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Abstract

During this lecture series we will introduce Gromov-Hausdorff (GH)
convergence and Sormani-Wenger Intrinsic Flat (SWIF) convergence
of Riemannian manifolds including various methods for estimating
these notions of convergence. Theorems which relate these notions
of convergence to Ricci curvature and scalar curvature will be intro-
duced and several open geometric stability conjectures involving scalar
curvature will round out the course.

Course 1: Gromov-Huasdorff (GH) Distance [BBI, Pet06]

1. Metric Spaces and Length Spaces (2.1-2.5 of [BBI])

2. Hausdorff Distance and Convergence (7.3 of [BBI], 10.1.1 of [Pet06])

3. GH Distance and Convergence (7.3-7.4 of [BBI], 10.1.1 of [Pet06])

4. Estimating GH Distance (7.4 of [BBI], 10.1.1 of [Pet06])

5. Regularity of Limits under GH Convergence (7.5 of [BBI])

Course 2: Ricci Curvature and GH Convergence [BBI, Pet06]

1. Gromov’s Compactness Theorem (10.1.4 of [Pet06])

2. Ricci Curvature and Volume of Balls (9.1 of [Pet06])
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3. Ricci Curvature Compactness Theorem (10.1.4 of [Pet06])

4. Ricci Limit Spaces (10.7 of [BBI], Prof. Guofong Wei will discuss this
topic in more detail)

Course 3: Sormani-Wenger Intrinsic Flat (SWIF) Convergence [Sor12,
Sor17]

1. Examples of Sequences without Ricci Curvature Bounds

2. Flat Distance on Rn [SW11, Sor12]

3. Sormani-Wenger Intrinsic Flat Distance [SW11, Sor12, Sor17]

4. Wenger’s Compactness Theorem [Wen11]

5. Gromov-Lawson Tunnels and Sewing Examples [GL80]

Course 4: Estimating GH/SWIF Convergence of Riemannian Manifolds
[AS19, AS20, APS20, AP20]

1. Examples showing necessity of control from below [AS19, AS20]

2. Quantitative SWIF Distance Estimate [APS20, AP20]

3. VADB Theorem [APS20, AP20]

4. Examples with Blow Up [AS20]

Course 5: Scalar Curvature Geometric Stability Conjectures [SCC21]

1. Scalar Curvature Characterization (Section 2 of [SCC21])

2. Geometric Stability of Scalar Torus Rigidity Conjecture (Section 7 of
[SCC21], [Gro14])

3. Geometric Stability of Larrull ’s Theorem ([HKKZ22])

4. Geometric Stability of the Positive Mass Theorem Conjecture (Section
10 of [SCC21])

5. Geometric Stability of Scalar Prism Rigidity (Section 8 of [SCC21])
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