

Transformer and its variants for NLP

Quan Thanh Tho qttho@hcmut.edu.vn

VIETNAM NATIONAL UNIVERSITY - HO CHI MINH CITY HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY

Assoc. Prof. Quan Thanh Tho

Vice Dean Faculty of Computer Science and Engineering Ho Chi Minh City University of Technology (HCMUT) Vietnam National University - Ho Chi Minh City <u>qttho@hcmut.edu.vn</u>

http://www.cse.hcmut.edu.vn/qttho/

- BEng, HCMUT, Vietnam, 1998
- PhD, NTU, Singapore, 2006
- Research Interests: Artificial Intelligence, Natural Language Processing, intelligent systems, formal methods

NLP Milestones

Quan Thanh Tho, "Modern Approaches in Natural Language Processing", VNU Journal of Science: Computer Science and Communication Engineering, 2022

Agenda

- Sequence data and sequence models
- Seq2Seq and attention
- Transformer model
- BERT and other variants
- Applications in NLP

Sequence data and sequence models

Sequence data

A series of data points whose points reliant on each other

- Length can be varied
- Positions matter

"The quick brown fox jumped Speech recognition over the lazy dog." Music generation "There is nothing to like Sentiment classification in this movie." AGCCCCTGTGAGGAACTAG DNA sequence analysis -> AGCCCCTGTGAGGAACTAG Voulez-vous chanter avec Do you want to sing with Machine translation moi? me? Video activity recognition Running Name entity recognition \rightarrow Yesterday, Harry Potter Yesterday, Harry Potter met Hermione Granger. met Hermione Granger. Andrew Ng

Problem of Standard Networks

- Inputs, outputs can be different lengths in different examples.
- Relations between positions are not well reflected

RNN comes as a rescue

RNN: an architecture tailored for sequence data:

1) Doesn't depend on data length

2) Take advantage of past information

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In D. E. Rumelhart & J. L. Mcclelland (Eds.), *Parallel distributed processing: Explorations in the microstructure of cognition, Volume 1: Foundations* (pp. 318–362). MIT Press

Seq2seq and Attention

Intuition

Take machine translation task as an example: human would first read some parts of the text and then start to do the translation

The cat likes to eat pizza

el gato le gusta comer pizza

Seq2Seq architecture

NLP researchers also employ that **idea** into designing a structure dubbed as Sequence-to-Sequence (Seq2Seq), which extends AutoEncoder architecture

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A., & Fidler, S. (2015). Skip-thought vectors. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, & R. Garnett (Eds.), *Advances in neural information processing systems*. Curran Associates, Inc

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. *Advances in neural information processing systems*, 27

Seq2Seq: The bottle neck problem

Decoder RNN

Use the attention distribution to take a weighted sum of the encoder hidden states.

The **attention output** mostly contains information from the **hidden states** that received **high attention**.

18

Seq2Seq with another bottleneck

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural information processing systems. Curran Associates, Inc

Inside an Encoder Block

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}igg(rac{QK^T}{\sqrt{d_k}}igg)V$$

Self-Attention in Transformer

- Attention maps a query and a set of key-value pairs to an output
 - query, keys, and output are all vectors

Self-Attention

Image source: https://jalammar.github.io/illustrated-transformer/

ATTENTION HEAD #1

W₁v

Multi-Head Attention

1) This is our 2 input sentence* e

2) We embed each word*

X

3) Split into 8 heads. We multiply X or R with weight matrices

4) Calculate attention using the resulting Q/K/V matrices 5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

Wo

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

...

Z7

Z₀

...

Position Encoding

- Position Encoding is used to make use of the order of the sequence
 - Since the model contains no recurrence and no convolution
- In Vawasni et al., 2017, authors used sine and cosine functions of different frequencies

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{\frac{2i}{d_{model}}}}\right)$$
$$PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{\frac{2i}{d_{model}}}}\right)$$

pos is the position and i is the dimension

BERT and other variants

Transformer-based Language Models

BERT

- Bidirectional Encoder Representations from Transformers.
- Use the Transformer Encoder architecture.
- Introduced in 2018 by Google AI.

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). *BERT: pretraining of deep bidirectional transformers for language understanding* (J. Burstein, C. Doran, & T. Solorio, Eds.).

unsuper vised

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp

2 - Supervised training on a specific task with a labeled dataset

Architecture

BERTLARGE

...

Pretraining

- Two unsupervised tasks:
 - 1. Masked Language Model
 - 2. Next Sentence Prediction

GPT

- Generative Pre-trained Transformer
- Use the Transformer Decoder architecture.
- Introduced in 2018 by OpenAI.

Model	Number of parameters	Training data size	Year
GPT	110M	4GB	2018
GPT-2	1.5B	40GB	2019
GPT-3	175B	≈2TB	2020

Openai [Accessed: 2023-03-01]. (2023). https://openai.com/

How it works?

XLNet

- Autoencoding (BERT):
 - [MASK] tokens do not appear during finetuning ⇒ pretrain-finetuning discrepancy.
 - Assume the predicted tokens are independent of each other given the unmasked tokens. Example: "New York is a city" ⇒ "[MASK] [MASK] is a city"
- Autoregressive (GPT):
 - Only trained to encode a unidirectional context (forward or backward).

Yang, Z. et al. "XLNet: Generalized Autoregressive Pretraining for Language Understanding." *NeurIPS* (2019)

XLNet

- XLNet combines pros from both while avoiding their cons.
- Techniques:
 - Permutation Language Modeling
 - Two-Stream Self-Attention for Target-Aware Representations
 - Incorporating Ideas from Transformer-XL
 - Modeling Multiple Segments

Applications in NLP

NLP typical pipeline

NLP DL-based pipeline

Pre-trained Neural Language Model

NLP LM-based pipeline

NLP LM-based pipeline

From BERT to BART

- BERT is not a fully Seq2Seq model (i.e. not a generative model)
- BART is introduced as an extended/complement

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. <u>BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension</u>. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 7871–7880, Online. Association for Computational Linguistics.

From PhoBERT to BARTPho

VinAlResearch/ BARTpho

BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese (INTERSPEECH 2022)

BARTPho for Vietnamese translation applications

- Pretrained with Vietnamese
- Implicitly processing "aligning" task
- More powerful if the target language has similar language to Vietnamese (Chinese, Bahnaric, etc.)

A Demo to be concluded

https://www.ura.hcmut.edu.vn/bahnar/nmt

Thank you