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1.  Introduction	and	Preliminaries
Nonlinear differential equations are models for a variety of phenomena in the life sciences, physics and technology, chemistry and
economics (see, e.g., [ 10, 15 ]). When studying these equations, stability analysis is always a central issue. In the literature, there are
several works on the stability of nonlinear differential equations, for example some works in [ 2, 7, 12, 16, 17 ].

As its name indicates, the practical stability concept is motivated by engineering considerations: it is rarely needed for an industrial system
to reach its target exactly (this means, asymptotic stability is a rather constraining aim), or to behave until a really infinite time (then, it
may be possible to require finite time stability only). These considerations allow to relax some hypotheses usually needed in classical
Lyapunov’s stability (see, e.g., [ 1, 2, 4, 25 ]). The traditional approaches to practical stability of nonlinear differential equations are the
Lyapunov’s method and its variants (Razumikhin-type theorems, Lyapunov–Krasovskii functional techniques), (see, e.g., [ 1, 9, 11, 14, 23
]). To the best of our knowledge, there are not many explicit criteria for the practical exponential stability of these equations.

In this paper, we will develop a new approach to the practical exponential stability of nonlinear differential equations. Our approach is
based on the theory of comparison principle and nonnegative matrices, (see, e.g., [ 3 ]). This theory has been applied successfully to

exponential stability and robust stability of some classes of differential and difference equations (see, e.g., [ 13, 17, 18, 21 ]). By using this
theory, several explicit criteria for the practical exponential stability of some nonlinear differential equations will be given. Some
applications to neutral networks will be investigated.

Let  be the set of all natural numbers. For given , let  and . Let  or  where 
and  denote the sets of all complex and all real numbers, respectively. For positive integers  denotes the l-dimensional vector
space over  and  stands for the set of all -matrices with entries in . Inequalities between real matrices or vectors will be
understood componentwise, i.e., for two real matrices  and  in , we write  iff  for

. In particular, if  for , then we write  instead of . We denote by
 the set of all nonnegative matrices . Similar notations are adopted for vectors.

For  and  we define  and . A norm  on  is said to be monotonic if  whenever

. For example, the p-norm on   and  is
monotonic.

For any matrix  the spectral abscissa of M is denoted by , where
 is the spectrum of M. A matrix  is said to be Hurwitz stable if . For an arbitrary

norm  on  the matrix measure of  is defined by

where  is the identity matrix, see [ 8 ].

A matrix  is called a Metzler matrix if all off-diagonal elements of M are nonnegative. We now summarize some properties of
Metzler matrices which will be used in what follows.

Theorem	1 [ 21 ] Suppose that  is a Metzler matrix. Then,

(i) (Perron–Frobenius)  is an eigenvalue of M and there exists a nonnegative eigenvector  such that .

(ii) Given , there exists a nonzero vector  such that  if and only if .

(iii)  exists and is nonnegative if and only if .

(iv) Given . Then,

The following is immediate from Theorem 1  and is used in what follows.

Theorem	2 Let  be a Metzler matrix. Then the following statements are equivalent:

(i) ;

(ii)  for some 

(iii) M is invertible and ;

N m ∈ N := {1, 2, . . . ,m}m–– := {0, 1, 2, . . . ,m}m0– ––
K = C R, C

R l, q ≥ 1, Rl

R Rl×q l × q R

A = ( )aij B = ( )bij Rl×q A ≥ B ≥aij bij

i = 1, . . . , l, j = 1, . . . , q >aij bij i = 1, . . . , l, j = 1, . . . , q A ≫ B A ≥ B

Rl×q
+ A ≥ 0

x ∈ Rn P ∈ ,Rl×q |x| = (| |)xi |P | = (| |)pij ∥ ⋅ ∥ Rn ∥x∥ ≤ ∥y∥

x, y ∈ , |x| ≤ |y|Rn Rn (∥x = (| + | + ⋯ + | , 1 ≤ p < ∞∥p x1 |p x2 |p xn|p)
1
p ∥x = | |)∥∞ maxi=1,2,...,n xi

M ∈ ,Rn×n μ(M) := max{Rλ : λ ∈ σ(M)}

σ(M) := {λ ∈ C : det(λ − M) = 0}In M ∈ Rn×n μ(M) < 0

∥ ⋅ ∥ ,Rn×n M := ( ) ∈mij Rn×n

s(M) := ,lim
ϵ→0+

∥ + ϵM∥ − 1In

ϵ

∈In Rn×n

M ∈ Rn×n

M ∈ Rn×n

μ(M) x ≠ 0 Mx = μ(M)x

α ∈ R x ≥ 0 Mx ≥ αx μ(M) ≥ α

(t − MIn )−1 t > μ(M)

B ∈ ,C ∈Rn×n
+ Cn×n

|C| ≤ B ⇒ μ(M + C) ≤ μ(M + B).

M ∈ Rn×n

μ(M) < 0

Mp ≪ 0 p ∈ , p ≫ 0;Rn
+

≤ 0M−1
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(iv) for given  there exists , such that ;

(v) for any , the row vector  has at least one negative entry.

With a given matrix , we associate the Metzler matrix , where

2.  Main	Results
Consider a nonlinear nonautonomous differential system of the form

where  are continuous and are locally Lipschitz in the second argument, uniformly in t on compact intervals of  This
system is seen as a perturbation of the nominal system

The perturbation term  could result from modelling errors, aging or uncertainties and disturbances, which exist in any realistic
problem.

It is well known that for fixed  and given , there exists a unique local solution of ( 1 ), denoted by  satisfying the
initial value condition

see e.g., [ 10 ]. This solution is defined and continuous on  for some  and satisfies ( 1 ) for every , see e.g., [ 10 ].
Furthermore, if the interval  is the maximum interval of existence of the solution  then  is said to be
noncontinuable. The existence of a noncontinuable solution follows from Zorn’s lemma and the maximum open interval of existence.

Definition	1 Equation ( 1 ) is said to be practicallly exponentially stable (shortly, PES) if there exist positive numbers  and 

such that for each  and each  the solution of ( 1 )-( 3 ) exists on  and furthermore satisfies

If  then equation ( 1 ) is said to be exponentially stable (shortly, ES).

Now, we consider

 There exists a continuous function  such that

where  is the Jacobian matrix of  at x.

 There exist a continuous function  and a bounded function  such that

Theorem	3 Suppose that -  hold and f(t, 0) is bounded on . Then, ( 1 ) is PES if there exists  such that

Moreover, if  and  then equation ( 1 ) is ES.

Proof Since ( 6 ), there exists  such that

where  Let  be arbitrary, but fixed and , where the interval
 is the maximum interval of existence of the solution . Choose a positive number  such that  Define

Clearly, . We claim that .

Assume on the contrary that there exists  such that . Set . By continuity, 
and

b ∈ , b ≫ 0,Rn x ∈ Rn
+ Mx + b = 0

x ∈ ∖{0}Rn
+ MxT

A = ( ) ∈aij Rn×n M(A) := ( ) ∈âij Rn×n

:= ,  i ∈ ; := | |,  i ≠ j, i, j ∈ .âii aii n–– âij aij n––

(t) = f(t, x(t)) + ω(t, x(t)), t ≥ σ,ẋ

f, ω : R × →Rn Rn R.

(t) = f(t, x(t)), t ≥ σ.ẋ

ω(t, x)

σ ∈ R ∈x0 Rn x(⋅; σ, )x0

x(σ) = ,x0

[σ, γ) γ > σ t ∈ [σ, γ)

[σ, γ) x(⋅; σ, ),x0 x(⋅; σ, )x0

K, β Υ ≥ 0,

σ ∈ R ∈ ,x0 Rn [σ, ∞)

∥x(t, σ, )∥ ≤ K ∥ ∥ + Υ, ∀t ≥ σ.x0 e−β(t−σ) x0

Υ = 0,

( )H1 θ(⋅) : R → R

s(J(t; x)) ≤ θ(t), ∀t ∈ R, ∀x ∈ ,Rn

J(t, x) := ( (t, x)) ∈ , t ∈ R, x ∈ ,
∂fi
∂xj

Rn×n Rn f(t, ⋅)

( )H2 α(⋅) : R → R+ h(⋅; ⋅) : R × →Rn R+

∥ω(t, u)∥ ≤ α(t)∥u∥ + h(t, u), ∀t ∈ R, ∀u ∈ .Rn

( )H1 ( )H2 R > 0δ1

θ(t) + α(t) < − , ∀t ∈ R.δ1

f(t; 0) = 0, ∀t ∈ R h(t, x) = 0, ∀t ∈ R, ∀x ∈ ,Rn

Υ ∈ R+

(θ(t) + α(t))Υ ≤ −ξ, ∀t ∈ R, ∀x ∈ ,Rn

ξ := {∥f(t, 0)∥ + h(t, u)}.supt∈R,u∈Rn ζ > 0 x(t) := x(t; σ, ), t ∈ [σ, γ), ∈x0 x0 Rn

[σ, γ) x(⋅; σ, )x0 K ≥ 1 ∥ ∥ ≤ K∥ ∥.x0 x0

(t) := K (∥ ∥ + ζ) + Υ, t ∈ [σ, +∞).v~ e− (t−σ)δ1 x0

∥x(σ)∥ < (σ)v~ ∥x(t)∥ ≤ (t), ∀t ∈ [σ, γ)v~

> σt∗ ∥x( )∥ > ( )t∗ v~ t∗ := inf{t ∈ (σ, γ) : ∥x(t)∥ > (t)}tb v~ > σtb

∥x(t)∥ ≤ (t), ∀t ∈ [σ, ]; ∥x( )∥ = ( ); ∥x( )∥ > ( ),v~ tb tb v~ tb τk v~ τk
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for some . Using the mean value theorem (see, e.g., [ 6 ]), we get the following estimates:

Note that

(see, e.g., [ 8 ]). Then - , and ( 6 ), ( 7 ) and ( 8 ) imply

On the other hand, ( 8 ) implies that

This is a contradiction. Therefore,

Letting  tend to zero, we obtain

Now, we claim that  and so equation ( 1 ) is PES. Seeking a contradiction, we assume that . Then it follows from ( 9 ) that

 is bounded on . Furthermore, this together with ( 1 ) implies that  is bounded on . Thus,  is uniformly

continuous on . This implies that  exists and  can be extended to a continuous differential function on .

Therefore, one can find a solution of ( 1 ) through the point  to the right of . This contradicts the noncontinuability hypothesis on
. Thus,  must be equal to .

Finally, it is easy to see that if  and  then . Hence, ( 1 ) is ES. This completes the
proof.

∈ ( , + ), k ∈ Nτk tb tb
1
k

∥x( )∥D+ tb := lim sup
ϵ→0+

∥x( + ϵ)∥ − ∥x( )∥tb tb

ϵ

= lim sup
ϵ→0+

∥x( ) + ϵ ( )∥ − ∥x( )∥tb ẋ tb tb

ϵ

= lim sup
ϵ→0+

∥x( ) + ϵ(f( , x( )) + ω( , x( )))∥ − ∥x( )∥tb tb tb tb tb tb

ϵ

≤ lim sup
ϵ→0+

∥x( ) + ϵ(f( , x( )) − f( , 0))∥ − ∥x( )∥tb tb tb tb tb

ϵ

+ ∥f( , 0)∥ + ∥ω( , x( ))∥tb tb tb

= lim sup
ϵ→0+

∥x( ) + ϵ( J( , sx( ))ds)x( )∥ − ∥x( )∥tb ∫
1

0 tb tb tb tb

ϵ

+ ∥f( , 0)∥ + ∥ω( , x( ))∥tb tb tb

= lim sup
ϵ→0+

(∥ + ϵ J( , sx( ))ds∥ − 1)∥x( )∥In ∫
1

0 tb tb tb

ϵ

+ ∥f( , 0)∥ + ∥ω( , x( ))∥tb tb tb

= s( J( , sx( ))ds)∥x( )∥ + ∥f( , 0)∥ + ∥ω( , x( ))∥.∫
1

0
tb tb tb tb tb tb

s( J( , sx( ))ds) ≤ s(J( , sx( )))ds,∫
1

0
tb tb ∫

1

0
tb tb

( )H1 ( )H2

∥x( )∥ :=D+ tb

≥

≥lim sup
t→t+

b

∥x(t)∥ − ∥x( )∥tb

t − tb
lim¯ ¯¯̄¯̄¯

k→+∞
∥x( )∥ − ∥x( )∥τk tb

−τk tb

= = ( ).lim¯ ¯¯̄¯̄¯
k→+∞

( ) − ( )v~ τk v~ tb

−τk tb
lim

k→+∞

( ) − ( )v~ τk v~ tb

−τk tb
v~̇ tb

∥x(t; σ, )∥ ≤ (t) = K (∥ ∥ + ζ) + Υ, ∀t ∈ [σ, γ),  ∀ ∈ .x0 v~ e− (t−σ)δ1 x0 x0 Rn

ζ

∥x(t; σ, )∥ ≤ K ∥ ∥ + Υ, ∀t ∈ [σ, γ),  ∀ ∈ .x0 e− (t−σ)δ1 x0 x0 Rn

γ = ∞ γ < ∞

x(⋅; σ, )x0 [σ, γ) (⋅)ẋ [σ, γ) x(⋅)

[σ, γ) x(t)limt→γ− x(⋅) [σ, γ]

(γ, x(γ)) γ

x(⋅) γ ∞

f(t, 0) = 0, ∀t ∈ R h(t, x) = 0, ∀t ∈ R, ∀x ∈ Rn Υ = 0
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Remark	1 Based on a nonlinear inequality and Lyapunov’s method, Makhlouf–Hammami [ 16 , Example 2] show that

is PES. Let  be endowed with 1-norm. It is easy to check that ( 10 ) is PES, by Theorem 3 , where

and

Definition	2 Equation ( 1 ) is said to be ultimately practically exponentially stable (shortly, UPES) if there exist a positive number 

and vectors  such that for each  and each  the solution of ( 1 )-( 3 ) exists on  and furthermore satisfies

If  then equation ( 1 ) is said to be ultimately exponentially stable (shortly, UES)).

Remark	2 It is easy to see that if equation ( 1 ) is UPES (UES, respectively), then it is PES (ES, respectively).

Now, we consider the assumptions:

  is continuously differentiable on  for any  and there exists a matrix-valued continuous function  such
that

where  is the Jacobian matrix of  at x.

 There exist a matrix-valued continuous function  and a bounded function  such that

 There exists a matrix-valued continuous function  such that

We are now in the position to state the second main result of this paper.

Theorem	4 Assume that  and  hold and f(t, 0) is bounded on . If there exist  and 
such that

then equation ( 1 ) is UPES.

In addition, if  and  then equation ( 1 ) is UES.

Proof Let  such that 

Since ( 14 ), there exists  such that

Let  and . Let  be arbitrary, but fixed. Define
, where the interval  is the maximum interval of existence of the solution . It follows

from ( 3 ) that  where . Define

Clearly, . We claim that . Assume on the contrary that there exists  such that
. Set . By continuity,  and there is  such that

for some . By the mean value theorem (see, e.g., [ 6 ]), we have for each  and for each 

( ) = , t ≥ 0
(t)ẋ1

(t)ẋ2

⎛

⎝
⎜⎜

− (t) + + sin( (t) + (t))x1
(t)x2

1+( (t)+ (t)x1 x2 )2
e−t x2

1 x2
2

cos t

1+t2

− (t) + + sin( (t) + (t))x2
(t)x1

1+( (t)+ (t)x1 x2 )2
e−t x2

1 x2
2

sin t

1+t2

⎞

⎠
⎟⎟

R2

f(t, x) := ( ) ,
−x1

−x2

ω(t, x) = .
⎛

⎝
⎜

+ sin( + )
x2

1+( +x1 x2)2
e−t x2

1 x2
2

cos t

1+t2

+ sin( + )
x1

1+( +x1 x2)2
e−t x2

1 x2
2

sin t

1+t2

⎞

⎠
⎟

β

η, v ≥ 0 σ ∈ R ∈ ,x0 Rn [σ, ∞)

|x(t, σ, )| ≤ ∥ ∥η + v, ∀t ≥ σ.x0 e−β(t−σ) x0

v = 0,

( )H3 f(t, ⋅) Rn t ∈ R A(⋅) : R → Rn×n

M(J(t, x)) ≤ A(t), ∀t ∈ R, ∀x ∈ ,Rn

J(t, x) := ( (t, x)) ∈ , t ∈ R, x ∈ ,
∂fi
∂xj

Rn×n Rn f(t, ⋅)

( )H4 B(⋅) : R → Rn×n
+ g(⋅, ⋅) : R × →Rn Rn

+

|ω(t, u)| ≤ B(t)|u| + g(t, u), ∀t ∈ R, ∀u ∈ .Rn

( )H5 C(⋅) : R → Rn×n
+

|ω(t, x) − ω(t, y)| ≤ C(t)|x − y|, ∀t ∈ R, ∀x, y ∈ .Rn

( )H3 ( )H4 R β > 0 p := ( , , . . . , ∈ , p ≫ 0p1 p2 pn)T Rn
+

(A(t) + B(t))p ≪ −βp, ∀t ∈ R,

f(t, 0) = 0, ∀t ∈ R g(t, x) = 0, ∀t ∈ R, ∀x ∈ ,Rn

w := ( , , . . . , ∈w1 w2 wn)T Rn
+ := {| (t, 0)| + (t, u)}.wi supt∈R,u∈Rn fi gi

v := ( , , . . . , ∈v1 v2 vn)T Rn
+

(A(t) + B(t))v ≤ −w, ∀t ∈ R.

A(t) := ( (t)) ∈ , t ∈ R;aij Rn×n B(t) := ( (t)) ∈ , t ∈ Rbij Rn×n ϵ > 0

x(t) := x(t; σ, ), t ∈ [σ, γ), ∈x0 x0 Rn [σ, γ) x(⋅; σ, )x0

|x(σ)| = | | ≤ ∥ ∥ ,x0 x0
p

λ
λ := mini∈n

––
pi

u(t) := (∥ ∥ + ϵ) + v, t ∈ [σ, +∞).e−β(t−σ) x0
p

λ

|x(σ)| = | | ≪ u(σ)x0 |x(t)| ≤ u(t), ∀t ∈ [σ, γ) > σt0

|x( )| ≰ u( )t0 t0 := inf{t ∈ (σ, γ) : |x(t)| ≰ u(t)}t1 > σt1 ∈i0 n––

|x(t)| ≤ u(t), ∀t ∈ [σ, ); | ( )| = ( ), | ( )| > ( ),t1 xi0 t1 ui0 t1 xi0 τk ui0 τk

∈ ( , + ), k ∈ Nτk t1 t1
1
k

t ∈ R i ∈ n––
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18

19

Taking -  into account, we obtain

for almost any . It follows that for any 

where  denotes the Dini upper-right derivative. In particular, it follows from ( 14 ), ( 15 ) and ( 16 ) that

On the other hand, ( 16 ) implies that

This is a contradiction. Therefore,

Letting  tend to zero, we obtain

Now similar to the final part in the proof of Theorem 3 , we imply  and so equation ( 1 ) is UPES. Finally, if  and

 then  and equation ( 1 ) is UES. This completes the proof.

Corollary	1 Suppose  and  hold and f(t, 0) is bounded on . Then equation ( 1 ) is UPES if one of the following conditions is
satisfied:

(i) There exists a Hurwitz stable matrix  such that

(ii) There exist  such that

In addition, if  and  then ( 1 ) is UES.

(t) =ẋi

=

(t, x(t)) + (t, x(t)) = ( (t, x(t)) − (t, 0)) + (t, 0) + (t, x(t))fi ωi fi fi fi ωi

( (t, sx(t))ds) (t) + (t, 0) + (t, x(t)).∑
j=1

n

∫
1

0

∂fi
∂xj

xj fi ωi

( )H3 ( )H4

| (t)|
d

dt
xi = sgn( (t)) (t) = sgn( (t))( ( (t, sx(t))ds) (t)xi ẋi xi ∑

j=1

n

∫
1

0

∂fi
∂xj

xj

+ (t, 0) + (t, x(t)))fi ωi

≤ ( (t, sx(t))ds)| (t)| + | (t, sx(t))|ds| (t)|∫
1

0

∂fi
∂xi

xi ∑
j=1,j≠i

n

∫
1

0

∂fi
∂xj

xj

+ | (t, 0)| + | (t, x(t))|,fi ωi

(t)| (t)| + (t)| (t)|≤
( ),( )H3 H4

∑
j=1

n

aij xj ∑
j=1

n

bij xj

+ | (t, 0)| + (t, x(t))fi gi

≤ (t)| (t)| + (t)| (t)| + ,∑
j=1

n

aij xj ∑
j=1

n

bij xj wi

t ∈ [σ, γ) t ∈ [σ, γ),

| (t)|D+ xi := = | (s)|dslim sup
ϵ→0+

| (t + ϵ)| − | (t)|xi xi

ϵ
lim sup
ϵ→0+

1

ϵ
∫

t+ϵ

t

d

ds
xi

≤ (t)| (t)| + (t)| (t)| + ,∑
j=1

n

aij xj ∑
j=1

n

bij xj wi

D+

| ( )|D+ xi0 t1 ≤ ( )| ( )| + ( )| ( )| + ,∑
j=1

n

a ji0 t1 xj t1 ∑
j=1

n

b ji0 t1 xj t1 wi0

( ( ) + ( ) )≤
(16)

∑
j=1

n

a ji0 t1 pj ∑
j=1

n

b ji0 t1 pj e−β( −σ)t1
∥ ∥ + ϵx0

λ

+ ( ( ) + ( ) ) +∑
j=1

n

a ji0 t1 vj ∑
j=1

n

b ji0 t1 vj wi0

− β (∥ ∥ + ϵ) = ( ).<
(14),(15)

e−β( −σ)t1 x0
pi0

λ
D+ui0 t1

| ( )|D+ xi0 t1 := ≥lim sup
t→t+

1

| (t)| − | ( )|xi0 xi0 t1

t − t1
lim¯ ¯¯̄¯̄¯

k→+∞
| ( )| − | ( )|xi0 τk xi0 t1

−τk t1

≥ =lim¯ ¯¯̄¯̄¯
k→+∞

( ) − ( )ui0 τk ui0 t1

−τk t1
lim

k→+∞

( ) − ( )ui0 τk ui0 t1

−τk t1

= ( ).D+ui0 t1

|x(t; σ, )| ≤ u(t) = (∥ ∥ + ϵ) + v, ∀t ∈ [σ, γ),  ∀ ∈ .x0 e−β(t−σ) x0
p

λ
x0 Rn

ϵ

|x(t; σ, )| ≤ ∥ ∥ + v, ∀t ∈ [σ, γ),  ∀ ∈ .x0 e−β(t−σ) x0
p

λ
x0 Rn

γ = ∞ f(t, 0) = 0, ∀t ∈ R

g(t, x)) = 0, ∀t ∈ R, ∀x ∈ ,Rn v = 0

( )H3 ( )H4 R

∈B0 Rn×n

A(t) + B(t) ≤ , ∀t ∈ R.B0

p, q ∈ , p, q ≫ 0Rn
+

(A(t) + B(t))p ≤ −q, ∀t ∈ R.

f(t, 0) = 0, ∀t ∈ R g(t, x) = 0, ∀t ∈ R, ∀x ∈ ,Rn
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20

21

22

Proof (i) Assume that (i) holds. It remains to show that ( 14 ) of Theorem 4  holds. Note that  is a Metzler matrix. Since  is Hurwitz

stable, there exists  so that , by Theorem 2 . By continuity, this implies that

for some sufficiently small . Therefore,

Thus, ( 14 ) holds.

(ii) Suppose that (ii) holds. We show that ( 14 ) of Theorem ( 4 ) holds. Let  with
. Fix  and , and consider the function

with  Clearly,  is continuous in  on  and 

and

Therefore,  is strictly increasing on . Therefore, there is a unique positive number, say , such that

For each  let us define

Obviously, . We show that . Suppose this is not true. Let . Then there exists  such that  and

Then,

which is a contradiction. Therefore, , for all . Let . It follows that

for all  and for all  Hence, ( 14 ) holds. This completes the proof. 

Remark	3 It follows from the condition (i) of Corollary 1  that we can choose  such that ( 15 ) is satisfied.

The following follows from Theorem 4  and Corollary 1 .

Theorem	5 Assume that ,  hold and  are bounded on . Then equation ( 1 ) is UPES if one of the following
conditions is satisfied:

(i) There exist  and  such that

(ii) There exists a Hurwitz stable matrix  such that

(iii) There exist  such that

B0 B0

p ∈ , p ≫ 0Rn
+ p ≪ 0B0

p ≪ −βp,B0

β > 0

(A(t) + B(t))p ≤ p − βp, ∀t ∈ R.B0 ≪
(20)

p := ( , , . . . , , q := ( , , . . . , ∈p1 p2 pn)T q1 q2 qn)T Rn

, > 0, ∀i ∈pi qi n–– i ∈ n–– t ∈ R, x ∈ Rn

(β) = β + ( (t) + (t)) ,Fi pi ∑
j=1

n

aij bij pj

β ∈ .R+ (β)Fi β R+ (β) = +∞,limβ→+∞ Fi

(0) = ( (t) + (t)) − < 0,Fi ∑
j=1

n

aij bij pj ≤
(19)

qi

= > 0.
dFi

dβ
pi

(β)Fi R+ (t)βi

(t) + ( (t) + (t)) = 0.βi pi ∑
j=1

n

aij bij pj

i ∈ ,n––

:= { (t) > 0 : F ( (t)) = 0}.β∗
i inf

t∈R
βi βi

≥ 0β∗
i > 0β∗

i 0 < <ϵi
qi
pi

∈ Rt∗ ( ) <βi t
∗ ϵi

( ) + ( ( ) + ( )) = 0.βi t
∗ pi ∑

j=1

n

aij t∗ bij t∗ pj

0 =

<

( ) + ( ( ) + ( )) < + ( ( ) + ( ))βi t
∗ pi ∑

j=1

n

aij t∗ bij t∗ pj ϵipi ∑
j=1

n

aij t∗ bij t∗ pj

+ ( ( ) + ( )) − = 0,qi ∑
j=1

n

aij t∗ bij t∗ pj <
(19)

qi qi

> 0β∗
i i ∈ n–– 0 < β < { }mini∈n

––
β∗
i

β + ( (t) + (t)) < 0,pi ∑
j=1

n

aij bij pj

t ∈ R, i ∈ .n–– □

v = −( wB0)−1

( )H3 ( )H5 f(t, 0), ω(t, 0) R

β > 0 p := ( , , . . . , ∈ , p ≫ 0p1 p2 pn)T Rn
+

(A(t) + C(t))p ≪ −βp, ∀t ∈ R.

∈B0 Rn×n

A(t) + C(t) ≤ , ∀t ∈ R.B0

p, q ∈ , p, q ≫ 0Rn
+
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23

24

25

In addition, if  then equation ( 1 ) is UES.

Proof Since , we have

Then  holds with . Thus, the conclusion of Theorem 5  is straightforward from Theorem 4  and Corollary 1 .

Example	1 Consider the differential equation:

Clearly, ( 24 ) is of the form ( 1 ) with  Furthermore, it is easy to see that f(t, x) is

local Lipschitz continuous with respect to x on each compact subset of  and

Let . It is clear that

Therefore, ( 24 ) is PES, by Theorem 4 . For a visual simulation, if we choose  then the trajectory of system ( 24 ) is given in

Fig. 1 . AQ3

Fig. 1

XXX

In the particular case, if equation ( 1 ) is not perturbed (i.e., ), then the following follows directly from Theorem 5 .

Corollary	2 Suppose that ,  holds and . Then equation ( 1 ) is UES if one of the following conditions
is satisfied:

(i) There exist  and  such that

(A(t) + C(t))p ≤ −q, ∀t ∈ R.

f(t, 0) + ω(t, 0) = 0, ∀t ∈ R,

( )H5

|ω(t, x)| ≤ C(t)|x| + |ω(t, 0)|, ∀t ∈ R, ∀x ∈ .Rn

( )H4 g(t, x) := |ω(t, 0)|

(t) := (−4 − 2 t)x(t) + 8 sin( + 0.001x(t)).ẋ cos2 t2

f(t, x) := (−4 − 2 t)x + 8 sin( + 0.001x), t ∈ R.cos2 t2

R × R

(t, x) = −4 − 2 t + 0.008 cos(0.001x + ).
∂f

∂x
cos2 t2

= 3.991, p = 1β1

( (t, x))p∂f

∂x
= −4 − 2 t + 0.008 cos(0.001x + )cos2 t2

≤ −3.992 < −3.991 = − p, ∀t ∈ R, ∀x ∈ R.β1

x(0) = 10,

ω(t, x) ≡ 0

ω(t, x) ≡ 0 ( )H3 f(t; 0) = 0, ∀t ∈ R

β > 0 p := ( , , . . . , ∈ , p ≫ 0p1 p2 pn)T Rn
+

A(t)p ≪ −βp, ∀t ∈ R.
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26

27

28

29

30

31

(ii) There exists a Hurwitz stable matrix  such that

(iii) There exist  such that

Remark	4 The result in Corollary 2  includes the well-known result in [

18 , Theorem 2.2]. Furthermore, in this paper, we have shown that equation ( 2 ) is globally exponentially stable for all  while

Theorem 2.2 in [ 18 ] proved that equation ( 2 ) is locally exponentially stable with .

Remark	5 Our approach may be more easy to check UPES and UES in some cases than other results.

(i) Song–Lib–Wang [ 22 , Example 4.1, page 1309] show that

is ES provided . It is easy to check that ( 28 ) is UES provided , by Corollary 2 .

(ii) Errebii–Ellouze–Hammami [ 7 , Example 3.1, page 170] show that the scalar differential equation with delay

is PES. This is immediate from Theorem 4 .

(iii) A similar result has been found in [ 1 , Example 1, page 60]. More precisely, the differential equation

is UPES. Once again, it is easy to see that this assertion follows from Theorem 4  with 

and

3.  Applications	to	Neural	Networks
Consider the cellular neural network described by

where n corresponds to the number of units in the neural network,  corresponds to the state vector of the ith unit at the time t, 
represents the rate at which the ith unit will reset its potential to the resting state in isolation when disconnected from the network and
external inputs,  denotes the output of the jth unit at the time  denotes the strength of the jth unit on the ith unit at time t
and  denotes the external bias on the ith unit at the time t.

Let  be continuous functions. Assume that  is bounded.

Suppose that

 For each , there exists  so that 

 For each , there exists  so that 

Define  for every . Let  be the solution of ( 31 ).

Corollary	3 Assume that  holds and  is bounded. Then equation ( 31 ) is UPES if one of the following conditions holds:

(i) There exist a scalar  and positive numbers  such that

∈B0 Rn×n

A(t) ≤ , ∀t ∈ R.B0

p, q ∈ , p, q ≫ 0Rn
+

A(t)p ≤ −q, ∀t ∈ R.

∈ ,x0 Rn

∈ = {x :∈ , ∥x∥ < r}x0 Br Rn

( ) =
(t)ẋ1

(t)ẋ2
( )sin ln(t + 1) + cos ln(t + 1) − 2

k

k

sin ln(t + 1) + cos ln(t + 1) − 2

× ( )(t)x1

(t)x2

k < 1
2

k < 2 − 2
–√

(t) = −x(t) + , t ≥ 0ẋ
1

1 + (t)x2
e−t

( ) =
(t)ẋ1

(t)ẋ2

⎛
⎝

− (t) + + (t)x1
(t)x1

1+ (t)x2
1

e− (t)x2
1 1

1+t2 x2

− (t) +x2 e− (t)x2

⎞
⎠

x = ( , ∈x1 x2)T R2

f(t, x) := ( ) ,
− +x1

1

1+t2 x2

− +x2 e−x2

ω(t, x) = ( ) .
x1

1+x2
1

e−x2
1

0

(t) = − (t) (t) + (t) ( (t)) + (t), i ∈ ,ẋi ci xi ∑
j=1

n

aij gj xj Ii n––

(t)xi (t)ci

( (t))gj xj t, (t)aij

(t)Ii

(⋅), (⋅), (⋅), (⋅)gi ci Ii aij (⋅)aij

( )A1 j ∈ n
––

≥ 0Lj | ( ) − ( )| ≤ | − |,  ∀ , ∈ R.gj uj gj vj Lj uj vj uj vj

( )A2 j ∈ n–– ≥ 0Mj 0 ≤ ( ) ≤ ,  ∀ ∈ R.ġj uj Lj uj

[h(t) = max{h(t), 0},]+ t ∈ R x(t) := x(t, )x0

( )A1 (⋅)Ii

β > 0 , , … ,p1 p2 pn
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(ii) There exists a Hurwitz stable matrix  such that for each 

(iii) There exist positive numbers  such that

Proof Let

with . It is not hard to see that the equation ( 31 ) is of the form ( 1 ).

Then, the conclusions of Corollary 3  are straightforward from Theorem 5 .

Corollary	4 Assume that  holds and  is bounded. Then equation ( 31 ) is UPES if one of the following conditions holds:

(i) There exist a scalar  and positive numbers  such that

(ii) There exists a Hurwitz stable matrix  such that for each 

(iii) There exist positive numbers  such that

Proof Let

with . Clearly, the conclusions of Corollary 4  are straightforward

from Theorem 5 .

Corollary	5 Assume that  holds and  is bounded. Then equation ( 31 ) is UPES if one of the following conditions holds:

(i) There exists a scalar  such that

or

(ii) There exists a scalar  such that

Proof Let

with . It is easy to see that the conclusions of Corollary 5  are

straightforward from Theorem 3 .

− (t) + | (t)| < −β , ∀t ∈ R, ∀i ∈ .ci pi ∑
j=1

n

aij Ljpj pi n––

B := ( ) ∈bij Rn×n i, j ∈ , i ≠ j,n––

− (t) + | (t)| ≤ , ∀t ∈ R; | (t)| ≤ , ∀t ∈ R.ci aii Li bii aij Lj bij

, , … , , , , … ,p1 p2 pn q1 q2 qn

− (t) + | (t)| ≤ − , ∀t ∈ R, ∀i ∈ .ci pi ∑
j=1

n

aij Ljpj qi n––

f(t, x) :=

w(t, x) :=

( (t, x), (t, x), . . . , (t, x) ,f1 f2 fn )T

( (t, x), (t, x), . . . , (t, x)w1 w2 wn )T

(t, x) := − (t) (t), (t, x) := (t) ( (t)) + (t), i ∈fi ci xi wi ∑n
j=1 aij gj xj Ii n––

( )A2 (⋅)Ii

β > 0 , , … ,p1 p2 pn

− (t) + [ (t) + | (t)| < −β , ∀t ∈ R, ∀i ∈ .ci pi aii ]+Lipi ∑
j=1,j≠i

n

aij Ljpj pi n––

B := ( ) ∈bij Rn×n i, j ∈ , i ≠ j,n
––

− (t) + [ (t) ≤ , ∀t ∈ R; | (t)| ≤ , ∀t ∈ R, j ≠ i.ci aii ]+Li bii aij Lj bij

, , … , , , , … ,p1 p2 pn q1 q2 qn

− (t) + [ (t) + | (t)| ≤ − , ∀t ∈ R, ∀i ∈ .ci pi aii ]+Lipi ∑
j=1,j≠i

n

aij Ljpj qi n––

f(t, x) :=

w(t, x) :=

( (t, x), (t, x), . . . , (t, x) ,f1 f2 fn )T

( (t, x), (t, x), . . . , (t, x)w1 w2 wn )T

(t, x) := − (t) (t) + (t) ( (t)) + (t), (t, x) := 0, i ∈fi ci xi ∑n
j=1 aij gj xj Ii wi n––

( )A2 (⋅)Ii

> 0β1

− (t) + [ (t) + | (t)| < − , ∀t ∈ R, ∀j ∈ ,cj ajj ]+Lj ∑
i=1,i≠j

n

aij Li β1 n––

− (t) + [ (t) + | (t)| < − , ∀t ∈ R, ∀i ∈ .ci aii ∑
j=1,j≠i

n

aij ]+Li β1 n
––

> 0β2

− (t) + [ (t) + (| (t)| + | (t)| ) < − , ∀t ∈ R, ∀j ∈ .cj ajj ]+Lj
1

2
∑

i=1,i≠j

n

aij Li aji Lj β2 n––

f(t, x) :=

w(t, x) :=

( (t, x), (t, x), . . . , (t, x) ,f1 f2 fn )T

( (t, x), (t, x), . . . , (t, x)w1 w2 wn )T

(t, x) := − (t) (t) + (t) ( (t)) + (t), (t, x) := 0, i ∈fi ci xi ∑n
j=1 aij gj xj Ii wi n––
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Assume that  is an equilibrium of ( 31 ). It is obvious that  satisfies

where .

The following is immediate from Corollary 2  and Theorem 3 .

Corollary	6 The equilibrium  of ( 31 ) is ES if one of the following conditions holds:

(i)  and one of conditions (i), (ii), (iii) of Corollary 3  are satisfied.

(ii)  and either one of conditions (i), (ii), (iii) of Corollary ( 4 ) or one of the conditions (i), (ii) of Corollary ( 5 ) are satisfied.

Remark	6 Corollary 6  includes some existing criteria for the exponential stability of the cellular neural network in the literature as

special cases (see, e.g., [ 5, 8, 19, 20, 24 ]).
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