2307.05401v1 [math.AP] 11 Jul 2023

arXiv

ON THE HANG-YANG CONJECTURE FOR GJMS EQUATIONS ON S”
ALI HYDER AND QUOC ANH NGO

Abstract. This work concerns a Liouville type result for positive, smooth solution v to
the following higher-order equation

n—2m 2m

2 n

on $" with m > 2,3 <n<2m, 0<a < (2m+n)/(2m—n), and ¢ > 0. Here P2" is
the GJMS operator of order 2m on $" and Q3" = (2/(n — 2m))P2"(1) is constant. We
show that if € > 0 is small and 0 < @ < (2m + n)/(2m — n), then any positive, smooth
solution v to the above equation must be constant. The same result remains valid if
e=0and 0 <a < (2m+n)/(2m—n). In the special case n =3, m =2, and a =7,
such Liouville type result was recently conjectured by F. Hang and P. Yang (Int. Math.
Res. Not. IMRN, 2020). As a by-product, we obtain the sharp (subcritical and critical)
Sobolev inequalities

2
1-a a-T 2m > T(n/2+m) ., Lf}
(Ln v d}lsn) J;;n VPn (V)d}lsn - F(n/Z—m)ls |Dé

for the GJMS operator P%m on $" under the conditions n >3, n=2m—-1, and a €
(0,1)U(1,2n + 1]. A log-Sobolev type inequality, as the limiting case a = 1, is also

P2 (v) = (ev+v™%)

presented.

1. Introduction

Let n > 3 be an odd integer, 2m > n, and 0 < a < (n+ 2m)/(2m —n). In this work,
we consider the following equation

n—2m
P2"(v) = — 2m(ey +97%)  in " (L),
Here P%m is the well-known GJMS operator on $" equipped with the standard metric

gsn, which is given as follows

P2 .= l_[(—AgSn i+ g)(i— g + 1)),

1=

—_

see [GJMS92], and

om._ 2 2m(1) = 2 T(n/2+m)

" n=-2m " n—2mI(n/2—m)

is a non-zero constant representing the so-called Q-curvature of ($", ggn), namely
P = (Agg)"+ ) erl~Agg)

1<k<m-1

n—2m _,.
2 n

for suitable constants ¢; with 1 <k < m— 1. A special case of the operator P2", which
has often been studied over the last two decades, is the well-known Paneitz operator,
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which is of fourth order. This example of a higher-order conformal operator gains
interest because of its role in conformal geometry; see [CGY02, HY16]. On ($2, gs3),
the Paneitz operator is given by

1 15
ZAg53 16’
and therefore Qg = -2I'(7/2)/T(-1/2) = 15/8. Using the above recursive formula for
P2" we can compute higher dimensional cases, for example
27 315
3 2
= Agen — 4 Ags'l T 16 8" + 64
with Q§ = -105/32 and

P4_A2

on ($°,¢s3)

13 93 945
3 2

Agsﬂ 4 Ags" 16 8" 64
with Qg =945/32. One should pay attention on the sign difference of Qg and Qg

on ($°, gg5)

Our motivation of working on the equation (1.1), traces back to a recent conjecture
by F. Hang and P. Yang in [HY20] that we are going to describe now. This conjecture
concerns the following sharp critical Sobolev inequality on 33

_ 15
167 By (B0 99~ 519 9P - 120 sy > -8 12

for any ¢ € H?($?) with ¢ > 0, which was already proved in WZ04] by symmetrization
argument and in [HHYO04] by variational argument. Apparently, the inequality (1.2) can
be rewritten as follows

_ 15
ll¢ 1”1%6(53) J;S P3(P)dpss > _R|S3l4/3 (1.3)

for any 0 < ¢ € H%($?), because the integral in (1.2) is nothing but JS3 qﬁP%(q'))dySs. In
(1.3) and what follows, |$"| denotes the surface area of $". Besides, by Morrey’s theorem,
functions in H?($3) are continuous and therefore the condition ¢ > 0 is understood in
pointwise sense. By direct calculation, one can easily verify that equality in (1.3) occurs
if ¢ is any positive constant. This tells us that the Paneitz operator Pgl on the standard
sphere $ is no longer positive; see [XY02] for the assumption on the positivity of the
Paneitz operator on closed 3-manifolds.

In an effort to provide a new proof for (1.3) with the sharp constant, the authors in
[HY20] propose a new way to prove the above Sobolev inequality by considering the
following minimizing problem

int W07 s [ oPi@nss e [ o2ans] 14

0<peH2(S3)

for small € > 0. Thanks to the small perturbation é||¢|| it is standard and straight-

LZ g3 )’
forward to verify that the extremal problem (1.4) has a minimizer. Such a minimizer,
denoted by v, eventually solves

4 . -7
P3(ve) + ev, = —v,
on $3, up to a constant. Here is the key observation: if the above equation only admits

constant solution for small € > 0, namely v, = const., then one immediately has
167 g [ 0P @M+ [ 0Pdpss] 21890] [ P +el8

for any 0 < ¢ € H?(S3). Having this and as Pgl(l) = —(1/2)Q§L =-15/16, letting € \, 0
yields (1.3). The novelty of this new approach is that it automatically implies the sharp
form of (1.3) with the precise sharp constant.
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The above observation leads Hang and Yang to propose the following conjecture.

The Hang-Yang conjecture ([HYZ20, page 3299]). Let € > 0 be a small number. If v is
a positive smooth solution to

Pg(v) +ev=—v"’
on S, then v must be a constant function.

In a recent work Zhang [Zha21] provides an affirmative answer to the above conjec-
ture. The idea behind Zhang’s proof is first to transfer the differential equation on 33 to
some differential equation on R3 and then to classify solutions to that equation on R3.
More precisely, let 715 : $3 — R3 be the stereographic projection from the north pole
N; see subsection 2.1 below. The pullback (7y!)* enjoys

2 \2,,
T|X|2) dx

and for any smooth solution v on $3 there holds

2 \-72 2 \-12
4 -1 2 -1
P3(v)°nN_(1 | |2) A((l | |2) voT(N).

(') (8s3) =

(Here and in the sequel, A is the usual Laplacian on Euclidean spaces.) Setting

2
u(x) := (1 +2|x| )1/2(1/ o T(I_\]l)(x), (1.5)

we see that if v solves Pg(v) +ev=—v"7in S3, then u solves

4
A%u(x) + s(Tzlxlz) u(x)=-u""(x) inR3.
Via a dedicated argument based on the method of moving planes and techniques from
potential theory, which are rather involved, it is proved that u is radially symmetric.
Finally, with the help of a Kazdan-Warner type identity, the function v must be constant.

Inspired by the work of Zhang described above, we are interested in Hang-Yang’s
conjecture in higher dimensional cases, namely we want to seek for a suitable Liouville
type result for positive, smooth solution to equations involving GJMS operators. This
leads us to investigate solutions to (1.1).. Very similar to situation studied by Hang and
Yang, our motivation to study the equation (1.1); comes from the higher-order sharp
critical Sobolev inequality; see Theorem 1.2 below. Using the perturbation approach
introduced in [HY20], we are able to establish a Liouville type result for solutions to

(L1),.

Toward a suitable Liouville type result, let us first describe some preliminary results
on (L1);. Our first observation concerns the admissible range for €. As the perturbation
approach is being used, we require the condition ¢ > 0; see the proof of Lemma 5.1
Now, by integrating both sides of (1.1), over $" and as 2m —n > 0 and Q2" # 0 we

conclude that
(1—€)J ’Vd}/lsn ZJ ’Vﬁad’/lsn.
n Sn

This immediately tells us that € < 1. Thus, the admissible range for ¢ is 0 < ¢ < 1.
Having this, let us now state the main result of this paper.

Theorem 1.1. Let n > 3 be odd and m > n/2. Then there exists €, € (0,1) such that
under one of the following conditions

(1) either e €(0,¢,) and 0 < a < (n+2m)/(2m — n)
(2) ore=0and 0 <a < (n+2m)/(2m—n)

any positive, smooth solution to (1.1), must be constant.
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We have the following remarks:

e The above result again confirms the Hang-Yang conjecture for the Paneitz oper-
ator on $3, and generalizes the result of Zhang in the critical setting in higher
dimensional cases.

e Theorem 1.1 can be compared with the Liouville type results obtained by Bidaut-
Véron and Véron in [BVVI], Theorem 6.1] for the Emden equation, see also the
work of Gidas and Spruck in [GS81]. Note that the condition a < (n+2m)/(2m—
n) is sharp for € = 0 as the result does not hold if @ = (1 + 2m)/(2m — n). This
is because in this limiting case the equation (1.1)y is conformally invariant; see
section 3.

e The threshold &, is given in Lemma 4.3.

e Although for any 0 < ¢ < 1, equation (L.1), always admits the trivial solution
v, = (1 —¢)~@*) byt it is not clear whether or not the above Liouville type
result still holds for ¢ € [¢,,1). This seems to be an interesting open question.

To prove Theorem 1.1, we adopt the strategy used by Zhang. Such strategy can be
formulated as the following two main steps: first to transfer (1.1), in $” to the equation
(1.8), and the corresponding integral equation in R"”, then to study symmetry properties
of solutions to these equations for small ¢ > 0. However, to be able to handle higher-
order cases, our approach is significantly different from Zhang. One major reason is
that less results is known for the higher-order cases compared to the case m = 2. For
example, we do not know if the preliminary results of Hang and Yang mentioned in
[Zha21, section 2| are available for m > 3. Because of this difficulty, instead of the
differential equation (1.8)., we mainly work on the corresponding integral equation on
R", and directly prove compactness results and symmetry properties of solutions. As
pays off, our analysis is much simpler, and could handle higher-order cases efficiently.

As the operator P2" is conformally covariant, for any smooth function ¢ on $" we
have the following identity (7t denotes the stereographic projection from $” to R" with
respect to either the north or the south pole)

2 _n+2m 2 n=2m
p2m ol = A m( 7 7_[—1);
w(@)e (1+|x|2) (=4) (1+|x|2) L
see e.g. [Han07, Section 2]. Then, similar to (1.5), by setting
2 n-2m 1
1u(x) ::(1+|x|2) (vor( ) (1.6)
and
Feu(x):= S(Tlxlz) u(x)+ ( I: |x|2) u(x) (1.7)
we see that u satisfies
-2
(~A)y"y =L - 2 Q2E, . iR (1.8),

In view of (1.6), we know that the function u on R" has exact growth |x|?"~" at infinity.
This additional information allows us to transfer the differential equation (1.8), into the
following integral equation

u(x) = VZm,rzL |x - ;U|2m_”F£,u (y)dy on R"

for some constant y;,,, > 0; see Theorem 2.2 below. Notice that in general there
might be more solutions to (1.8), than the above integral equation, see e.g. [HW19] and
[DN22].
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Let us emphasize that transferring to an equivalent integral equation on R" also ap-
pears in the work of Zhang, but the proof provided in [Zha21] does not seem to work
in our case. Similar integral representation in the fractional setting also appears in
[FKT22]. In our work, by exploiting some nice structures on $” as well as some in-
triguing properties of the stereographic projection, we offer a completely new argument,
which is surprisingly simpler; see section 2.

Having the above integral equation in hand, we use a variant of the method of mov-
ing planes in the integral form to show that any positive smooth solution u to the
above integral equation with exact growth |x|>”~" at infinity must be radially symmet-
ric. The symmetry of solutions to the integral equation helps us to conclude that the
corresponding function v, appeared as in (1.6), must be constant. The strategy we just
describe seems to be very simple and straightforward at the first glance, but there are
two major difficulties that we want to highlight. First, it is worth emphasizing that the
method of moving planes and its variants work well in the case of equations with pos-
itive exponents; unfortunately, our equations, both differential and integral forms, have
a negative exponent. Second, by analyzing the form of F,, in (1.7), one immediately
notices that because of our special choice of perturbation, there are two powers of u,
whose exponents have opposite sign. Unless ¢ = 0, otherwise to run the method of
moving planes, one needs to establish certain compactness result for solutions to (1.1),
for suitable small ¢, which costs us some energy.

Concerning classification of solutions to (1.8), with € = 0 and with the RHS depending
only on u, that is equation of the form (—A)"u = cu™ we refer to [HW19, Ngol8, Li04]
and the references therein.

Finally, to illustrate our finding on a Liouville type result for solutions to (L.1)., we
revisit the sharp critical Sobolev inequality for P2" on $" proved in [Han07]. In fact,
we offer both critical and subcritical inequalities at once.

Theorem 1.2. Let n > 3 be an odd integer and m = (n+ 1)/2. Then, for any ¢ €
H™(S™") with ¢ > 0 and any a € (0,1) U (1,2n + 1], we have the following sharp
Sobolev inequality

= I(n/2+m) 1
1-a a- 2m T g gt
( S”(j) dygn) Lnngn (p)dugn > T(n/2 )|S [T, 19)

Moreover, the equality occurs if ¢ is any positive constant.

Let us have some comments on Theorem 1.1 above.
Remark 1.3.

e Although the condition = 2m—1 is not required in Theorem 1.1, but in our proof
of (1.9) we heavily use it as in this case we have the advantage of Q-curvature
Q%m being positive. In general, the inequality (1.9) is not true for n < 2m — 3, see
e.g. [FKT22].

e Apparently, by chosing o = (n + 2m)/(2m —n) = 2n + 1, our inequality (L.9)
includes the following critical Sobolev inequality

( Ty )2'"”" P2 () > F(n/2+m)|5nlm 110
Sncp ll/lSn Sncp n (Z) IMSH = I"(n/Z_m) 4 ( : )

which was already proved in [Han07], see also [HY04] and [FKT22].

e The case @ =1 is excluded in Theorem 1.2 due to the presence of the term
1/(a —1). For @ =1, by a limiting argument one obtains the inequality (1.11)
below.
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e Our last comment concerns the order of the inequality (1.9) as @ varies. It turns
out that the subcritical case 0 < &« < 2n+1 can be obtained from the critical case
a =2n+ 1, see Section 5 for more details.

Note that our inequality (1.9) can be rewritten as

(jE;n (i)lvtdﬂf‘l’y,)ﬁ jE;n (PP,z,m((p)dySn > %’

where fS" = |81t IS" denotes the average. Using this new form one can easily compute
the limit as a ™\, 1 to obtain an inequality in the limiting case as shown in the following
corollary.

Corollary 1.4. Let n > 3 be an odd integer and m = (n+1)/2. Then, for any ¢ € H™(S")
with ¢ > 0, we have the following sharp Sobolev inequality

I'(n/2
exp(— 2jE;n IOg(l)dﬂSn)jﬁ;n PGP (p)d g > % (111)

Moreover, the equality occurs if ¢ is any positive constant.

It turns out that without using any limit process, one can still obtain (1.11) directly
from (1.9); see Proposition 5.2. As such, we omit the proof of (1.11). Without using
averages, (1.11) can be rewritten as follows

2 om I'(n/2+m) _,
exp - g [ o tdns) [ 9P > 2T

To the best of our knowledge, the above inequality (or the inequality (1.11)) seems to be
new.

Our final comment concerns a possible generalization to the fractional setting. In-
deed, it seems that part of our argument can be quickly extended to the case of fractional
operators of order 2s > n instead of GJMS operators of integer order 2m > n. However,
to maintain our work in a reasonable length, we leave this future research.

Before closing this section, let us mention the organization of the paper.
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2. Some auxiliary results

2.1. Basics of the stereographic projection. As routine, we denote by 7y and 7tg the
stereographic projections from the north pole N and from the south pole S of the sphere
$" respectively. If we denote by (x,x,,;) a general point in R”*! = R” x R, then we
have the following expressions for 1ty

_x n7Wx)=(——%£—-Eﬂi:l)
1-x, N Ix|2+17 |x|2+1

Likewise, we also have similar expressions for 7rg. But these expressions for 7tg can be
derived quickly from those for 1)y by changing the sign of the last coordinate. In this
sense, we arrive at

TN (%, Xpg1) =

x _ 2x Ix|2-1
e
1+x,41 x|2+1" |x|?+1

The following observation plays some role in our analysis.

705 (%, Xp41) =

Lemma 2.1. There holds

nj\,l(x) = ngl(ﬁ), T (x) = Ty (@)

in R\ {0).

Proof. These identities follows from the above expressions for 7ty and 7tg.

Xn+1

N

Figure 1. Relation between T[I_\Il and Tg.

We leave the details for interested readers; also see Figure 1 above. O

2.2. From differential equations to integral equations. Let v be a positive, smooth

solution to (L1).. Recall from (1.8), that the projected function u, defined by (1.6), solves
-2
(~A)yy =" : " Q¥E,, inR".

The main result of this subsection is to show that u actually solves the corresponding

integral equation (2.1). To achieve this goal, we need certain preparation including the
introduction of a uniform constant that we are going to describe now.

Since 7 is an odd integer, for some dimensional constant c,,,, # 0 we have

(=A)"(comulxP"~") = S0,
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where 9 is the Dirac measure at the origin. For convenience, we also set
n—2m _,.
V2mn = Comn ) no-

For simplicity, throughout the paper, we often denote by C a generic constant whose
value could vary from estimate to estimate. We now state our main result in this sub-
section.

Theorem 2.2. We have
7/2m,n >0
and

u(x) =72mn J;{n |x - y|2m_nFe,u (?)dy (2'1)

where F ,, is given by (1.7).

Notice that the integral in (2.1) is well-defined everywhere in R”. Indeed, as v is
positive everywhere on $", we have from (1.6) that u(x) = |x|*"~" for |x| > 1, and hence
C
1+[x)*™™F, ,(x) < ———.
( | | ) {,M( ) 1 + |x|2n
In order to prove the above theorem we define the following functions associated with
the projections 7y and 7tg:

(2.2)

1+ [x? | 2

> (vomy)(x)

un (x) ::(

and

2 2m-n
us) 1= (LHH0)

in R". In view of the integral equation (2.1), we denote

(vorg')(x)

|2m—nF

iIN(x) =V2mn L“ |x —-Y &UN (?)d}’

and
Ts(x) 1= yzm,nfk ey P, (0)dy

in R". Our aim is to show that uy = 1 and that y,,, ,, > 0. This will be done through
several steps. Our first observation is as follows.

Lemma 2.3. We have

_ X _
P run(S5) () =[x

Ug(Xx) =|x
s(x) =1 RE

()

in R"\ {0}.

Proof. This is elementary. Indeed, let us compute ug. Clearly, with the help of Lemma
2.1, we have

2
1 | |2 2m-n _

= ()Tl ()

:|x|2m_n(1+|x§|x|2|2)2’”2"’v(n_1( X ))

_ X
— |x|2m n”N(_):
||
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which gives the desired formula for ug. The identity for u)y can be verified similarly. O

Our next observation is similar to that in Lemma 2.3.

Lemma 2.4. We have

—_ 2m—1~ X — d—~ X
s (x) = x> "uN(W), iy (x) =[x "”s(W)

in R\ {0).

Proof. This is also elementary but rather involved. Indeed, let us verify the first identity.
With a change of variable v = z/|z|* and by Lemma 2.3 we easily get

. X B X 2m-n
|X|2 1 n”N(W)=72m,n|x|2m nLn|W—y| Pg,uN(}’)dZV

2m—
:7/2nz,n|x| " nf
Ril

=Yomn J\ |x - Z|2minP€,u5 (Z)dZ
Rn

= ug(x),

where in the second last equality we have used the following facts:

x z ‘27”*” ( z ) dz
X2 |2)? SN 2]2 7 2]

X z |x — z| z )
———|=— F,., (—)=z|"""F, ,.(2).
x| |z12]  |xllz] SN g2 ol
The second identity can be verified similarly. O

Now we are able to examine up — Uy and ug — Ug.

Lemma 2.5. The following functions
PN = MN—Z[N, PS = Ms—ﬁs

are polynomials in R" of degree at most 2m — n.

Proof. Before proving, we see that both Py and Ps are well-defined everywhere in R”.
Now it follows from (2.2) that the function #y satisfies

N (x) < C(1 +[x*™™) for x e R".
This together with the growth of uy implies that |Py(x)| < C(1 + |x|*""). Since
AmPN = AmuN - Ama}q = 0,

we conclude that Py is a polynomial in R" of degree at most 2m — n; see [Mar09,
Theorem 5]. A similar argument applies to Ps yielding the same conclusion for Ps. [

Finally, we are in a position to prove Theorem 2.2, which simply follows from the
next two lemmas.

Lemma 2.6. There hold un =ty and ug = g everywhere.

Proof. As

|2m7n

un () Tslx) = ()

UglX) =1|X
s(x) =] RE BE

we obtain

_ x
Ps(x) = |x|*" 71PN(w),



10 A. HYDER AND Q.A. NGO

which is a polynomial (of degree at most 2m — n). Surely, as n is odd, this is impossible
because |x|2" "
and ug = tg. This completes the proof. (I

cannot be a polynomial unless Py = Ps = 0, which implies that uy = uy

Lemma 2.7. There hold 5, , > 0.

Proof. The claim y5,, , > 0 follows trivially by seeing its definition

_ 2m
7/2m,n - CZm,nQn .

Note that Q2™ > 0 and that Comn > 0 because n < 2m and n is odd. However, the claim
can also be seen from the fact that v = 1 is a solution to (1.1)g. More precisely, making
use of v =1 and (1.6) one has the following identity

( 2 )%_ J - |2mfn( 2 )%d
1+|x|2 =7Y2m,n R v 1+|})|2 y

everywhere in R". O

We conclude this subsection by noting that our approach to prove Theorem 2.2 can
be used for the case of equations with positive exponent. For example, without using
any super polyharmonic property, as in [CLS22], our new approach offers a very simple
and straightforward proof to convert differential equations on $” to the corresponding
integral equations on R”, detail will appear elsewhere.

2.3. Pohozaev-type identity. Our last auxiliary result is a Pohozaev-type identity,
which shall be used in the proof of a compactness type result; see section 3 below.
For simplicity, we let

2m—-n 2m+n

Cai=a@——F— = <0. (2.3)

For future usage, let us state our Pohozaev-type identity in a more general framework.

Lemma 2.8. Let Q € cl (R") be such that
[Q(x)| < (1+ |x|)_”+(0‘—1)(2m—n)_5’

Jfor some 6 > 0. Let u be a positive, regular solution to

u) = [ ey )y, 24

where u satisfies
uz (1+x)> " ifa>1
and that
u<(1+x)>" ifo<a<l.
Then, for o = 1, there holds

J (x-VQ)u'"%dx =, Qul %dx,
n Rn

provided (x-VQ)u'~® € L'(R").

Proof. The proof given below is more or less standard. As x = (1/2)(x+y+x—y) and
Villx =y ") = (2m—n)lx -y "2 (x - p),
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by differentiating under the integral sign in (2.4), we obtain

2m-—n 2m—n |X|2—|}’|2 —a
7 U+ L e pprz-2m QW)Y

Multiplying the above identity by Q(x)u~%(x), and then integrating the resultant on By
we arrive at

1
—— | Q(x-Vul")dx=
l-«a Bg 2 Bg

2m—n —a |x|? - |}7|2 —a
L BT e TR O

Integration by parts leads to

x-Vu(x) =

2m—n

Qul—a

Q(x-Vul_“)dxz—J. (x-VQ)u'"%dx—n Qu'™%dx

Br Br B

+R Qu'™%dx.

Hence,

R o 2m n |x|? - |}2|2 B B
1-a Q : 1 LR J;{n |X y|n+2 2m Q(}})u (}’)Q(X)M (X)dydx

L-a Jsg,

1 2 2
= [( m+n) a(2m =) Qul_“dx+f (x-VQ)u'~%dx|.
l-a 2 Bg Br
(2.5)
Thanks to the decay assumption on Q and the growth of u, we easily get
lim (R Qul_“do) =

R—

and clearly

2 2
jn J\ n |x|X|y|THE)| 2m Q(y)u_a(y)Q(x)u_a(X)d}}dx =0

due to the antisymmetry of the integrand. Furthermore, under the assumptions on Q
and on u, there holds Qu'~® € L'(R"). Hence, by sending R " +o0, we conclude that
the LHS of (2.5) vanishes, giving the desired identity. This completes the proof. [l

Let us now discuss how to use our Pohozaev-type identity in the current setting.
Recall that the solution v to (L1), is positive and smooth on $". Thanks to (1.6) we
deduce that u enjoys the upper and lower growths as in Lemma 2.8. Hence, we have a
Pohozaev-type identity for u whenever a # 1. We shall use this identity in the proof of
Lemma 3.2 below.

3. Compactness results

This section is devoted to a compactness type result for solutions to (1.1),, which is of
interest itself; see Theorem 3.1 below. Heuristically, one should study the compactness
result for fixed € and . However, to derive useful estimates for our analysis, one needs
certain compactness result which is independent of ¢; see the proof of Lemmas 4.2 and
4.3 below.

Theorem 3.1. Let ¢* € (0,1) and o € (0,(2m + n)/(2m — n)] be arbitrary but fixed.
Assume that vy = v, is a sequence of positive regular solutions to (1.1),, for some &) €
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(0,&%). Then there exists C = C(&*) > 0 such that
% < <C inS"
Jor all k. The same conclusion holds true for €, € [0,¢*) if a € (0,(2m + n)/(2m — n)).

It is worth noting that the above compactness fails for solutions to (1.1)y in the case
a = (n+2m)/(2m —n) due to the conformally invariant property of the underlying
equation. More specifically, fixing any solution v to
_ n—2m n+2m

Pl (v) = = — Qv in §"

and let
_1
vy = (vod)|det(de)| 2,
where ¢ is any conformal transformation on $”. Then, it is well-known that Vg solves

the same equation in $". Hence, if one choose a sequence of ¢ in such a way that
|det(d¢)| “\, 0, then the sequence vy is unbounded in $".

In order to prove the above theorem we first need to rule out the possibility that the
sequence vy will eventually touch zero. This in particular implies the lower estimate in
the theorem.

Lemma 3.2. Under the hypothesis of Theorem 3.7 we have

inf minv; > 0.
k>1 S

Proof. We assume by contradiction that the lemma is false. Then, up to a subsequence,
we assume that

misnvk—>0 as k — oo.
S

Without loss of generality we can further assume that the minimum of vy is attained at
the south pole. Let uy be defined by (1.0) using 7y, and let Fy := F,, ,,, as in (17). In
view of (1.6) and 2m > n, the function uj achieves its minimum at 0. By Theorem 2.2,
the function u; satisfies

W)= Y [ e3P R ). 6

To show that this is also not the case, we use the Pohozaev-type identity of Lemma 2.8
and the role played by ¢; and a. Indeed, as Fi > 0 we first obtain

u(0) = 7/2m,nJ;{ 91> " Fi(»)dy = 0(1)k 0 (3.2)
Using this one can show that
klim ur(x) = co for each x € R"\ {0}. (3.3)

Indeed, by way of contradiction suppose that there is some xy € R” \ {0} such that
uk(x9) = O(1)koc0- As

ur(x _
B0l gy )y
Yom,n R"

> p-2mn+l J lxo[*" " Fr(y)dy —J " "y (y)dy
R’l RII
we obtain

j Fy(9)dy = 01
RII
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thanks to 1;(0) = O(1)x_,«. Hence

| sy = 0t 4

Consequently, for any x € R”, one can estimate

uk(x) _ J |x —}1|2m_an(}1)d}) < 22m—n—1 f (|x|2m—n i |}1|2m_n)Pk(}})d}):
Yamn n "

which leads to

u(x) < C(A+|x* ™) inR"
for some constant C > 0. Having this, one can bound Fj from below near the origin.
For example, for any x € B,, we easily get

n+2m
2

2 2 )% S 1 (2
1+ |x|? 1+ |x|? ~ C2\5 ’
thanks to ux(x) < C(1 +|x|?)(?"="V/2 in R". However, this violates the fact that u;(0) =
0(1)k—co- Indeed,

uk(o) j 2m-n 12 2m-n
O | PRy 2 o(2) [y ~"dy > 0
Yomn By\B; Y K Ca\5 By\By g g

for all k. Thus, no such a point x( could exist, and hence (3.3) must hold. Notice that
the above proof also reveals the fact that

Fi(x) = ( ) () > %(

n+2m

lim Fr(v)dy = oo, (3.5)

k—oo JRn

otherwise by (3.2) one would again have (3.4) and again this leads to a contradiction.
Now we normalize u; and Fj as follows

U = #, fk = L
T N W
Then
g (x) = Ln lx - p*" " Fr(v)dy, Ln Frdy = 1.

Having (3.5), it is clear that 13 (0) — 0 and
Va0l < @mn) [ ey P Ry < OO+ R,
Rn

Notice that because of (3.5) for large k there holds Fr(x) < Fp(x) everywhere. This and
(3.2) now implies the following

lim Fr(v)dy — 0 for any fixed & > 0.
k—)DO RII\Bé

Once we have the above limit in hand and seeing # as a convolution, by standard
argument, we get that

i — =[x in C)_(R") (3.6)
and at the same time
1
E|x|2m*" < <Clx*™™ inR"\ B, (3.7)
for some C > 0. Notice that we can write Fy as

F, = (Ekf2mu11+a +f_ca)u]:a = Qku]:a,
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where we denote

flx):= —2

By the Pohozaev-type identity in Lemma 2.8, we get

f (x- VQk)u;_adx = C“J Qku;_“dx. (3.8)
n R]’l

(Here, the multiplicative constant )5, , # 0 cancels out from the both sides, thanks to

Theorem 2.2.) Let us first compute

l+a
2

V(Ekumullﬂx) — 2mgkf2m—1u11+avf 4 fkfzm“;f_lvuzf

and
V() =—caf TV,
leading us to

VO, = | (2men 2 = f o ) (5 V) +

Therefore, from (3.8) we get

~
Cq Ln [Ekumulf +f*Cau]1*a:|dx = o [zmskuWI*lulf _Caffcaflu;fa](x_vf)dx

1
Ta é‘kj F2m(x- Vu,f)dx
2 Ri‘l
~

= | me(1-a)f*"up(x-Vf)dx
JRH

1+a

e f 2™ (x- Vu,f)]u;j‘_l.

+

+j ekH—aui(x-szm)dx

Re 2

—caJ. fa b~ (x - Vf)dx
Rl’l

l+a
+

Ek f FA(x- Vu,f)dx.
RVI
By integration by parts, we note that

J. [u,f(x-sz'”) +f2'”(x-Vu,f)]dx
R

n

1
= lim [J —ul fm dx+—J. x.zfzmuzda]
R—oo £ T BR[ k ] R BBR 1 k

i=

_1: 22 2 2

_1%1m —nJ. ui f mdx+RJ. f mukdo]

—00 Bg 9By
=-n fzmulfdx.
Rl’l
Putting the above estimates together we arrive at
n(l+a)

skLnfzm1u,f[m(1—a)(x-Vf)—( 3 +ca)f]dx
=cq Lnf%lu,}a (x-Vf+f)dx.

(3.9)

Since
1-|x?

X Vf4f=f1s

1+|x]?’
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and )
m(l-—a)+n Ta

+c, =0,

the identity (3.9) can be rewritten as

&km 1 _ f2m

2 —
~Jx P el PN

k1+| |2 R" 1+|X|2
Our next step is to show that for large k, the two integrals in (3.10) are non-zero with

different sign.

Estimate of the LHS of (3.10). Concerning the integral on the LHS of (3.10), a simple
calculation shows that

f2m

—|x|?
X
1 +|x|?

2 2m_ 1—|x?
- (—=— My
L(1+|x|2) % (")1+|x|2 *

2 yeml-laf? 4m=2
=L1(1+|x|2) 1+|x|2(u () =™ nuk(l |2))dx’

here we have converted the integral on R" \ By into B; using Kelvin’s transformation. In
B1\ {0}, it follows from (3.6) and (3.7) that

M2

~ (X _
u}%(x)_|x|4m 2n 2(| |2) |x|4m 2n_1 <0 ask— oo

Notice that

. 2 2ml—|x|2 4 X
1 ( m2n ~2 )d
P B(1+|x|2) 1+|x|2”() b (||2) x

_ 2 2n11—|X| 4m-2n _
_Ll(1+|x|2) 1+|Xl2(|x|m "~1)dx <0.

This and ¢ > 0 imply that the LHS of (3.10) is strictly negative for large k.

Estimate of the RHS of (3.10). Reasoning as in the previous step we should have

1 1-|x?

freup % (x)

M;_a R" 1 +|x|?

2 7Cal_|x|2(~lfa 2c 2n ~l-af X )
= U x| dx.
L(1+|x|2) TR ()
1
In By, it follows from (3.6) that

a«i—a( xX) = |x” 2c,— 2n~]1 a(lxlz) |x| @m-m(1-a) _ 1 50 a5k — oo.

Now observe that for a > 1

2 _a1_||
L1(1+|x|2) C 1+|i|2(| e -1)dx> 0,

which imply that the the RHS of (3.10) is strictly positive for large k (for certain a > 1,
the preceding integral could be infinity). Now going back to (3.10), we easily obtain a
contradiction for & > 1. Indeed, we have two possible cases. First, if & > 0 for large k,
then as gxm(1 — a) < 0, the LHS of (3.10) becomes strictly positive. However, as ¢, <0,
the RHS of (3.10) becomes non-positive. This is a contradiction. In contrary, we have
& = 0 for a sequence of k. However, under ¢, = 0 the LHS of (3.10) vanishes but as
¢y < 0 the RHS of (3.10) becomes strictly negative. This is again a contradiction. And
this completes our proof of the compactness for o > 1.
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Finally we consider the case 0 <a < 1. We set
U (rex) lia
k(x) = , Ty i= uk(O) m — (.
1 ui(0)
Then 1y, satisfies 1y > #;(0) = 1, and

000 = Yo [ s et g+ ey

Then it follows that

—n m m e 0
[ et e + Lty - 0 <y

and together with #; > 1,

Ln (1+ |y|zm_n)%dy <C. (3.13)

Therefore,
Mk(x) = 7/2m,n£kr]3mj x =y 2" (rey)nie(p)dy + O(1)  for x € By.
By

Integrating the above identity with respect to x in By, and using that f(ryy) =2+ 0(1)
on By, we obtain

f nk(x>dx=o<1>j 1)y + 0(1),
By

By

J nrdx < C.
B,
Combining the above estimates

Ln (1 lp) (fkrfmf () +

and hence

[ (ryy)

d . .
) ) y<C (3.14)

This yields
1
V()] < C(1+[xP" 7Y, = (14 [x)®7") < me(x) < C(1 +]x>™ ™). 3.15
U] C Ul
Hence, up to a subsequence,
He— 1 in CIOOC(R").

From Fatou’s lemma, we get that

thanks to (3.15). Since 7 satisfies the second estimate in (3.15), we necessarily have that
(@ =1)2m—n)>n,

a contradictionto 0 < a < 1. O
We are now in a position to prove Theorem 3.1.
Proof of Theorem 3.1. Since &; €[0,¢*) and 0 < €* < 1, integrating (1.1) on $” we get that

1
0 SJ vrdpgn < j v dpgn = O(1)i o0
o 1—¢ Jon

-
thanks to Lemma 3.2. Therefore, we arrive at

-2
n e vak =0(1)kseo inS"

Przlm (vk) — &k ) n
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with [[vgllz1(gn) = O(1)k—co- The theorem follows from standard elliptic estimates. [

4. Moving plane arguments and proof of the main result

This section is devoted to the proof of Theorem 1.1. To obtain the symmetry of
solutions, our approach is based on the method of moving planes with some new ingre-
dients. The major difficulty is how to handle the negative exponent. As far as we know,
although the method of moving planes can be effectively applied to nonlinear equations
with positive exponents, see [CL91, WX99, CLO06, CLS22] and the references therein,
its applications to equations with negative exponents are very rare.

Let us recall some notation and convention often used in the method of moving
planes; see Figure 2 below. For A € R we set

Yii={xeR":x;> 1}, Ty:=0%,.
Also for any A € R we let x* be the reflection of x € R" about the plane T), namely
x = (24— x1,%2,X3,..., Xp).
Also for any function f we let f) be the reflection of f about the plane T,, namely
)= FN) = F(2A=x1, %0, %30, %,)-

Figure 2. Reflection in the method of moving planes

Throughout this section we let # = u, > 0 be a (smooth) solution to (2.1) with F, :=
F,, asin (L7) for fixed 0 < & < (n+2m)/(2m—n) and fixed 0 < € < £* with an additional
assumption that a < (n+ 2m)/(2m — n) if € = 0. For simplicity, we set

We ) (X) 1= e (x) — ug(x?)  for all x € R".
To start moving planes, the following lemma is often required.
Lemma 4.1. There hold
wa )= Yo [ b=y 1=y )y ()
and

we,/\(x) = 7/2m,n J;: [|x/\ _y|2m—n - |x - V|2"'7"][Fe(?/\) - Fe(y)]dy (4"2)

forany A eR.
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Proof- The first identity is obvious from the definition of w, ). The second identity
follows from variable changes. Indeed, one can write

w=( [ ] ey

=J.): |x_y|2m—nF£(y)dy+f |x_y/\|2m—nF£(y/\)dy
A

Za
— J |x—y|2m_"F€(y)dy +J |x/\ —}1|2m_an(}}/\)d}1-
ZA EA

Similarly, one has

ug(xH:L |x*—y|2m-"P€(y)dy+f lx = 9> Fe (™) dy.
A

Zx

By putting the above identities together we arrive at the second identity. (]

Our next step is to show that the method of moving planes can start from a very
large Ay > 0, where A is independent of ¢.

Lemma 4.2. Let € € (0,1) be fixed. Then there exists Ay > 1 such that for every
e €[0,¢e*] we have

w&/\(x) >0 inX,
Jor A = Ag.

Proof. We start the proof by observing the existence of some constant C > 0 such that
for each € € [0, €*] we have

1 1 1 R .
see (2.2) for a similar estimate. In the case ¢ > 0, this simply follows from the uniform
bound for v, with respect to ¢ € (0,&*] as given by Theorem 3.1. In the case ¢ = 0,
the above estimate is trivial because u(x) ~ |x|>"~" for |x| > 1. By a simple algebraic
computations we have

=y~ —yl

2m—n A 2m-n _ D
|x—y| _|x _yl - |x_y|2mfn+|x/\_y|2mfnp/\(x’y)’

where the function P, is given by

2m-n—1

P:\(x,;u) = Z |x_y|2(2m—n717k)|x/\_y|2k.
k=0

(It is clear that Pi=1if2m-n= 1.) Using (4.1) and
=yl =~ =yl = 4(x; = H(A - p1)

we can write

w X
a2 [ (4 )y = UL (),

where
|x|2+n72m

Py(x, }’) = 47/2m,n Py(x, ?) (4'4)

|X _ y|2m—n + |X’\ _ y|2m—n
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For later use, we note that for x,y € X there holds
|x _ y|2(2mfn71) + |x/\ _ y|2(2mfn71)

2+n-2m
P,\(x,;u) < Clx| lx — ylszn 4 |x/\ _ y|2mfn

b for 2m—n=1
<C{lx-yl (4.5)

1+ |x|2+n—2m|y|2m—n—2 for 2m—n>3

|x|
<C{lx-yl
""" for 2m—n> 3.

for2m-n=1

To conclude the lemma, it suffices to show the existence of A5 > 1 such that
Ug(x)>0 foranyxeX,UT,
and for every A > Ay. With the help of (4.3) we can roughly estimate

Ue(x) = j (A=91)Py(x,9)Fc(p)dy + j (A=21)Pr(x,9)F,(v)dy
B, R™\B,;

> %L (A= 91)Py(x,9)dp + LM(A ~ )P Y)F()dy

1 Py(x,p)
> = A—=y)Py(x,p)dy - C — =
C Ll( yl) /\(X })) Y L1>A 1+ |y|2m+n_1 v
=: Iy (x) = Ir(x).
Here to get the term I, we have used the estimates 0 < y; — A < y; < |y| in the region
{yeR":y; > A} and

yl 2
y <
1+|y|2m+n - 1+|y|2m+n71

Next, we estimate I; from below and I, from above. For I, we note that

for all p.

1
PA(x,y)zE foryeB;,xeX), A= Ay> 1.

From this we deduce
I (x) >
We now estimate I,. For 2m —n >3 and as
pPr 2
1+ |y|2m+n—1 14 |y|2n+l
and |y| > y; > A we can estimate

2m—-n-2
Iz(x)SCJ h"—dyscj b C _¢
oA 1+ |y|2m+n—l oA 1+ |})|2"+1 /\n+1

for all y

For 2m—n =1, we split {y; > A} as follows
{}’1 > /\} CAl UA2 UA3

where

Ay :={y:/\<|y|§|xl/2}, Ay :=Bopy \ B2, Asz:=R"\ By

(Although |x| > A as x € X, the set A; could be empty if x| < 2A, but it is not
important.) Since |x —y| > |x|/2 on A; U A3 and again |y| > y; > A, we can estimate

|x| d C
y <
A UAs |X—}1| 1+ |y|2m+n71 - A2m-1°
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On the remaining set A, as |x]/2 < |y| < 2|x| we easily get

|x| dy C dy C C
2 1 < 2 2 = 2m-1 = 2m-1 <C.
A, |x—})| 1 +|y| m+n— |x| m+n— A, |x—})| |X| m— A2m—

Putting the above estimate together, we arrive at

Ue(x) = L1 (x) = I(x) = % -C

for some constant C > 0. Thus, the lemma follows by letting A, large enough. (]

In Lemma 4.2, we have compared u,(x) and u(x*'), via we,A(x), in X . As there was
no restriction on ¢* € (0,1), our comparison requires large A > 0 to hold. In the next
lemma, we compare F(x) and F,(x") in £,. As there will be no restriction on A > 0,
our comparison now requires small € > 0, and this is the place where the constant ¢,
appears. Due to the form of F, to achieve the goal we need the compactness result
established earlier; see section 3.

Lemma 4.3. There exists €, € (0,¢*) small enough such that for arbitrary A € (0, Ao]
but fixed, the conclusion if
wey=0 inX), (4.6)
then
Fo(x)—F.(x") <0 inX, (4.7)
holds for each € € [0,¢,). In addition, if the inequality (4.6) is strict, then so is the
inequality (4.7).

Proof Let us first be interested in the existence of ¢, and € € (0,¢,). As |x}| < |x] for
A >0 and x € ¥, we obtain

i) =Fule) = e ) "o = e ) o)

2 -, 1 2 -, 1
Hwe) (e ug (xh)

<o) ") =)

+(2)7%(1_ 1)
1 +[x|? ) ud(xh)/

ug (x)
where the constant ¢, < 0 is already given in (2.3). Hence, to prove (4.7) in X, it suffices
to prove that

ul(x) - ug(x/\) 1 S E( 2 )(Zm—n)”Ta
e (%) = e (x4) ud (x)ug (xh) 7 N1+ |x]?

where we have used that

in X, (4.8)

1+
2m+c, = (2m—n) 20(.

To this end, for some R > 1 to be specified later, we first split X into two parts as
follows:

hY =[2/\HBR]U[Z/\\BR].

In the region X, \ By, there exists some &; > 0 such that (4.8) holds. To see this we need
to use uniform bounds with respect to € > 0, see Theorem 3.1, to obtain
ud (x) — uf (x*)

'1( 2 )(Zm—n)l’T“

e () —ug(xt) TN L+ |x]?
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and

1 S 51( 2 )a

ug (ud (xt) ~ N1+ |x]?
for some small &; € (0,1). This is mainly because when R is large enough, we have
|x| = |x*| for |x| > R and A € (0,1¢]. In the region X, N Bg, by the smoothness of u,,
there exists some small €, € (0,1) such that

ul(x) - u?(x’\) 1 , 2 (2mon) 12
e (x) = ue (xA) ul (x)ud (x1) Z((’2(1_,_|x|2) (4.9)

for any x € Bg. Hence, combining (4.8) and (4.9) yields the desired estimate (4.7) with
&, = —minl{eq, &}
5 miniey, &}
Now we consider the remaining case ¢ = 0. However, this case is trivial because

2 —Ca 1 1
FO(X)_FO(X/\):(1+|x|2) (ug(x)_ug(x/\))so

whenever wy ) (x) = uy(x) — up(x?)

that if the inequality (4.6) is strict, then the inequality (4.7) is also strict. Hence, the

> 0. Finally, from the above calculation, it is clear
lemma is proved. (I

Thanks to Lemma 4.2, for each ¢ > 0 we can set
A= inf{/\ >0:w,, 20 in ¥, for every p=> /\}.
Then, still by Lemma 4.2, we necessarily have
0< A, <Ag.

Our goal is to show that A, = 0. This can be done through two steps. First we show that
if A, > 0, then we must have w,3 =0in X3 ; see Lemma 4.5. Finally, we show that
Xg = 0; see Lemma 4.6.

Our next lemma is of importance to achieve the first step as it allows us to move A
to the left.

Lemma 4.4. Let € € [0,¢,) and A € (0, Ay] be such that

0zw, 120 inXj.
Then, there exist R > 1 and 6 > 0 small, both may depend on w, 3, such that for every
Ae(A=0,1) we have

wey >0 in Y1\ Bg-

Proof. Using the representation (4.2), and as in the first part of the proof of Lemma 4.2,
we have
|x|2+n72m

W = [ - PRGN Oy, a0

where P) is given by (4.4). In view of (4.10), it suffices to show that its RHS is positive in
X, \ By for suitable R > 0. For convenience, we recall the following formula for P,

|| >+ 2m§n1 22m-n-1-k) A _ .12k
P/\(x ;U) = 47/2m n |X—}1| e |x _})l .
» |x_y|2m7n+|x/\_y|2m7n —

Hence, there exists some 6 > 0 such that for every R; > 0 fixed
P\(x,y) = 6 uniformly in y € Bg, (4.11)
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as |x| — co. This is because |x| ~ |x — y| ~ [x* — | for large |x|. From (4.7) we know that
0% F.(y")-F.(y)>0 forpery
which implies
Lj(yl =~ D[Fe(y") = Fe(y)ldy = 2¢0 > 0,

for some small constant ¢y > 0. Thus, by the dominated convergence theorem, we can
find some 6 > 0 such that

L (91 - VIE(0") — F.(0)]dy > co > 0, (4.12)

for every |1 — 1| < §. To obtain the positivity of the right hand side of (4.10), we split the
integral IEA into two parts as follows

= +J\
L/\ J;:A\BRZ ):‘/\nBRz

for some R, > 0 to be determined later and estimate these integrals term by term; see
the two estimates (4.14) and (4.15) below. Our aim is to show that the integral IX \B is
A\PRy

negligible.

We assume for a moment that such a constant R; exists. We now estimate the integral

-[):A\BR . First we choose a Ry > 1 in such a way that |p; — A| < 2|y| for all |[y| > R,.
2
Then we find some R; > Ry such that in ¥, \ Bg, we have
dy Ocg
< 413
J;:/\\BRl 1+ |y[2m+n=1 7 16C (4.13)
and
C
Fe(y) +Fe(v")

< - -
1+ |y|2m+n

for some C > 0 because |y| ~ [p*|. By the estimate (4.5) for Py, we now claim that there
are some R3 > 1 and R, > R; such that

Jo - anlr )+ Ry < (419
E)\Bg,

for |x| > R3. To see this, for clarity, we consider the two cases 2m—n =1 and 2m—-n> 3
separately.

Case 1. Suppose 2m —n = 1. In this case our estimate for Py becomes P(x,y) <
Cl|x|/|x — y|. Consequently, there holds

|| 1yl
— V)Py(x,)[Fe(vY) + Fe(y)d §CJ. —
LA\BRZ(% ) /\( }))[ e(y ) e(y)] y £\Br, |x_y| 1+|y|2m+n

For |x| > R3 > 2R, to be determined later, we now split sz\BR as follows
2

_ +J .
J;:A\BRZ L):A\BRZ]Q[BM/ZU(R"\Bzu)] [Z1\Br, \[Blxj/2U(R™\Byy)]
Thanks to (4.13), we get

c j || Iyl )< Ocy
[24\B, IN[Byy2URM Bay)] 1X =91 1[92+ 8
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For the remaining integral on [¥, \ Bg,] \ [Bly2 U (R"\ Byjy)] which is a subset of
By \ Blyy/2 because |x| > 2R;, we estimate as follows

2
CJ\ = C|x2|m+n J\ dy :
[2.1\Bry N[ By 2URM Byyp)] L 1] By \Byyz ¥ =Y
Since the last integral is of order |x|" and m > 2 we can find some R3 > 1 such that

Clx|? j dy <9c0
1 + [x|2m+n Bop\Bay2 lx—yl — 8

for all x € ¥, N Bg,. Combining the two estimates above gives (4.14). This completes the
first case.

Case 2. Suppose 2m —n > 3. This case is easy to handle. Recall that our estimate for
Py becomes Py(x,7) < Cly|*""~2. Consequently, there holds

|y|2m7n71

J. (v1 = APy (x,9)[Fe(v") + Fe(v)]dy < CJ dy.
Za\Bg,

):A\BRZ 1+ |y|2m+n
Seeing (4.13) or as in the proof of Lemma 4.2, we easily obtain the desired estimate.

Hence, up to this point, we have already shown that there are some R; > 1 and
R3 > 1 such that the estimate (4.14) holds for x| > R;. Now we estimate the integral

I):A MBg,’ Keep using the constant R,. By the uniform convergence in (4.11), we can

choose R4 > R, such that
1
P/\(X,y) > 59 for |x| > R4 and |y| <R;.
This and (4.12) imply that

[, - onenlr e - Fpy > 22 (415
TANBg,

for |x| > R4. We conclude the lemma by combing the two estimates (4.14) and (4.15) and
choosing R = max{R3, Ry}. O

We are now in a position to complete the first step, namely, to show that A, =0. To
this purpose, we must rule out the case A, > 0 and this is the content of the next two
lemmas. First, we characterize the function w,+ in case A, > 0.

A

Lemma 4.5. Ifjg > 0 for some € € [0, ¢,), then Wy, = 0in EL' In other words, the
function u, is symmetric with respect to the hyperplane {x € R" : x; = A,}.

Proof. Let Ig > 0 for some ¢ € [0,¢,) and assume by contradiction that w,y, % 0 in
ZL. This and the definition of A, imply that
0z w2 0 in 21'
By Lemma 4.4, there exist R > 1 and 6 > 0 small enough such that
wer>0 inX)\Br forevery Ae (A —08,1p).

Then there exists a sequence pyy A, such that Wy, is negative somewhere in ¥, .
Since outside Bg, the function w, ,, is strictly positive, for each k there is some x; €
Zu N By such that

We . (X)) = rginwe,ﬂk <0.
Hk
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In particular, there holds
We, (xk)
(X1 — pr
Obviously, the sequence (xi) is bounded as x; € Bg. Also note that EL cX, and

< 0.

Z”k Ny 21- as k /" +oo. Therefore, up to a subsequence, we have

21 U sz 3 Xop 1= lim xy.

k—o0
In particular, by passing to the limit as k — co, there holds we,l.(xoo) < 0. This and
(4.10) implies that

|x |2+n—2m _ <
0> w&js(xoo)—_ = J. (yl — /\e)P,Tg(xoory)[Fg(}} £) —Fg(}})]d}) >0,
(xoo)l - /\6 ng
thanks to [xe,|> 0 and Fe(?l‘) > Fe(y) in X3 by Lemma 4.3. Thus, we must have
Fa(yxg) —Fe(y)=0 foranypeXy,

which, by (4.10), now yields w3 = 0 in X‘L' However, this is a contradiction. Once
we have w, 7 =0 in X3 the symmetry of u, follows from the definition of weT, - The
proof is complete. (I

From the characterization of w, 7 in the case A, >0 and the role of the size of ¢ and
Ae

@, we are able to show that in fact the case A, >0 cannot happen.

Lemma 4.6. Let € € [0,¢,). There holds Xg = 0. In particular, the function u. is
symmetric with respect to the hyperplane {x € R" : x1 = 0}.

Proof. By way of contradiction, assume that Xg > 0. In view of Lemma 4.5, we must
have _

0=w, 3 (%) = te(x) - ue(x*)
in 21‘. This and (4.2) tell us that

Jo D=y ey e ) - Rty =0
3,

for any x € ¥+ , thanks to y,,,, # 0, see Theorem 2.2. But this cannot happen because
. 3

lx—p| < |x1‘ —y| for any x,y € £7 and

Fo0) = Fld™) = e (2 ) = () e

1+x|? 14 [xhe|?

2 —Cq 2 —Cq 1
+[(1+|x|2) _(1+|x1~|z) ]u§<x>

<0,

everywhere in ):1_, thanks to the estimates u#, > 0, —c, > 0, and |x| < |x¢| in EIE' (Here
we also use the fact that if € = 0, then a < (n+ 2m)/(2m —n) in order to guarantee
—c4 > 0.) Thus, we must have A, =0. In particular, we have from the definition of A,
the following

Ue (X1, X000 X)) = Ue (=X, X, 00y Xy )-
We now apply the method of moving planes in the opposite direction, namely A < 0, to
get

Ue (X1, X0, Xy) S U (=X, X, 00y Xy )-
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Hence

Ue (X1, X0, 000y Xyy) = U (—X1, X0, 00y Xyy)-
This establishes the symmetry of u, with respect to the hyperplane {x € R" : x; = 0}.
The proof is now complete. O

We now have a quick note. In the proof of Lemma 4.6 above, we crucially use the
hypothesis that either € > 0 and a < (n+2m)/(n—2m) or € = 0 and a < (n+2m)/(n—2m).
For the latter case, if ¢ = 0 and o = (1+2m)/(n—2m), then we cannot claim that 1 = 0.
Therefore, we could only claim that u is radially symmetric with respect to some point
not necessarily the origin. This leads to explicit form of non-trivial solutions to (1.1)g in
the conformaly invariant case.

As a consequence of Lemma 4.6 above, we obtain a Liouville type result for positive,
smooth solution to (1.1), for small € > 0, hence proving Theorem 1.1.

Lemma 4.7. Any positive, smooth solution v, to (L.1), for small & must be constant.
Proof. Let € € [0,¢,) be arbitrary. From Lemma 4.6 we know that the corresponding

solution u, is symmetric with respect to the hyperplane {x € R” : x; = 0}. This together
with the relation

1+ |x]2\ 25"
_ -1
1y (x) = (—2 ) (ve o 7))
tells us that v, depends only on the last coordinate x,,;. However, as the x,-axis is
freely chosen, we conclude that v, must be constant. This completes the proof. O

Before closing this section, we have a remark. To obtain the symmetry of solutions to
(L1)¢ for small €, our approach is based on the method of moving planes in the integral
form. A natural question is weather or not one can use the method of moving spheres;
see [LZ95, Li04]. Due to the presence of the weight 2/(1 + |x|?) in (1.7), it is natural to
ask whether or not the method of moving spheres can still be used. Toward a possible
answer to this question, we refer the reader to the work [JLXO08].

5. Application to the sharp Sobolev inequality

This section is devoted to a proof of Theorem 1.2 which concerns a sharp (critical or
subcritical) Sobolev inequality. Let € € (0,1) and inspired by (1.4) consider the following
variational problem

2
a1 n—2m
Se=__inf (| ¢ dus) ‘f P2n(p)— e L Q2m 2 dpgs (51
S L I I I (S IR St
with m = (n+1)/2 and a € (0,1) U (1,2n + 1]. We note that although the constant
(n—2m)/2 becomes —1/2 in the present case, we intent to keep it in various calculation
below for convenience. Similar convention also applies for P2" instead of P!*!, etc.

Now as
n—2m __, n—-2m _,
2 = (1-¢) 3 20

by testing (5.1) with constant functions we conclude from (5.1) that

P2"(1)—¢

n—2m
2

however, S, could be —co. Next we show that S, is finite and is achieved by some
smooth positive function.

a+l

S <(1-¢) Q2"Is"|&t <o,
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Lemma 5.1. Assume that m = (n+1)/2 and a € (0,1)U(1, 2n+1]. Then, the constant
S, in (5.1) is finite and there exists some v, € C®(S") such that v, > 0 and

2
- a-T n—2m
(f v} “dygn) f [ng%m(v‘g)—e > Qﬁmvf]dys,,:sg_

In particular, v, solves

P%m (ve) —&

in " with

e~ djarl "
|lve ”gz:r—l(gn)

Proof. Let (vy); be a positive, smooth minimizing sequence in H2"($"), that is

2
_ a1 n—2m
(L vll ad}/lsn) J:s [kaim(vk)—e 3 Qﬁmv,f]dygn N Se
as k — oo. By the scaling invariant we can assume maxgn vy = 1 which then yields
2 n
loalZa g <1571

As P,Zlm is a monic polynomial of —A
1, it is easy to get that

¢gn» the coefficient of the highest degree is equal to

f ok P2 ) s > 110l — CollvillZs gy = allvelZn gy = 215"
SVI

for some ¢; > 0 and ¢, > 0. Note that S, < 0 and Q2" > 0 would imply

J Vg Pimvkd‘uSn <0.
S]’l
Therefore, the previous estimate leads to
2
Cl||vk||Hm(Sn) < C2|Sn|’

giving the boundedness of the sequence (vy) in H™(S"). Hence, after passing to a
subsequence if necessary, there exists some v, € H"(S") such that

Vg — v, > 0 uniformly in C(S")
by Morrey’s inequality and the Arzela-Ascoli lemma, and
v — v, weakly in H"($").

In particular, there holds maxgn v, = 1. As v, > 0, there are two possibilities. First,
let us assume that v, vanishes somewhere on $”. By assuming this we shall obtain a
contradiction, therefore we must have v, > 0. Indeed, as n = 2m — 1, we can make use
of [Han07, Corollary 3.1] to conclude that

Jn Ve P121m(ve)d,”5" > 0.
This together with E%Q%m <0 and IS" v2dpgn > 0 help us to get

n—2m
0< J\n [’Vg Pim(’l/g) - STQ%anE]dﬂsrz

n—2m
2

o 2 ) 2m, 2
< lir}igfj ) [vk P (vy)—¢ nmvk]dysn.
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This is a contradiction to S < 0. Thus, v, > 0 everywhere. Then, this allows us to gain

vlzl —v;!  uniformly in C(S")

J. v,l_“dygnef v %dugn.
S]’l SII

Putting these facts together, we obtain

2
B a-T n-—2m
S, s(J. v} adygn) J. [ve P2 (v,) - Q2"v?|dps
Sl’l Sl’l 2

1 a_%l 2 n—2m 2 2 (52)
Sliminf[(f vk*“dysn) j [kanm(vk)—e 5 nmvk]dysn]
S S

and consequently

k +oo
=3S,.
Hence, on one hand implies that S, must be finite, on the other hand, yields that v, is
a minimizer for (5.1). Rest of the proof follows immediately. (I

Now we are in a position to give a proof of Theorem 1.2.

Proof of Theorem 1.2. Let ¢ >0 and a € (0,1) U (1,2n+ 1]. By Lemma 5.1, there is some
positive, smooth function v, satisfying

J\ V;_ad[/lsn =1

n—2m
J. ; [ve P121m(v£) - ETQ%mvg]dVS" = Se-

Then, up to a constant multiple, v, solves (L1), in $". Therefore, for small ¢ > 0, it
follows from Theorem 1.1 that v, is constant. Keep in mind that a # 1. Hence, on one
hand, as ((n—2m)/2)Q2™ = P2™(1), we can compute to get

and

n—2m

a+l

Se=(1-¢) Q8"+,
on the other hand, by the definition of S, we get
n 2m
( (Pl ad]/lg;n J. [¢P2m _ 5 2m¢ ]dlflS"
Sil
2 at
> (1-) == Q2"S"H

for any ¢ € H™(S") with ¢ > 0. Now letting ¢ \, 0 we obtain

n—2m a+l

([ amoans | [ omruins. = "2
Recall that

n-—2m 2m_ PZm(l) I'(n/2+m)
2 T(n/2-m)
This completes the proof of Theorem 1.2. O

Before closing this section, let us revisit the last comment in Remark 1.3. For conve-
nience, let us relabel (1.9) as follows

I(n/2+m),_, atl

1-a - 2m n1$4 Foe
(], @' anse)’ f PR s> L st (s,

We shall establish the following, which has its own interest.
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Proposition 5.2. There holds
(5:3)2ns1 — (0.3)p with p € (1,2n+1) — (L11) — (5.3), with a € (0,1),

where the notation A —> B means we can obtain B from A.

Before proving Proposition 5.2 we observe that, as I'(n/2 + m)/T(n/2 —m) < 0, if
n =2m—1, our related inequalities are only meaningful if

. GP2"(Pp)dpgn < 0. (5.4)

Therefore, from now on we always assume the above inequality. Besides, one can
simplify the computation below by normalizing the measure on $” in such a way that
|S"| = 1. However, we intend to keep it for clarity.

Proof of Proposition 5.2. Let us establish all — each by each.

Proof of (5.3)2,41 — (5.3)p with € (1,2n+1). Let p € (1,2n+ 1) be arbitrary but
fixed. We wish to derive (5.3) from (5.3)2,,41. Thanks to 0 < —1 < 2n, we can apply
Holder’s inequality in the following way

B-1
£l

L(d) e dﬂS"<|5|2n;'1’ﬁ(Ln(¢_l)2ndﬂsn) ’

to get
2

. =) 2n+1/s ) 1
( 54) ﬁdﬂs") <|S| D L¢ dﬂsn)

From this and (5.4) one 1mmed1ately obtains

ﬁ T
j (Pl ﬁd]/lsn J ¢P d’/lsn

2n+1—
>|Sn j (f) an[/lsn J\ (f)sz d’/lsn

With help of (5.3),,,,1 and the identity
2n+1-p L 2m 2m E
n(p-1) m Bl
we obtain (5.3)/3 as claimed. (Keep in mind that 2m = n+ 1.) This shows the first —
from the left.

Proof of (5.3)ﬁ with g € (1,2n+ 1) — (L11). We now consider arbitrary but fixed
B e(1,2n+1) and we wish to derive (1.11) from (5.3)/3. By Jensen’s integral inequality of

the form
1 1
— | togwdug <1 (— d ) 5.5
o7 | Josvns < log(g [ wds (5.5
we know by choosing ¢ = ¢~7 that
(e vt <l o]
ex - (0] n)| S| —=— n .
PV s Jg 8000 2 s Jg, 7S

for any y € R. In (5.6) we choose = § — 1 and together with (5.4) we eventually get

exp(~ 7 | ostdns) [ 0P s

>I5”|1’* J. Pl ﬁdﬂS") J PP (P)d psr.
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With help of (5.3); we quickly obtain the inequality (L.11). Hence we have the second —
from the left. (We should point out that the above argument works for any f > 1 as
long as (5.3)/3 is available. In particular, it works for § = 2n + 1. However, we intend to
keep f < 2n+ 1 since we want to show that the limiting case can be derived from the
subcritical case.)

Proof of (L11) — (5.3), with a € (0,1). Let us now consider arbitrary but fixed
€ (0,1) and we wish to derive (5.3), from (L.11). Indeed, still by Jensen’s integral
inequality (5.5) applied for i = ¢?, we obtain

2 | ogddug ) <= Y duer ) 5.7
eXP(@Ln og ¢ P‘S")—(lgnan(P ﬂs") (5.7)

for any y € R. In (5.7) we choose ¥ =1 — @ and reverse the resulting inequality to get

2
a-1

eXP( - é o 10g¢dﬂsn) 2 (ng Ln ¢ dﬂsn)
Combining this with (5.4) gives
T
(], o' ansr) ™ | oP2gans:

2 w
(— = Lnlogqﬁdysn)f P2 (P)d s,

With the help of (1.11) we are now able to obtain the inequality (5.3),. This establishes
the last — from the left, hence completes our proof. (I

2
> |S"|a-T exp

Again we should point out that the above argument for the last — from the left
works for any a < 1, namely we have the following sharp inequality

2m I'(n/2+ m)( y )2/7
jf (Z)P d S“ = F(n/Z m) o (f) d]/lSn
for any y := 1 —a > 0. This makes sense because I'(n/2 +m)/I'(n/2 —m) < 0.

In the final discussion, we show that we can actually compare the two inequalities
(5.3)p with B € (1,2n+1) and (5.3), with & € (0,1) without using the limiting inequality
(L.11). Indeed, by decomposing the constant 1 as

(A-a)g-1) _ (A-a)(p-1)
1= (1') p-a (1') p-a
and applying Hélder’s inequality in the following way
l-a

£=1 1-a
_ p-a _ p-a
'S”'S(Ln(i’l “dps:) (an Pdus:

we arrive at . .
T a—p =T
( (Pl_ad,usn) 1 < |S|(ﬁ’1)(1’“) (J (Pl—ﬁd‘usn)[i 1 .
SII SII
Combining (5.3)ﬁ with (5.4) and the identity
p+1 2a-p) a+l
+
p-1 (B-1(1-a) a-1

gives (5.3),.
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