTION(Q, S, ¢):

Take action A. then observe reward R and next state S’

Q(S, A) « Q(S, A) + a [ R + ymax, Q(S", a) - Q(S. A)]:

S+ S%

while S is nol terminal;

end

end

28
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Why Deep RL?

How to do with the state?

e State is an image

e State is very complicated

e The state space is very large, infinite

How to do with the action?
e Action space is very large
e Action in Generative Models

States

Conventional RL

Actions
5
r )
Ay Az Am
S Q(S1. A1) | Q(S1. A) Q(S1. Am)
S; Q(Sz2, A1) [Q(S2. A2) Q(S2, Am)
SN |Q(Sn. A1) [Q(Sn. A2) Q(Sn. Am)

30



RL vs Deep RL

e |n many practical decision-making problems, the states of the Markov

Decision Process (MDP) are high-dimensional (e.g., images or texts)
o We need a model to represent the states and actions

e Deep Reinforcement Learning algorithms incorporate deep learning to solve
such MDPs:

Representing the policy as a deep neural network. 7l (a ‘ 8)

Deep RL paper (2013): Playing Atari with Deep Reinforcement Learning
https://arxiv.org/abs/1312.5602

31




Example

Autonomous Driving

Input layer Hidden layers Output layer

State information of
the host vehicle

State information of
the remote vehicle

Environment

State, Reward

Action

Host vehicle (Agent)

https://www.mdpi.com/2079-9292/8/5/543 .




Example

Conversational Agent

fine fune

Reinforcement Learning

33




Deep RL

Q Learning

Deep Q Learning

https://viblo.asia/p/gioi-thieu-ve-hoc-tang-cuong-va-ung-dung-deep-g-

learning-choi-game-cartpole-Az45bYy6IxY




Gradient Descent ALgorithm

Objective function : J(6)
Gradient : VoJ(60)
Update : 0 < 0 + aVyJ(0)

35




Deep Q-Learning Algorithm (1995)
Q(Si, Ae) = Ri1 +ymaxQ(Si41,a)

e Temporal Difference:

Q¢(s,a) = Q¢-1(s,a) + aTD.(a,s)
TD(a,s) = R(s,a) +ymaxQ(s’,a’) — Qr-1(s,a)

e Loss function?
In Deep Q-Learning, we create a loss function that compares our Q-value prediction and

the Q-target and uses gradient descent to update the weights of our Deep Q-Network to
approximate our Q-values better.

36



Deep Q-Learning Algorithm

Q(St, At) — Q(St, At) = a[Rt+1 + ’YmafL'aQ(StH, a) = Q(St, At)]

New Former Learning Immediate Discounted Estimate Former
Q-value Q-value Rate Reward optimal Q-value Q-value
estimation estimation of next state estimation

TD Target

I'D Erroi

https://huggingface.co/learn/deep-rl-course/unit3/deep-g-algorithm?fw=pt
37



Q-Network

State-S e

Target-Network

State-S —>

input layer

input layer

https://arshren.medium.com/deep-q-learning-a-deep-

reinforcement-learning-algorithm-f1366¢cf1b53d
hidden layer 1 hidden layer 2 hidden layer 3

s ";"3 ; .\\
; _ *&\\\\ tl
5

i AN

2 N ¢

0 updates 6
every C timesteps

hidden layer | hidden layer 2 hidden layer 3

Deep Q Network(DQN) 38




Deep Q-Learning Algorithm

Initialize replay memory D to capacity N

https://huggingface.co/learn/deep-rl-course/unit3/deep-g-algorithm?fw=pt

Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 6~ = 0

For episode = 1, M do

Initialize sequence s, = {x, } and preprocessed sequence ¢, =¢(s,)

Fort=1Tdo

tore transition a7, in D

ith probability & select a random action a,
therwise select a; =argmax, Q(¢(s;),a; 0)

ecute action g, in emulator and observe reward r, and image x, . , Sampling
t S¢41=>5,8:,% +1 and preprocess ¢, , ; =@(s¢+1)

5,

etwork parameters 0

ple random minibatch of transitions (¢j,aj,r,-,¢j L 1) from D
if episode terminates at step j+1

= { rj+7 maxy Q(¢j+lsa,; 0_)
erform a gradient descent step on (y, — Q(¢j,aj; 0) ) ’ with respect to the

otherwise Training

AN

End For
End For

39




hidden layer 1 hidden bayer 2 hidden layer 3
4

Q-Network

State-S — -

O updates 67
every C timesteps

Deep Q Network(DQN)

0 + 0+a (T+’Y ma,\,x QT(SI, a',; 0_)_Q(3a a, 9))V9Q(8, a 0)

Q Network weight update

40




Q-Learning

Algorithm 1: Epsilon-Greedy Q-Learning Algorithm

Data: a: learning rate, ~: discount factor, e: a small number
Result: A Q-table containing Q(S,A) pairs defining estimated
optimal policy 7*

/* Initialization */

Initialize Q(s,a) arbitrarily, except Q(terminal,.);

Q(terminal,.) « 0;

/* For each step in each episode, we calculate the
Q-value and update the Q-table */

for each episode do

/* Initialize state S, usually by resetting the
environment */

Initialize state S;

for each step in episode do

do
/* Choose action A from S using epsilon-greedy

policy derived from Q */

A + SELECT-ACTION(Q, S, ¢):
Take action A. then observe reward R and next state S™:
Q(S, A) « Q(S, A) + a [ R + ymax, Q(S", a) - Q(S. A)]:
S+ S%

while S is nof {erminal;

end

end

Deep Q-Learning

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights 0

Initialize target action-value function Q with weights 6~ =0

For episode = 1, M do
Initialize sequence s, = {x, } and preprocessed sequence ¢, =9(s,)
Fort=1Tdo

ith probability & select a random action a,

therwise select a; =argmax, Q(¢(s;),a; 0)

ecute action a, in emulator and observe reward r, and image x, , ,

a;.1; in D
ple random minibatch of transitions (¢j,aj,rj,¢j+ 1) from D
) if episode terminates at step j+1
%= r,-+ymade(¢j+,,a’;0‘) otherwise

erform a gradient descent step on (yj - Q(¢1,aj; 8) ) ’ with respect to the

etwork parameters

very C steps reset EQ
End For

End For

41



Policy Gradient

* We have our policy t that has a parameter 8. This t outputs a probability distribution of actions.

* Remember that policy can be seen as an optimization problem. We must find the best parameters
(B6) to maximize a score function, J(8).

‘](9) = Ling [Z ’77”]

42




Policy Gradient

The goal of reinforcement learning is to find an optimal behavior strategy for the agent to obtain
optimal rewards. The policy gradient methods target at modeling and optimizing the policy
directly. The policy is usually modeled with a parameterized function respect to 6, 7rg(a|s). The
value of the reward (objective) function depends on this policy and then various algorithms can be
applied to optimize @ for the best reward.

The reward function is defined as:

JO) =) d"(s)V™(s) =Y _d"(s) Y _ ms(als)Q(s,a)

sE€S seS acA

43




Policy Gradient (1999)

* To measure how good our policy is, we use a function called the objective

function (or Policy Score Function) that calculates the expected reward of policy.

J1(0) = E;[G1 = Ry + YRy + ¥V?R3 + ...| = Ex(V(s1))

Cumulative discounted rewards / Value of state 4

starting at start state Equivalent

Jar(0) = Er(1)=)_d(s) Y _w0(s,a) R:

S
Probability that I'm in Probability that | take this
state s action a from that state

under this policy

Immediate reward that
I'll get

44




AlphaGo

“In October 2015, AlphaGo played its first match
against the reigning three-time European
Champion, Mr Fan Hui. AlphaGo won the first
ever game against a Go professional with a
score of 5-0”.

“AlphaGo then competed against legendary Go
player Mr Lee Sedol, the winner of 18 world
titles, who is widely considered the greatest
player of the past decade. AlphaGo's 4-1 victory
in Seoul, South Korea, on March 2016 was
watched by over 200 million people worldwide.”

45



AlphaGo Algorithm

distribution

0.2

¥t

I I I |

prob(y) = f(board) f(ﬂ)a

p(als): Policy for taken action a given the state s.

ps(als): is the policy modeled by parameter o.
— -




SL policy network

* AGoboardhasa19 x 19 grid. It takes a 19x 19 x 48 input feature to
represent the board.

Input Convolutional Layers Scale Softmax
Tem— s - [ o e e . . . S S  ——————————————— Eemememem] e
| ¥ o |
! ! A !
| ' Feature_ [ ", |
: % T extrachion : : O " :
1] Lt liett : : HO :

'+ " |
: f l — | Lo
i ¥ ' 2
| HOHH e 1o | | : (I
f?'-‘{?’?f”,“ﬁ* Input FIFO : : ! | :
| 6 |

B N ] | A\

Policy network L O p -‘ i
1o Y i
[ 1 O i |
: : Conv Layer input Conv Layer middle Conv Layer output : | ____:




Training the SL policy network

. . . . SL policy network
* Totrain the Supervised Learning (SL) policy network, AlphaGo

collects moves for 30 million board positions. Then it applies the po
backpropagation in deep learning to train the model parameters

o. (This is the same way you train a deep network classifier.) m

dlog p (a|s)
o X
do

>

Human expert positions

* The SL policy network achieves a 57% accuracy. It sounds not too
accurate but this policy network can beat an advanced amateur
already.

48




Rollout policy

The authors create another policy
called rollout policy m which use a
more simple linear softmax
classifier. This rollout policy has a
lower 24.2% accuracy (compared
to 55.7%) but it is 1500x faster.

Rollout policy SL policy network

P Po

eVl

Human expert positions

49




AlphaGo: start Reinforcement learning

* First, the authors duplicate SL policy network and call it RL policy network p.

Rollout policy  SL policy network RL policy network

P P, P,
0 B et 1

\/

4

Human expert positions Self-play positions

50




Training the RL policy network

+ We play until the game is finished. For time step f, the game result z; is equal to 1 if we
win at the end or -1 if we lose.

Rollout policy SL policy network RL policy network

dlog p,(a¢|s:)

P, P, P,
Apx z
X m m dp :

% f % policy gradient RL

>

Human expert positions Self-play positions

57




AlphaGo: Value Network

* Inthe last stage of AlphaGo training, we want to duplicate the human capability in evaluating a
board position. We train a deep network to estimate the value of our positions.

Rollout policy SL policy network RL policy network Value network
z
P P, pp Yo 2
8
2
@
@ g
£ $ g £ % % o
=
)
o]
&

Human expert positions Self-play positions
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Training the Value Network

* To train the value network, we play games against each other using the same RL policy network.
The design of the value network is similar to the policy network except it outputs a scalar value
instead of a probability distribution. We compute the mean square error MSE of our value
function v(s) with the game result z.

v(s)
00

* We use the RL policy network to play more than 30 million games and collect only one position
from each game into the training dataset. The AlphaGo value network is trained with 50 GPUs for
one week.

Af x (z—vy(s))

53




Monte Carlo Tree Search (MCTY)

*  We build a search tree recording sequences of moves

A
B

IR 1

Ao

54




Monte Carlo Tree Search (MCTY)

55



Monte Carlo Tree Search (MCTY)

Selection

Lt L3t

Q + u(P) mak Q + u(P)

AN .
= i 1t

Z \ Q+uP) Lmax Q+uP)

it ¥

a,=argmax(Q(s,,a) + u(s,a))

Q is for the exploitation and u is for the exploration.

a, = argmax(Q(s,, a) + u(s, a))

a

P(s,a)
1+ N(s,a)
P(s,a)=p,(als)

N(s,a)=i: 1(s,a, i)

V(SL) (l /\)Vo(SL)"r/\ZL

u(s,a) ox

(

56




Monte Carlo Tree Search (MCTY)

Selection
/ Q + u(P) max Q + u(P)

“ﬂﬁ LS

Q +u(P) maxs Q +ulP)

b Expansion

PE{HP

7\ P
ﬁ’ﬁ ﬁ st 3 ( iﬁ) ﬁ;‘»

* We add a new leaf node (SL) to expand the tree. We will
compute its value function from the value network.

vo(sL)

o [

N\

V(SL) = (l = /\)Vg(SL) + /\ZL

Q(s,

51.)
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Monte Carlo Tree Search (MCTY)

In the evaluation phase, we simulate the rest of the game

using Monte Carlo Rollout starting from the leaf node. It means
finish playing a game using a policy and find out whether you win
or loss.

In this case, we use the rollout policy instead of the SL
policy or the RL policy.

Evaluation

58




Monte Carlo Tree Search (MCTY)

e After the evaluation, we know whether our moves win

or lose the game. Now we compute Q to remember how ) ﬂ
well to make a move from the game results and the leaf .

. Q )
node’s value function. — '\ —

Q
( i)
)
2
I
\. A
o

59




https://jonathan-hui.medium.com/alphago-how-it-works-technically-
26ddcc085319

Summary of AlphaGo Elo

rating

3,500 1

3,000
* Go players need to prioritize searches and to evaluate

positions very well. Using supervised learning, we create 2,500~
a policy network to imitate expert moves. With this

policy, we can play Go at the advanced amateur level. 2,000+

1,500
* Using reinforcement learning, we apply the game results

to refine the policy network further. We also train a 1,000
value network to evaluate positions.
500+

* To decide the next move, we simulate games to find the
best move. But it is not that simple. We use the policy i

Rollouts
network and the value network to narrow down the . » ® .
. . . Value network @ e o o
search. To mitigate errors in our evaluation, we ,
Policynetwork @ o @ &

compute a weighted average from our game results and
our board evaluation.




AlphaGo Zero

Self training using Monte Carlo Tree Search

* After looking into MCTS, we come back on how fis trained. So we start with an empty board
position s1. We use the MCTS to formulate a policy m1. Then we sample a move al from n1. After
taking the move a1, the board is in s2. We repeat the process again until the game is finished at
which we determine who win z (z=1 if we win, 0 otherwise.).

a. Self-Play 81 S2 S3 St

61




AlphaGo vs AlphaGo Zero

In Go, our policy controls the moves (actions) to win a game. To model
uncertainty, the policy is a probability distribution p(s, a): the chance of
taking a move a from the board position s.

In AlphaGo Zero, we use a single deep network f, composed of
convolutional layers, to estimate both p and v.

~ ¥ aa

uoﬁl:;ti)o: B ( @ ) @ i g} @
S P= o.s/ \45

83
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AlphaGo vs AlphaGo Zero

AlphaGo Zero
AlphaGo does not use i L - ks
the Monte Carlo 131 [+
Rollout (in yellow). g Y
s f37 f#4 v (81
Q+U,ﬁu
[e? (o) =fo (137) 183
ALY
AlphaGo
a Selection b Expansion < Evaluation
Q+ulf) e ‘v.0+u(P) e ) 4
Crup) Lma ceup BN 7wy T
B a(f) I (B) #
N\ o
(38)

ﬁﬁﬁﬁﬁﬁﬁﬁ
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AlphaGo vs AlphaGo Zero

* AlphaGo Zero uses the

self-trained network & to AlphaGo Zero AIphaGo

calculate the value a,=argmax(Q(s ,a) +u(s ,a)) a,=argmax(Q(s;,a) + u(s,a))
function v while Alpha Go ’ ‘

uses the SL policy alsdline P(s,a) u(5,0) P(s,a)
network o learned from 1+N(s,a) d 1+N(s,a)

real games. Even the (P(s,a), v) = fols) P(s,a)=p, (als)

equationin N(s,a)=Y 1(s,a,i)
computing Q looks -l
different, the real

4 = W!l a) _ B
difference is AlphaGo has Us.a) = ¥y v=(1 ’\):'O(SL) + Az
an extra term z (the game w(a|s) = N(s ,a)"/7/ 3, N(s ,b)!/ Q(s,a) = N(j ) 3 1(s,a,i) v

18) =1

result) that is found b
the M)onte Carlo roIIoZt w(als) = N(s,a)'/7/ 5, N(s ,B)'/"

which AlphaGo Zero skips.

N 3 = 1 : "
W(ssa)=W(s,a)+v (Sa) § (Sal)
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AlphaGo Zero performance

5000 +
4000 +

o 3000
42000
1000

0

Chess

Shogl
W

T —— AlphaZero
T — Stockfish

— AlphaZero
— Elmo

Go

”‘-/

—— AlphaZero
—— AlphaGo Zero
—— AlphaGo Lee

0 100 200 300 400 500 500 700 O 100 200 300 400 500 600 700 O 100 200 300 400 500 600 700

Thousands of Steps

Thousands of Steps

Thousands of Steps

Figure 1: Training AlphaZero for 700,000 steps. Elo ratings were computed from evaluation
games between different players when given one second per move. a Performance of AlphaZero
in chess, compared to 2016 TCEC world-champion program Stockfish. b Performance of Al-
phaZero in shogi, compared to 2017 CSA world-champion program Elmo. ¢ Performance of
AlphaZero in Go, compared to AlphaGo Lee and AlphaGo Zero (20 block / 3 day) (29).
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Reinforcement Learning with Human Feedback in
ChatGPT
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ChatGPT is a Large Language Model

C6 3 cach nau...

0;...0,

Deep Layers
Transformer

ig...0,

Gidi thiéu cach nau canh chua?

MON NGON MBI NGAY
3 Cach Nau Canh Chua thom ngon dam da chi mudn an mai
khéng thoi

&

Chéc chén rdng 3 cdch ndu canh chua cuc ki thom ngon bén du'di diy sé khéng lam
cho ban that vong déu. Hay xem va cting 1&n véo bép dé n&u cho gia dinh mét bira
com that ngon nhé!

Céch chon cé ngon dé nau canh chua:

- Khi chon ¢& nén cht ¥ chon nhitng con cé ta con tuoi séng, cé phan mat tinh anh,
cam I&n chic tay, cé qudy dap, di chuy&n nhanh nhen.

- Khdng nén mua nhitng con cd da chét, mat duc, phan than cam Ién mém nhin,
khong chéc tay hay khéng qudy dap, thi Ia ca won, khéng ngon, thit b&, cé nhiéu
chat bao quan va sé khé danh vay.

- Mot diém dé phan biét ca tuoi la phan hdu mén cla cé sé rat nhé, néu bi nd to thi
cé da rat von, 6m bénh hoac cé khi bi tdm wdp chat bao quan.
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Transformer Model

Transformer Layer L
Multi-Head Attention

Transformer Layer 1
Multi-Head Attention

Encoding knowledege about
concepts and relationship (not
about Words)

Information, knowledge is
contained in the neural network
(not in the form of strings and
probabilities)
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Problem: not align between Query and Answer

NL Generation

Inference

The World
Knowledge

Question: Which bird is a mammal?

Answer: Lots of mammals including penguins.... >




ChatGPT

1. Very large text sets trained on a very large Model
2. Supervised Fine Tuning

3. Reinforcement Learning with Human Feedback(RLHF)

Table 6: Dataset sizes, in terms of number of prompts.

SFT Data (RM Data ) (PPO Data)

split  source size split  source size split  source size
train labeler 11,295 train labeler 6,623 train customer 31,144
train  customer 1,430 train customer 26,584 valid customer 16,185
valid labeler 1,550 valid labeler 3,488

valid customer 103 valid customer 14,399
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Reinforcement Learning with Human Feedback (HLHF) in
ChatGPT

Prompts Dataset

-‘

X: A dog is...

~ =~ ( Tunedlanguage )
Initial Language Model Model (RL Policy)

RLHF ®®®®
Tuned Text ®®@®®
y: a furry mammal y: man's best friend
\ = f \. y4 J
1 A
B >

—AkLDkL (Tppo (y]2) || Thase(y|2))
KL prediction shift penalty




Proximal Policy Optimization (PPO)

OpenAl (2017). "We're releasing a new class of reinforcement learning
algorithms, Proximal Policy Optimization (PPO), which perform comparably or
better than state-of-the-art approaches while being much simpler to
implement and tune. PPO has become the default reinforcement learning
algorithm at OpenAl because of its ease of use and good performance.”

https://openai.com/research/openai-baselines-ppo
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Why PPO?

The policy my(als) is stochastic, meaning that the parameters dictate the sampling
probability of actions a, and thereby influence the probability of following
trajectories 1=s,,a,,...S,,a,. As such, we can express the objective function dependent on 6:

J(0) = ErnrmgR(1) = ) P(7;0)R(T)

Traditional policy gradient update function, updating policy weights 8 based on
objective function gradient V_06J(8) and step size a

0 <10+ aVeJ(6)
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Why PPO? 0 < 6+ aVeJ(6)

« Consider weight updates of equal magnitude to the two policies below. Clearly, the
distribution on the left is affected much more than the one on the right. However, the
Euclidian distance (i.e., parameter distance) is the same!

12 012
1.0 0.10
08 0.08
06 0.06
04 0.04
02 0.02
0.0 0.00
-2 =1 0 1 2 3 -10 -5 0 5 10

Comparison of normal distribution pairs. The left has p_1=0, p_2=1 and

0_1=0 2=0.3.Theright has pu_1=0, p_2=1and o_1=0_2=3.0. Although the Euclidean
distance between both pairs is 1, it is obvious the pair on the right is much more
similar than the one on the left.




PPO

* The Kullback-Leibner (KL) divergence measures how much a policy m_6 changes
due to an update. Remember that the policy is represented by a probability
distribution, which determines the probability of selecting a given action. KL
divergence is defined as follows:

T\ T
Dxw(me || mo4n0) = Y 7ol log( o(2) )

zeX To+n0 (:E)

Now, if we restrict the divergence of the update to be no more than €

AG* = argmax  J(0+ Af)

Dxr(mol||mo+n0)<€
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PPO and PPOptx

/" Tuned Language \
Model (RL Policy)

7, 5

A
S
?3
b &

S

=MDk (7ppo (U]2) || Thase(y]2))
KL prediction shift penalty

objective (¢) =FE(4 4)~ D, g1 [’l”a (z,y) —

ﬁlog(

VE 2 Dyeeun [108(3 - (2))]

Yy | 2)/m T (y | 2)] +
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RLHF in ChatGPT

Reinforcement learning (RL). Once again following Stiennon et al. (2020), we fine-tuned the
SFT model on our environment using PPO (Schulman et al., 2017). The environment is a bandit
environment which presents a random customer prompt and expects a response to the prompt. Given
the prompt and response, it produces a reward determined by the reward model and ends the episode.
In addition, we add a per-token KL penalty from the SFT model at each token to mitigate over-
optimization of the reward model. The value function is initialized from the RM. We call these
models “PPO.”

We also experiment with mixing the pretraining gradients into the PPO gradients, in order to fix the
performance regressions on public NLP datasets. We call these models “PPO-ptx.” We maximize the
following combined objective function in RL training:

objective (¢) =E(3,3,?:,)ND"(§L [ro(z,y) — Blog (m3"(y | z)/m°" T (y | )] +

(2)
’YEmNDpreuain []'Og(ﬂ-gL (x) )]

where wgl‘ is the learned RL policy, 75FT is the supervised trained model, and Dypretain is the

pretraining distribution. The KL reward coefficient, 3, and the pretraining loss coefficient, 7, control

the strength of the KL penalty and pretraining gradients respectively. For "PPO" models, v is set to 0.

Unless otherwise specified, in this paper InstructGPT refers to the PPO-ptx models.
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Result

0.6 -

Win rate against SFT 175B

\

. .

1.3B 6B 1758
Model size

Model
~&- PPO-ptx

-e- PPO
-o- SFT
~u- GPT (prompted)
-o- GPT
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Conclusion

1. Reinforcement learning is a powerful framework for training intelligent
agents to make sequential decisions in dynamic environments.

2. Deep reinforcement learning, combining reinforcement learning with deep
neural networks, has shown remarkable success in solving complex and
high-dimensional problems.

3. Reinforcement learning has diverse applications, including robotics,
autonomous driving, game playing, finance, healthcare, and natural language

processing.
4. Challenges in reinforcement learning include sample efficiency, exploration-

exploitation trade-offs, and generalization to unseen situations.

79



e Discussion

Thank you!
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