Introduction to Large Language Models for Natural Language Processing

Lê Hồng Phương Data Science Laboratory VIASM & Vietnam National University, Hanoi <phuonglh@vnu.edu.vn>

June 30, 2023

Content

1 Introduction

Transformers

- Attention Mechanism
- Transformer Architecture

3 LLMs

- Encoder-Only
- Encoder-Decoder
- Decoder-Only
- Emergent Abilities

Conclusion

Language Models

- A language model (LM) is a probability distribution over sequences of words. Given any sequence of words of length n, a LM assigns a probability P(w₁, w₂,..., w_n) to the sequence.
- An *n*-gram LM models sequences of words as a Markov process where we want to predict the next word given its history:

$$P(w_n|w_1,\ldots,w_{n-1})$$

• Text generation from the probabilistic LM:

Neural Language Models

- Neural language models (or *continuous space language models*) use continuous representations or embeddings of words to make their predictions. These models make use of neural networks.
- Each word or token has an associated embedding vector $\mathbf{x}_i \in \mathbb{R}^d$:

• Static word embeddings: Skip-gram and CBOW (2013), GloVe (2014)

• Dynamic word embeddings: ELMo (2017), BERT (2018)

Large Language Models

What are LLMs?

- ML algorithms that can recognize, predict, and generate human languages.
- Pretrained on petabyte scale text datasets resulting in large models with 10s to 100s of billions of parameters.
- LLMs are normally pretrained followed by tuning on a specific task.

Large Language Models: Evolutionary Tree

- A nice recent survey presenting the evolution of LLMs¹
- A simplified view:

¹Yang et al. (2023) Harnessing the power of LLMs in practice: a survey on ChatGPT and beyond.

Large Language Models: Evolutionary Tree

Lê Hồng Phương, Data Science Laboratory

Introduction to LLMs for NLP

June 30, 2023 7 / 66

A Timeline of LLMs

 2 Zhao et al. (2023) A survey of large language models. https://arxiv.org/abs/2303.18223

Pretraining – Finetuning Method: 2018–2021

Pretraining – Finetuning:

- Typically requires many task-specific examples
- One specialized model for each task

Prompting Method: 2021–2023

Prompting:

- Prompts are used to interact with LLMs to accomplish a task.
- A prompt is a user-provided input. Prompts can include instructions, questions, or any other type of input, depending on the intended use of the model.

Instruction-Tuning Method: 2022–2023

Instruction-tuning:

- Model learns to perform many tasks via natural language instructions
- Inference on unseen tasks

Content

Introduction

2 Transformers

Attention Mechanism

• Transformer Architecture

LLMs

- Encoder-Only
- Encoder-Decoder
- Decoder-Only
- Emergent Abilities

Conclusion

Currently, the dominant models for nearly all NLP tasks are based on the Transformer architecture. Given any new task in NLP, we usually:

- Take a large Transformer-based pretrained model (BERT, GPT-x, T5-x, etc)
- Fine-tune/Prompt engineer the model on the available data for the downstream task

The core idea behind the Transformer model is the **attention mechanism**, an innovation which was introduced in 2014.³

³Bahdanau et al. (2014). Neural machine translation by jointly learning to align and translate.

The Attention Mechanism

- In machine translation, attention models often assigned high attention weights to cross-lingual synonyms when generating the corresponding words in the target language.
- "My feet hurt" \rightarrow "j'ai mal au pieds":
 - The model might assign high attention weights to the representation of "*feet*" when generating "*pieds*".⁴

⁴Reference: "Dive into DL" - https://d2l.ai/

The Attention Mechanism

In 2017, the Transformer architecture was proposed which relies on cleverly arranged attention mechanisms to capture *all relationships* among input and output tokens.⁵

- Denote by $\mathcal{D} = \{(\mathbf{k}_1, \mathbf{v}_1), (\mathbf{k}_2, \mathbf{v}_2), \dots, (\mathbf{k}_m, \mathbf{v}_m)\}$ a database of m tuples (*key*, *value*).
- Denote by **q** a *query*.
- The *attention* over \mathcal{D} is defined as

Attention(
$$\mathbf{q}, \mathcal{D}$$
) := $\sum_{i=1}^{m} \alpha(\mathbf{q}, \mathbf{k}_i) \mathbf{v}_i$,

where $\alpha(\mathbf{q}, \mathbf{k}_i) \in \mathbb{R}, \forall i = 1, \dots, m$ are scalar attention weights.

⁵Vaswani et al. (2017). Attention is all you need. NIPS.

Attention Pooling

Some special cases:

- $\alpha(\mathbf{q}, \mathbf{k}_i) \ge 0, \sum_i \alpha(\mathbf{q}, \mathbf{k}_i) = 1$: the weights form a convex combination.
- 2 $\alpha(\mathbf{q}, \mathbf{k}_j) = 1$, all other weights are 0: sparse attention.

3
$$\alpha(\mathbf{q}, \mathbf{k}_i) = \frac{1}{m}$$
: average pooling.

Attention Pooling By Similarity

Some common similarity kernels $\alpha(\mathbf{q}, \mathbf{k})$:

- Gaussian: $\alpha(\mathbf{q}, \mathbf{k}) = \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{q} \mathbf{k}\|^2\right)$
- Boxcar: $\alpha(\mathbf{q}, \mathbf{k}) = 1$ if $\|\mathbf{q} \mathbf{k}\| \leq 1$ ٩
- Epanechikov: $\alpha(\mathbf{q}, \mathbf{k}) = \max\{0, 1 \|\mathbf{q} \mathbf{k}\|\}$

Scaled Dot Product Attention

From the Gaussian kernel:

$$\alpha(\mathbf{q}, \mathbf{k}_i) = -\frac{1}{2} \| \mathbf{q} - \mathbf{k}_i \|^2$$
$$= \mathbf{q}^\top \mathbf{k}_i - \frac{1}{2} \| \mathbf{q}_i \|^2 - \frac{1}{2} \| \mathbf{k} \|^2$$

The scaled dot product attention that is used in the Transformers:

$$\begin{aligned} \mathbf{a}(\mathbf{q},\mathbf{k}_i) &= \frac{\mathbf{q}^\top \mathbf{k}_i}{\sqrt{d}}, \quad \mathbf{q},\mathbf{k} \in \mathbb{R}^d\\ \alpha(\mathbf{q},\mathbf{k}_i) &= \frac{\exp(a(\mathbf{q},\mathbf{k}_i))}{\sum_{j=1}^m \exp(a(\mathbf{q},\mathbf{k}_j))} \end{aligned}$$

Scaled Dot Product Attention

We often compute attention scores in mini-batches for efficiency. For n queries and m key-value pairs, $\mathbf{q}, \mathbf{k} \in \mathbb{R}^d$, and values $\mathbf{v} \in \mathbb{R}^v$, we use the batch matrix multiplication:

$$\operatorname{softmax}\left(rac{\mathbf{Q}\mathbf{K}^{ op}}{\sqrt{d}}
ight)\mathbf{V}\in\mathbb{R}^{n imes
u},$$

for $\mathbf{Q} \in \mathbb{R}^{n \times d}$, $\mathbf{K} \in \mathbb{R}^{m \times d}$, and $\mathbf{V} \in \mathbb{R}^{m \times v}$.

Scaled Dot Product Attention

When queries and keys are vectors of different dimensionalities, we can either

- use a matrix to address the mismatch via $\mathbf{q}^{\top} \mathbf{M} \mathbf{k}$, or
- use additive attention, for $\mathbf{q} \in \mathbb{R}^{q}, \mathbf{k} \in \mathbb{R}^{k}$:

$$a(\mathbf{q},\mathbf{k})=\mathbf{w}_{v}^{ op}$$
 tanh $(\mathbf{W}_{q}\,\mathbf{q}+\mathbf{W}_{k}\,\mathbf{k})\in\mathbb{R},$

where $\mathbf{w}_{v} \in \mathbb{R}^{h}, \mathbf{W}_{q} \in \mathbb{R}^{h imes q}, \mathbf{W}_{k} \in \mathbb{R}^{h imes k}$ are learnable parameters.

Multi-Head Attention

- We want our model to combine knowledge from different behaviors of the same attention mechanism, such as capturing dependencies of various ranges within a sequence.
 - It is beneficial to allow our attention mechanism to jointly use different representation subspaces of queries, keys, and values.
 - We concatenate multiple attention pooling outputs: *multi-head attention*.

Self-Attention

- In sequence processing, each token has its own query, keys, and values. We can compute, for each token, a representation by building the appropriate weighted sum over the other tokens.
- Each token is attending to each other token \Rightarrow self-attention models.

Recurrent Neural Network

Self-Attention

Computation complexity on a sequence of n tokens:

- RNN: multiplication of a weight matrix of size $d \times d$ and a d-dimensional hidden state $\Rightarrow O(nd^2)$; O(n) operations cannot be parallelized.
- Self-attention: a $n \times d$ matrix is multiplied by a $d \times n$ matrix, then the resulting matrix is multiplied by a $n \times d$ matrix $\Rightarrow O(n^2d)$; Computation can be parallelized with O(1) sequential operation.

Content

Introduction

Transformers

- Attention Mechanism
- Transformer Architecture

LLMs

- Encoder-Only
- Encoder-Decoder
- Decoder-Only
- Emergent Abilities

Conclusion

The Transformer Architecture

- The Transformer is composed of an **encoder** and a **decoder**.
- The encoder is a stack of multiple identical layers, where each layer has two sublayers
 - The first is a multi-head self-attention pooling.
 - The second is a positionwise feed-forward network.
 - There is a *residual connection* at both sublayers, inspired by the ResNet.
- The encoder outputs a *d*-dimensional vector representation for each position of the input sequence.

Lê Hồng Phương, Data Science Laboratory

June 30, 2023 25 / 66

The Transformer Architecture

- The decoder is also a stack of multiple identical layers with residual connections and layer normalizations.
 - Between the two sublayers, the decoder has a third sublayer, called the *encoder-decoder attention*.
 - In the encoder-decoder attention, queries are from the outputs of the previous decoder layer, and the keys and values are from the encoder outputs.
 - In the decoder self-attention, queries, keys, and values are all from the outputs of the previous decoder layer.
- Each position in the decoder is allowed to only attend to all positions up to that position.
 - The masked attention preserves the auto-regressive property, ensuring that the prediction only depends on those output tokens that have been generated.

Encoder Self-Attention Weights

Two layers of multi-head attention weights are presented row by row.⁶

 $^{6} {\tt https://d2l.ai/chapter_attention-mechanisms-and-transformers/transformer.html}$

Introduction to LLMs for NLP

Decoder Self-Attention Weights

Transformers

Transformer Architecture

Encoder-Decoder Self-Attention Weights

i'm home . \Rightarrow [je, suis, chez, moi, .]

Introduction to LLMs for NLP

LLMs

Transformers have been extensively pretrained with a wealth of text to learn good representations.

- Originally proposed for MT, the Transformer architecture consists of an encoder for representing input sequences and a decoder for generating target sequences.
- Transformers can be used in three different modes:
 - encoder-only
 - encoder-decoder
 - decoder-only

Content

Introduction

Transformers

- Attention Mechanism
- Transformer Architecture

3 LLMs

- Encoder-Only
- Encoder-Decoder
- Decoder-Only
- Emergent Abilities

Conclusion

A Transformer encoder consists of self-attention layers, where all input tokens attend to each other.

- A sequence of input tokens is converted into the same number of representations by the encoder.
- These representations can then be further projected into output (e.g., classification).
- This design was inspired by an earlier encoder-only Transformer pretrained on text: BERT.⁷

⁷Devlin et al. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding.

Encoder-Only Transformer: BERT Pretraining

• BERT is pretrained on text sequences using *masked language modeling*: input text with randomly masked tokens is fed into a Transformer encoder to predict the masked tokens.

LLMs

• There is no constraint in the attention pattern of Transformer encoders.

Encoder-Only

- Prediction of "love" depends on input tokens before and after it.
- Large-scale text data can be used for pretraining BERT.

Encoder-Only Transformer: BERT Fine-Tuning

• The pretrained BERT can be fine-tuned to downstream encoding tasks involving single text or text pairs.

LLMs

• During fine-tuning, additional layers can be added to BERT with randomized parameters: these parameters and those pretrained BERT parameters will be updated to fit training data of downstream tasks.

Encoder-Only

 The general language representations learned by the 340M-parameter BERT from 250B training tokens advanced the SOTA for many NLP tasks.

Derivatives of BERT

Other derivatives of BERT improved model architectures or pretraining objectives:

- RoBERTa (2019)
 - change key hyperparameters
 - remove the next-sentence pretraining objective of BERT
 - train with much larger mini-batches and learning rates
- 2 DeBERTa (2021)
 - use disentangled attention mechanism: each word is represented using two vectors that encode its content and position, the attention weights among words are computed using disentangled matrices on their contents and relative positions
 - use enhanced mask decoder to replace the output softmax layer to predict the masked tokens
- Others
 - ALBERT (2019): enforces parameter sharing
 - SpanBERT (2020): predicts spans of texts
 - ELECTRA (2020): replaced token detection

Multilingual BERT

mBERT (2019)

- a multilingual version of BERT trained on 104 languages from the Wikipedia corpus.
- follows the BERT recipe with the same training architecture and objective
- 110M to 340M parameters
- 2 XLM-R (2020)
 - a multilingual language model, trained on 2.5TB of filtered CommonCrawl data of 100 different languages
 - performs particularly well on low-resource languages
 - outperforms mBERT on a variety of cross-lingual benchmarks.
 - 3.5B to 10.7B parameters
- BERT pretrained models for Vietnamese:
 - ViBERT (10/2020), FPT
 - PhoBERT (11/2020), VinAI

Content

1 Introduction

Transformers

- Attention Mechanism
- Transformer Architecture

3 LLMs

- Encoder-Only
- Encoder-Decoder
- Decoder-Only
- Emergent Abilities

Conclusion

Encoder-Decoder Transformer

- The decoder autoregressively predicts the target sequence of arbitrary length, token by token, conditional on both encoder output and decoder output:
 - the encoder-decoder cross-attention allows target tokens to attend to all input tokens
 - the masked multi-head attention of decoder allow any target token can attend to past and present tokens in the target sequence
- Two well-known encoder-decoder Transformers, both attempt to reconstruct original text in their pretraining objectives.
 - BART (2019): emphasizes *noising input* (masking, deletion, permutation, rotation)
 - T5/mT5 (2020): emphasizes multitask unification

Encoder-Decoder Transformer: T5

- Every task is cast as feeding the model text as input and training it to generate some target text.⁸
- This allows for the use of the same model, loss function, hyperparameters across different tasks.

⁸Raffel et al. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR.

Encoder-Decoder Transformer: T5

- T5 can be fine-tuned for novel tasks.⁹
- 11B-parameter T5 achieved SOTA on the GLUE, SuperGLUE, SQuAD, and CNN/Daily Mail benchmarks.

⁹https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html

LLMs Encoder-Decoder

Encoder-Decoder Transformer: T5

Switch Transformer (2022) is based on T5.¹⁰

- improve with reduced communication and computational costs
- advance the of LLMs by pre-training up to trillion parameter models, achieved a 4x speedup over the T5-XXL model

¹⁰Fedus et al. (2022). Switch transformers: scaling to trillion parameter models with simple and efficient sparsity. JMLR.

Lê Hồng Phương, Data Science Laboratory

Introduction to LLMs for NLP

Content

1 Introduction

2 Transformers

- Attention Mechanism
- Transformer Architecture

3 LLMs

- Encoder-Only
- Encoder-Decoder

Decoder-Only

• Emergent Abilities

Conclusion

Decoder-Only Transformer: GPT-2

- Remove the entire encoder and the encoder-decoder cross-attention sublayer from the original encoder-decoder architecture.
- GPT and GPT-2 chooses a Transformer decoder as its backbone.

Decoder-Only Transformer: GPT-2

- GPT (2018)¹¹: 100M parameters, need to be fine-tuned for downstream tasks.
- GPT-2 (11/2019)¹²: 1.5B parameters, performed well on multiple other tasks *without updating the parameters or architecture*.¹³

GPT-2 displays a broad set of capabilities, including the ability to generate conditional synthetic text samples of unprecedented quality, where we prime the model with an input and have it generate a lengthy continuation. In addition, GPT-2 outperforms other language models trained on specific domains (like Wikipedia, news, or books) without needing to use these domain-specific training datasets. On language tasks like question answering, reading comprehension, summarization, and translation, GPT-2 begins to learn these tasks from the raw text, using no task-specific training data. While scores on these downstream tasks are far from state-of-the-art, they suggest that the tasks can benefit from unsupervised techniques, given sufficient (unlabeled) data and compute.

Lê Hồng Phương, Data Science Laboratory Introduction

¹¹Radford et al. (2018). Improving language understanding by generative pre-training. OpenAI.

 $^{^{12}\}mathsf{Radford}$ et al. (2019). Language models are unsupervised multitask learners. OpenAI Blog.

¹³https://openai.com/research/better-language-models

Decoder-Only Transformer: GPT-3

- A pretrained LM may generate the task output as a sequence *without parameter update*, conditional on an input sequence with
 - the task description
 - task-specific input-output examples
 - a prompt (task input)
- This learning paradigm is called in-context learning.¹⁴
- GPT-3 (2020), 175B parameters:
 - uses the same Transformer decoder architecture in GPT-2 except that attention patterns are sparser at alternating layers
 - pretrained with 300B tokens (40TB of text data)
 - performs better with larger model size, where few-shot performance increases most rapidly

¹⁴Brown et al. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems.

GPT-3 Zero-shot

GPT-3 One-shot

GPT-3 Few-shot

Recall: Instruction-Tuning Method

Instruction-tuning:

- Model learns to perform many tasks via natural language instructions
- Inference on unseen tasks
- Zero-shot learning

FLAN Instruction-Tuning

- Leverage the intuition that NLP tasks can be described via natural language instructions, such as
 - Is the sentiment of this movie review positive or negative?
 - Translate "how are you" into Chinese.

Take a pretrained **decoder-only** model (LaMDA-PT, 137B parameters) and perform instruction tuning–finetuning 60+ NLP datasets.¹⁵

LLMs

Decoder-Only

¹⁵Wei et al. (2022) Finedtuned language models are zero-shot learners. ICLR.

T0 Instruction-Tuning

T0 is an encoder-decoder model.¹⁶

 16 Sanh et al. (2022) Multitask prompted training enables zero-shot task generalization. ICLR.

T0 Instruction-Tuning

T0 (2022) 11B parameters, trained on multitask mixture of NLP datasets

• Each dataset is associated with multiple prompt templates to format examplars. T0 is as good as FLAN despite being 10x smaller.

Lê Hồng Phương, Data Science Laboratory

FLAN Instruction-Tuning – Chain of Thoughts

- FLAN-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PaLM 540B by a large margin (+9.4% on average).
- FLAN-PaLM 540B achieves SOTA performance on several benchmarks, such as 75.2% on five-shot MMLU.

FLAN Instruction-Tuning – Chain of Thoughts

LLMs Decoder-Only

FLAN Instruction-Tuning – Chain of Thoughts

-	Random	25.0
-	Average human rater	34. 5
May 2020	GPT-3 5-shot	43.9
Mar. 2022	Chinchilla 5-shot	67.6
Apr. 2022	PaLM 5-shot	69.3
Oct. 2022	Flan-PaLM 5-shot	72.2
	Flan-PaLM 5-shot: CoT + SC	75.2
-	Average human expert	89.8
	Jun. 2023 forecast (Hypermind)	73.2
	Jun. 2024 forecast (Hypermind)	75.0
	Jun. 2023 forecast (Metaculus)	82.7
	Jun. 2024 forecast (Metaculus)	87.6

Table 1: Average 5-shot MMLU scores (%) for 57 tasks with model and human accuracy comparisons (Hendrycks et al., 2020). Forecasts were made in July 2022 by competitive human forecasters, regarding a single model (Steinhardt, 2021); see https://prod.hypermind.com/ngdp/en/showcase2/showcase.html?sc= JSAI and https://www.metaculus.com/questions/11676/mmlu-sota-in-2023-2025/. CoT + SC: chain-of-thought prompting with self-consistency (Wang et al., 2022b).

17

¹⁷Chung et al. (2022) Scaling instruction-finetuned language models.

Self-Instruct

Self-Instruct is a framework for improving the instruction-following capabilities of pretrained LLMs by bootsrapping off their own generations.¹⁸

 $^{18}\mathsf{Wang}$ et al. (2023) Aligning language models with self-generated instructions. ACL

Self-Instruct

- SuperNI is a benchmark consisting of 119 tasks with 100 instances in each task.
- Self-Instruct data is freely available (52K instructions).
- By finetuning GPT-3 on this data leads to a 33% absolute improvement over the original GPT-3.

Model	# Params	ROUGE-L
Vanilla LMs		
T5-LM	11B	25.7
GPT3	175B	6.8
Instruction-tuned w/o SUPERNI		
то	11B	33.1
GPT3 + T0 Training	175B	37.9
GPT3 _{SELE-INST} (Ours)	175B	39.9
InstructGPT ₀₀₁	175B	40.8
Instruction-tuned w/ SUPERNI		
Tk-INSTRUCT	11 B	46.0
GPT3 + SUPERNI Training	175B	49.5
GPT3 _{SELE-INST} + SUPERNI Training (Ours)	175B	51.6

Table 3: Evaluation results on *unseen* tasks from SU-PERNI (§4.3). From the results, we see that ① SELF-INSTRUCT can boost GPT3 performance by a large margin (+33.1%) and ② nearly matches the performance of InstructGPT₀₀₁. Additionally, ③ it can further improve the performance even when a large amount of labeled instruction data is present.

SuperNI¹⁹, Self-Instruct²⁰

Lê Hồng Phương, Data Science Laboratory

Introduction to LLMs for NLP

 $^{^{19}}$ Wang et al. (2022) Super-NaturalInstruction: Generalization via declarative instructions on 1600+ tasks. EMNLP 20 https://github.com/yizhongw/self-instruct

Content

1 Introduction

Transformers

- Attention Mechanism
- Transformer Architecture

3 LLMs

- Encoder-Only
- Encoder-Decoder
- Decoder-Only
- Emergent Abilities

Conclusion

An ability is emergent if it is not present in smaller models but is present in larger models.²¹

Model sizes:

- GPT-3: 2 · 10²² training FLOPs (13B parameters)
- LaMDA: 10²³ training FLOPs (68B parameters)
- Gopher: 5 · 10²³ training FLOPs (280B parameters)
- PaLM: 2.5 · 10²⁴ FLOPs (540B parameters)

 $^{^{21}\}mbox{Wei}$ et al. (2022) Emergent abilities of large language models. TMLR.

LLMs Emergent Abilities

Emergent Ability: Few-shot Prompting Setting

Model scale (training FLOPs)

Introduction to LLMs for NLP

LLMs Emergent Abilities

Emergent Ability: Specialized Prompting or Finetuning

- **Multi-step reasoning**: *chain-of-thought prompting*, guiding LLMs to produce a sequence of intermediate steps before giving the final answer.
- Program execution: computational tasks involving multiple steps, such as adding large numbers or executing computer programs.
- **Model calibration**: measures whether models can predict which questions they will be able to answer correctly.

Emergent Abilities

	Emergent scale			
	Train. FLOPs	Params.	Model	Reference
Few-shot prompting abilities				
Addition/subtraction (3 digit)	2.3E + 22	13B	GPT-3	Brown et al. (2020)
 Addition/subtraction (4-5 digit) 	3.1E + 23	175B		
 MMLU Benchmark (57 topic avg.) 	3.1E + 23	175B	GPT-3	Hendrycks et al. (2021a)
 Toxicity classification (CivilComments) 	1.3E + 22	7.1B	Gopher	Rae et al. (2021)
• Truthfulness (Truthful QA)	5.0E + 23	280B		
 MMLU Benchmark (26 topics) 	5.0E + 23	280B		
 Grounded conceptual mappings 	3.1E + 23	175B	GPT-3	Patel & Pavlick (2022)
 MMLU Benchmark (30 topics) 	5.0E + 23	70B	Chinchilla	Hoffmann et al. (2022)
 Word in Context (WiC) benchmark 	2.5E + 24	540B	PaLM	Chowdhery et al. (2022)
• Many BIG-Bench tasks (see Appendix E)	Many	Many	Many	BIG-Bench (2022)
Augmented prompting abilities				
• Instruction following (finetuning)	1.3E + 23	68B	FLAN	Wei et al. (2022a)
 Scratchpad: 8-digit addition (finetuning) 	8.9E + 19	40M	LaMDA	Nye et al. (2021)
• Using open-book knowledge for fact checking	1.3E + 22	7.1B	Gopher	Rae et al. (2021)
 Chain-of-thought: Math word problems 	1.3E + 23	68B	LaMDA	Wei et al. (2022b)
 Chain-of-thought: StrategyQA 	2.9E + 23	62B	PaLM	Chowdhery et al. (2022)
• Differentiable search index	3.3E + 22	11B	T5	Tay et al. (2022b)
 Self-consistency decoding 	1.3E + 23	68B	LaMDA	Wang et al. (2022b)
 Leveraging explanations in prompting 	5.0E + 23	280B	Gopher	Lampinen et al. (2022)
• Least-to-most prompting	3.1E + 23	175B	GPT-3	Zhou et al. (2022)
 Zero-shot chain-of-thought reasoning 	3.1E + 23	175B	GPT-3	Kojima et al. (2022)
 Calibration via P(True) 	2.6E + 23	52B	Anthropic	Kadavath et al. (2022)
 Multilingual chain-of-thought reasoning 	2.9E + 23	62B	PaLM	Shi et al. (2022)
• Ask me anything prompting	$1.4E{+}22$	6B	EleutherAI	Arora et al. (2022)

Lê Hồng Phương, Data Science Laboratory

Emergent Abilities

- A dataset of 4,550 questions and solutions from problem sets, midterm exams, and final exams across all MIT EECS courses.
 - GPT-3.5 successfully solves a third of the entire MIT curriculum.
 - GPT-4, with prompt engineering, achieves a perfect solve rate on a test set excluding questions based on images.

Exploring the MIT Mathematics and EECS Curriculum Using Large Language Models

Sarah J. Zhang*		Sam Florin*			
MIT		MIT			
sjzhang@mit.edu		sflorin@mit.edu			
Ariel N. Lee	Eamon Niknafs	Andrei Marginean	Annie Wang		
Boston University	Boston University	MIT	MIT		
ariellee@bu.edu	en@bu.edu	atmargi@mit.edu	annewang@mit.edu		
Keith Tyser	Zad Chin		Yann Hicke		
Boston University	Harvard University		Cornell University		
ktyser@bu.edu	zadchin@college.harvard.edu		ylh8@cornell.edu		
Nikhil Singh	Madeleine Udell	Yoon Kim	Tonio Buonassisi		
MIT	Stanford University	MIT	MIT		
nsingh1@mit.edu	udell@stanford.edu	yoonkim@mit.edu	buonassi@mit.edu		

- OPT and BLOOM (175B parameters) training required 34 days on 992 A100 80GB.
- LLaMA of Facebook (65B parameters) used 2,048 A100-80GB for a period of approximately 5 months, cost around 2,638 MWh.²²

https://github.com/facebookresearch/llama

- PaLM's (Google's 540B LLM) training costs around \$9M to \$17M.
 - https://blog.heim.xyz/palm-training-cost/

 $^{^{22}\}mbox{Touvron et al.}$ (2023) LLaMA: Open and efficient foundation language models.

Conclusion

Conclusion

- LLMs have changed the NLP field completely in the last 5 years.
 - Single task \Rightarrow multitask
 - Monolingual processing \Rightarrow multilingual processing
 - Small models \Rightarrow very large models
 - Small corpora \Rightarrow collosal corpora
- Core technologies of LLMs:
 - $\bullet\,$ Attention mechanism \rightarrow the Transformers and their variants
 - Distributed and parallel processing using GPU/TPU
 - Large-scale optimization algorithms
- Current active research directions:
 - Model scaling; improved model architectures and training
 - Data scaling and selection;
 - Better techniques for understanding of prompting
 - Understanding emergence