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Abstract

Considering supercritical Bernoulli percolation on Zd, Garet and Marchand [25] proved
a diffusive concentration for the graph distance. In this paper, we sharpen this result by
establishing the subdiffusive concentration inequality. As a consequence, we revisit a recent
result by Dembin [17] on the sublinear variance of the distance.

1 Introduction

1.1. Model and main result. Bernoulli percolation is a simple but well-known probabilistic
model for porous material introduced by Broadbent and Hammersley [7]. Let d ≥ 2 and Ed be
the set of the edges e = (x, y) of endpoints x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Zd such that
∥x− y∥1 :=

∑d
i=1 |xi − yi| = 1. Given the parameter p ∈ (0, 1), we let each edge e ∈ Ed be open

with probability p and closed otherwise, independently of the state of other edges. The phase
transition of model has been well-known since 1960s. Aizenman, Kesten, Newman [1] proved that
there exists a critical parameter pc(d) ∈ (0, 1), such that there is almost surely a unique infinite
open cluster C∞ if p > pc(d), whereas all open clusters are finite if p < pc(d). In supercritical
regime (p > pc(d)) and critical regime (p > pc(d)), the model behavior are more understandable
that the critical case. Refer to [27][19] [20] for more detail results and open questions on this
fields.

Let x ∈ Zd, we denote by x∗ the closest point to x in C∞ (in ∥.∥∞ distance), call it the
regularized point of x. We define the graph distance as: for x, y ∈ Zd,

D∗(x, y) = D(x∗, y∗) = inf
γ:x∗→y∗

|γ|,

where the infimum is taken over all open nearest-neighbor open paths starting at x∗ and ending
at y∗. Let e1 = (1, 0, . . . , 0) and we aim to study the graph distance from 0 to ne1:

D∗
n = D∗(0, ne1).

The linear growth of D∗
n was described by Garet and Marchand [22]: for any p > pc(d), there

exists a constant µ(e1) ∈ [0,∞) such that,

lim
n→∞

D∗
n

n
= µ(e1) a.e and in L1.(1.1)

1Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay,
Hanoi, Vietnam. Email: cvhao@math.ac.vn

2Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay,
Hanoi, Vietnam. Email: nvquyet@math.ac.vn

1



The value µ(e1) is called the time constant. In fact, they show the stronger result that (1.1) still
holds true in a more general context of stationary integrable ergodic fields.

Naturally, the next question we are interested in is the fluctuation and deviation of the graph
distance. The moderate deviation of D∗

n (or precisely the concentration with diffusive scale) was
established by Garet and Marchand (see [25, Theorem 1.2]): for each c > 0, there exist some
constants c1, c2 such that for all λ ∈ [c log n,

√
n],

P[|D∗
n − E[D∗

n]| ≥
√
nλ] ≤ c1e

−c2λ.(1.2)

Recently, Dembin give a sublinear bound on the vairance of D∗
n (see [17, Theorem 1.1]): there

exists a positive constant C such that

(1.3) Var(D∗
n) ≤

Cn

log n
.

The main result of our paper is to sharpen the moderate deviation (1.2) by establishing a
sub-diffusive concentration of D∗

n.

Theorem 1.1. Let p > pc(d). There exist positive constants c1, c2 > 0 such that for all n ∈ N
and κ ≥ 0,

P
(
|D∗

n − E[D∗
n]| ≥

√
n

log n
κ

)
≤ c1e

−c2κ.(1.4)

Consequently, the sublinear bound of the variance (1.3) holds.

Remark 1.2. If κ < 1, we can take c1 = ec2 and hence (1.4) holds trivially. From now on, we
focus on the case κ ≥ 1 throughout this paper.

1.2. Connection to generalized first passage percolation. We recall here similar results
for generalized first passage percolation, a kind of mixed model between first passage percolation
and supercritical Bernoulli percolation. For each edge e ∈ Ed, we assign a random weight te taking
values in R+ ∪ ∞ such that the family t = (te)e∈Ed is independent and identically distributed
with distribution ζ such that ζ([0,∞)) > pc(d), where pc(d) is the critical point for Bernoulli
percolation on Zd. Thus, the edges with a finite weight are supercritical. If ζ([0,∞)) = 1, we
return to the model of first passage percolation that the edges has finite weight.

The first passage time is defined as follows: for x, y ∈ Zd,

T(x, y) = inf
γ:x→y

∑
e∈γ

te,(1.5)

where infimum is taken over the set of paths from x to y. Then the supercritical Bernoulli
percolation can be referred as a particular case of first passage percolation with the distribution

ζ = ζp = pδ1 + (1− p)δ∞, p > pc(d).(1.6)

The convergence of the scaled passage time in probability to time constant was obtained by
Cerf and Théret [10, Theorem 4], without any moment assumptions: there exists a constant
µ(e1) ∈ [0,∞) such that

lim
n→∞

T(0, ne1)

n
= µ(e1) in probability.(1.7)
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In [23, Remark 1], Garet and Marchand proved if E[t2+εI(t < ∞)] < ∞ with some ε > 0, then
the convergence in (1.7) holds true almost surely and in L1. It then has been proved by Damron,
Hanson and Sosoe [16] that if ζ([0,∞)) = 1 and E[t2 log+ t] < ∞, then the sublinear variance
holds:

(1.8) Var(T(0, ne1)) ≤ Cn/ log n.

This phenomenon was known as superconcentration, coined by Chatterjee [13]. It has been
widely conjectured by physicists that the bound in (1.8) should be improved by polynomial.
Furthermore, Chatterjee’s work establish a more general principle that connects between su-
perconcentration and a chaotic phenomenon of the ground state in many Gaussian disordered
systems [11] [12] [13]. Recently, Ahlberg et al. show that that this deep relation holds true in
context of first passage percolation under the assumption that ζ([0,∞)) = 1 and E[t2] < ∞.
Notice that by (1.8), the first passage time is superconcentrated, so they give first evidence of
chaos of the geodesic in this context. It is still open question whether chaotic phenomenon holds
in the generalized first passage percolation without any moment conditions.

Additionally, Damron et al.[15] also prove the subdiffusive concentration for T(0, ne1), in
similar form as (1.4): for the upper tail inequality (resp. lower tail inequality) the authors
require E[e2αt] < ∞ for some α > 0 (resp. E[t2 log+ t] < ∞) and ζ([0,∞)) = 1. A lot more
was proved concerning generalized first passage percolation, for example, the regularity of time
constant [10][26][9], the large deviation [3] [24][14][4][18].

We remark that in supercritical Bernoulli percolation (or the generalized first passage perco-
lation with distribution (1.6) with ζ([0,∞)) < 1) the moment conditions E(t2 log+ t) < ∞ and
E[e2αt] < ∞ do not hold due to the infinite weight. Hence, we need the new discover on this
model to apply the techniques in the case first passage percolation with finite edge-weight.

1.3. Method of the proof. In this subsection, we will address main challenge in extending
the previous results of Damron, Hanson and Sosoe [15] to Bernoulli percolation and outline our
strategy to overcome this issue. In [15], Damron et al. use the ideas of Benaim-Rossignol, to prove
the subdiffusive concentration of T(0, ne1), it suffices to estimate the variance of exponential
function of T(0, ne1). The remaining step can be derived by combining the geometric averaging
trick of Benjamini, Kalai, Schramm with the entropy inequalities [6], following the same sub-
linear variance strategy for general distribution [16].

In both [15] and [16], we emphasize the importance of imposing moment conditions on the
edge-weight distribution. This is crucial for obtaining good control over the impact of resampling
an edge. However, in the context of the graph distance in Bernoulli percolation, closing an edge
on the geodesic can have a significant impact on the graph distance due to the possibility of
infinite edge-weight values. To solve this issue, using a complex multiple-scale renormalization
process introduced in [9], Dembin constructs a detour that bypasses a given edge [17] . She then
can control the length of these bypasses. In the final step, to prove the sublinear property of
variance, Dembin use the concentration inequalities in a similar manner as in [16] with some
technical difficulties specific to the graph distance.

In the study of subdiffusive concentration for supercritical Bernoulli percolation, we shall
have to deal with the fluctuation of exponential function eλD

∗
n , rather than the graph distance

D∗
n itself. Hence, the approach of Dembin which is based on multi-scale renormalizations would

be much more complex. In this paper, we use a simpler approach, that give a systematic way to
tame the effect of resampling a given edge with being of independent interest.
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Our mechanism goes as follows: Instead of working with the graph distance D∗
n, we prove

sub-diffusive concentration for Tn, a modified graph distance of Tn. Then, we indicate the
equivalent of sub-diffusive concentration between these distances. In particular, we sketch the
proof of Theorem 1.1 as follows:
Step 1 (Setup). We introduce Tn, a truncated passage time from 0 to ne1, which is derived
from a Bernoulli first passage percolation with truncated edge-weights:

te = pδ1 + (1− p)δlog2 n.

Subsequently, in Theorem 5.3, we prove the subdiffusive concentration for Tn, i.e.

(1.9) ∀n ∈ N, κ ≥ 0, P
(
|Tn − E[Tn]| ≥

√
n

log n
κ

)
≤ c1e

−c2κ,

for some positive constant c1, c2 > 0.
Our argument initially follows the common scheme as in [15]: Considering Fm the averaged

version for the passage time Tn (inspired by Benjamini, Kalai, and Schramm in [6]), to prove the
subdiffusive concentration, we relies on establishing a connection between bounds on Var(eλFm/2)
and exponential concentration. Then, we obtain the tails of the true passage time Tn as in (1.9)
based on those of Fm (see more details in Section 5.2). That is, we need to prove that (see
Theorem 5.3): there exists a constant c > 0 such that with K =

cn

log n
,

∀ |λ| < 1√
K

, Var
[
eλFm

]
≤ cn

log n
λ2E

[
e2λFm

]
<∞,(1.10)

To attain this variance bound, we utilize the Falik-Samorodnitsky inequality (Lemma 5.1). Let
us enumerate the edges of Ed as {e1, e2, . . . , } and consider the natural filtration of these as

F0 = ∅, Fi = σ(te1 , . . . , tei),∀i ≥ 1.

We perform a martingale decomposition of the random variable G = eλFm :

G− E[G] =
∞∑
i=1

∆i,

where

∀i ≥ 1, ∆i = E[G | Fi]− E[G | Fi−1]

Then, we have

∞∑
i=1

Ent[∆2
i ] ≥ Var[G] log

(
Var[G]∑∞

i=1(E[|∆i|])2

)
.(1.11)

Notice that if Var[G] < Cλ2n15/16E
[
e2λFm

]
then we obtain (1.10). Otherwise, one has Var[G] ≥

Cλ2n15/16E
[
e2λFm

]
, so

Var[G] log

(
Cλ2n15/16E

[
e2λFm

]∑∞
i=1(E[|∆i|])2

)
≤

∞∑
i=1

Ent[∆2
i ].(1.12)
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As a result, (5.16) reduce to estimate the total influence (the sum in the denominator of left
hand side) and total entropy (the sum of right hand side).
Step 2. The bulk of the paper is devoted to bound these quantities, which is done in Proposition
4 and (5), respectively:

∞∑
i=1

(E[|∆i|])2 ≤ Cλ2E
[
e2λFm

]
n7/8, ∀λ ∈ R;(1.13)

∞∑
i=1

Ent[∆2
i ] ≤ Cλ2nE

[
e2λFm

]
, ∀|λ| ≤ 1

log2(d+11) n
.(1.14)

Using some the martingale computation, we can represent

E[|∆i|] ≤ C|λ|E
[
e
λFm(tei ,teci

) ×
(
Fm(log2 n, teci )− Fm(1, teci )

)]
;

and by the tensorization property of entropy and the log-Sobolev inequality for the Bernoulli
distribution,

∞∑
i=1

Ent[∆2
i ] ≤ 2C|λ|2

∞∑
i=1

E
[(

e
2λFm(log2 n,tec

i
)
+ e

2λFm(1,tec
i
)
)
×
(
Fm(log2 n, teci )− Fm(1, teci )

)2]
,

where (r, teci ) denote the configuration with value tei = r and tej if j ̸= i.
That is, we have to control the impact of resampling edge e along the geodesics of the

truncated passage times. We estimate this effect by the weight of the bypass that avoids e. The
key here is this bypass composes only of 1-weight edges, so its weight can be bounded by using
the notion of effective radius Re. Roughly speaking, the effective radius help us find a good
path bypassing a given edge e inside the annulus ARe(e) = Λ3Re(e) \ΛRe(e) (see Proposition 2).
The construction of this radius with appropriate properties is induced from the well-connected
properties of infinite cluster, which behaves (in a sense made precise later) like that of Zd. We
refer to Section 3 for more details. Now, we give the radius inequalities (see more details in
Subsection 5.3): for all i ≥ 1,

E[|∆i|] ≤
C

n1/4
|λ|

E
[
e2λFm

]
E

∑
e∈γei

R2
e

1/2

,

where γ0 is the geodesic of Tn and

γei = γ0 ∩ {ei − Λn1/4}; {ei − Λn1/4} = {e′ = (xei − z, yei − z) : z ∈ Λn1/4},

and

∞∑
i=1

E[|∆i|] ≤ C||λ|n

E
[
e2λFm

]
E

(∑
e∈γ0

Re

)2
1/2

,

and for λ ≤ 1
log2(d+11) n

,

∞∑
i=1

Ent[∆2
i ] ≤ Cλ2nE

[
e2λFm

]
+ C exp

(
ρn

log2(d+11) n

)
(P (Yn ≥ Cn))1/4,(1.15)
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where for some constant C∗,

Yn =
∑
e∈γ0

R̂2
e; R̂e = C∗Re ∧ log2 n.

To accomplish the desired influence bound, the remain work is to compute these expectations
on the right hand sides, i.e to understand the total cost of resampling the edges on random
set γ: Cost =

∑
e∈γ f(Re) with f a suitable function. We remark that the bound on Cost is

highly non-trivial since γ is random and the radii (Re)e∈Ed are not independent. Fortunately, we
can show that (Re)e∈Ed are weakly dependent in the sense that for each e and t ≥ 1 the event
{Re ≤ t} is independent of the radii R′

e with ∥e − e′∥∞ ≥ 4t. Using the technique of greedy
animal lattices for dependent weights, we can control the total cost (Corollary 4.3 (i) and (ii)):

sup
i≥1

E

∑
e∈γei

R2
e

 ≤ Cn1/4; E

(∑
e∈γ0

Re

)2
 ≤ Cn.

These combine with the above estimates to confirm (1.13).
One of the complicated point we must address is estimating the total entropy. In particular,

to control the the right hand side of (1.15), we need a large deviation estimate for Yn-the total
cost of the truncated radii (taking the value at most log2 n). Corollary 4.3 (iii) and the large
deviation estimate of γ0 give us,

P(Yn ≥ Cn) ≤ exp

(
− cn

log2(d+10) n

)
,(1.16)

for some positive constant C, c. In context of Bernoulli percolation, we can control the total
entropy by the total cost of effective radii, Y ′

n =
∑

e∈γ0 Re, using the same strategy. Similarly,
we have to deal with proving the large deviation estimate for Y ′

n instead of Yn. However, this issue
is not considerably follows by the theory of greedy lattice animals since (Re)e∈Ed are unbounded.
One explains why we switch to prove the sub-diffusive concentration for the modified graph
distance Tn, rather than the graph distance D∗

n. It pays a cost we must show the equivalent
between these distance in the next step. We remark that by the large deviation estimate of Fm,

E
[
e2λFm

]
≥ exp

(
− Cn

log2(d+11) n

)
, ∀λ ≥ −1

log2(d+11) n
.

Finally, combining two above estimates with (1.15) allows the bound (1.14).
Step 3. We will show that there is not a significant discrepancy between D∗

n and Tn. It is
easy to estimate this discrepancy from the following large deviation result (Theorem 2.1): for all
L ≥ log2 n,

P (|D∗
n − T(0∗, (ne1)

∗)| ≥ L) ≤ C exp(−cL/ logL),(1.17)

with positive constants c, C.
Using covering argument, the gap between D∗

n and T(0∗, (ne1)
∗) are bounded by the total

weight of the bypasses avoiding all log2 n-weight edges on the geodesic γn of T(0∗, (ne1)
∗).

Furthermore, we remark that the weight of bypasses can be simply controlled by using the
effective radius. Lemma 6.1 shows that if some certain conditions occur with high probability,
there exists a random subset Γn ⊂ γn of log2 n-weight edges such that
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(i) ∀e, f ∈ Γn, ∥e− f∥∞ ≥ max{Re, Rf},

(ii) |D∗
n − T(0∗, (ne1)

∗)| ≤ 2C∗Y
∗
n with Y ∗

n :=
∑

e∈Γn
Re.

This is essentially done through a selection process of a suitable family of bypasses. We emphasize
here that the property (i), in some sense, strengthen the local dependent of (Re)e∈Γn , so it enable
the estimate of the total cost Y ∗

n . The remain work we must prove a large deviation estimate for
Y ∗
n by using the coarse graining argument (see more details in Section 6): for all L ≥ log2 n,

P
(
∃Γn ⊂ γn satisfying (i) and Y ∗

n ≥ L
2C∗

)
≤ C−1 exp(−CL/ logL).

This deduce (1.17) and complete the proof.

1.4. Organization and notation of this paper. The paper is organized as follows. We
introduce the modified graph distance of D∗

n and we deduce Theorem 1.1 from Theorem 2.1 and
Theorem 2.2 in Section 2. In Section 3, we present the construction of random effective radius
and its application to control on the effect of flipping an edge. We study some moments and
large deviations of lattice animal of dependent weight in Section 4. In Section 5, we first revisit
concentration inequalities and then prove the subdiffusive concentration of the modified graph
distance. Finally, we estimate the discrepancy between the graph distance and its modified
version via the covering argument in Section 6.

Finally, we introduce some notations used in the paper.

• Metric. We denote by ∥ · ∥1, ∥ · ∥∞, ∥ · ∥2 the l1, l∞, l2 norms, respectively.

• Box. Let x ∈ Zd and N ∈ N, we will denote by ΛN (x) = x + [−N,N ]d the box centered
at x = (x1, . . . , xd) ∈ Zd with side length N . For convenience, we shortly write ΛN =
[−N,N ]d for ΛN (0).

• Set distance. For X,Y ⊂ Zd, we denote d∞(X,Y ) the distance between X and Y by

d∞(X,Y ) = min{∥x− y∥∞ : x ∈ X, y ∈ Y }.

• Edge distance. For each edge e ∈ Ed, we pick a deterministic rule to represent e = (xe, ye).
For any e, f ∈ Ed, we denote the distance between e and f by

∥e− f∥∞ = ∥xe − xf∥∞.

• Zd-path. We say that a sequence γ = (v0, . . . , vn) is a Zd-path if for all i ∈ [n], |vi−vi−1|1 =
1. From now on, we shortly write a path replacing of a Zd-path. In addition, if vi ̸= vj
for i ̸= j, then we say that γ is self-avoiding. Given A ⊂ Zd, let P(A) be the set of all
self-avoiding paths starting in A.

• Open path, open cluster and crossing cluster. Given a Bernoulli percolation on Zd with
parameter p, let Gp = (Zd, {e ∈ Ed : e is open}). We say that a path is open if all of its
edges are open. A open cluster is a maximal connected component of Gp. A open cluster
C is crossing for a box Λ, if for all d direction, there is an open path in C ∩ Λ connecting
the two opposite faces of Λ.
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• Diameter. For A ⊆ Zd and 1 ≤ i ≤ d, let us define

diami(A) = max
x,y∈A

|xi − yi|,

and we thus denote diam(A) the diameter of A by

diam(A) = max
1≤i≤d

diami(A).

2 The modified graph distance and proof of Theorem 1.1

Consider a Bernoulli first passage percolation as follows. Let (te)e∈Ed be i.i.d random weights
such that

te =

{
1 with probability p,

log2 n with probability 1− p.

Next, we define a modified graph distance T by

T(x, y) = inf
γ:x→y

∑
e∈γ

te,(2.1)

and set

Tn = T(0, ne1).

We couple this Bernoulli first passage percolation with Bernoulli percolation as follows: each
1-weight edge (resp. log2 n) is open (resp. closed). Recall that C∞ is the infinite cluster of open
(resp. 1-weight) edges in Bernoulli percolation and for each z ∈ Zd, z∗ is the closest point of z
in C∞.

Our aim is to show the subdiffusive concentration D∗
n via the modified graph distance Tn.

The proof is essentially based on two key ingredients. The following theorem is proved in Section
6 help us to control the discrepancy between T(0∗, (ne1)

∗) and D∗
n-the chemical distance in

Bernoulli percolation.

Theorem 2.1. There exist positive constants c1, c2 such that such that for all L ≥ log2 n,

P
[
|D∗

n − T(0∗, (ne1)
∗)| ≥ L

]
≤ c1 exp(−c2 L

logL).(2.2)

As a consequence, we have

E[|D∗
n − T(0∗, (ne1)

∗)|] ≤ O(log2 n).(2.3)

Subsequently, we establish the subdiffusive concentration for Tn as follows.

Theorem 2.2. There exist positive constants c1, c2 such that

P
(
|Tn − E[Tn]| ≥

√
n

lognκ
)
≤ c1e

−c2κ for all n ∈ N and κ ≥ 0.(2.4)
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We postpone its proof to Section 5 and give the proof of Theorem 1.1.

Proof of Theorem 1.1. By the triangle inequality,

|D∗
n − E[D∗

n]| ≤ |D∗
n − Tn|+ |Tn − E[Tn]|+ |E[Tn]− E[D∗

n]|.(2.5)

Notice also that

|Tn − T(0∗, (ne1)
∗)| ≤ log2 n(∥0∗∥1 + ∥(ne1)∗ − ne1∥1).(2.6)

Therefore,

|D∗
n − Tn| ≤ |D∗

n − T(0∗, (ne1)
∗)|+ |T(0∗, (ne1)∗)− Tn|

≤ |D∗
n − T(0∗, (ne1)

∗)|+ log2 n(∥0∗∥1 + ∥(ne1)∗ − ne1∥1).(2.7)

Combining this with triangle inequality, we have

E[|D∗
n − Tn|] ≤ E[|D∗

n − T(0∗, (ne1)
∗)|] + log2 nE[∥0∗∥1 + ∥(ne1)∗ − ne1∥1]

= E[|D∗
n − T(0∗, (ne1)

∗)|] + 2 log2 nE[∥0∗∥1],(2.8)

where for the last line we used the translation invariance. By Lemma 3.1, there exist positive
constants β1, β2 such that for t ≥ 0,

P[∥0∗∥1 ≥ t] ≤ β1 exp(−β2t),(2.9)

and thus
E[∥0∗∥1] = O(1).

Combining this with (2.8), (2.3) and (2.9), we get

|E[D∗
n]− E[Tn]| ≤ O(log2 n).

It follows from the above estimate and (2.5) that for all κ ≥ 1 and n large enough,

P
[
|D∗

n − E[D∗
n]| ≥ κ

√
n

logn

]
≤ P

[
|Tn − E[Tn]| ≥ κ

4

√
n

logn

]
+ P

[
|D∗

n − Tn| ≥ κ
4

√
n

logn

]
.

By Theorem 2.2,
P
[
|Tn − E[Tn]| ≥ κ

4

√
n

logn

]
≤ c1 exp(−c2κ/4),

for some c1, c2 > 0. In addition, using (2.7), (2.9) and Theorem 2.1,

P
[
|D∗

n − Tn| ≥ κ
4

√
n

logn

]
≤ P

[
|D∗

n − T(0∗, (ne1)
∗)| ≥ κ

8

√
n

logn

]
+ P

[
(∥0∗∥1 + ∥(ne1)∗ − ne1∥1) ≥ κ

8
n1/2

(logn)5/2

]
≤ P

[
|D∗

n − T(0∗, (ne1)
∗)| ≥ κ

8

√
n

logn

]
+ 2P

[
∥0∗∥1 ≥ κ

16
n1/2

(logn)5/2

]
≤ c1 exp(−c2κ

√
n

(logn)3/2
) + 2β1 exp

(
− β2κ

n1/2

(logn)5/2

)
≤ c′1 exp

(
− c′2κ

√
n

(logn)5/2

)
,(2.10)

for some c′1, c
′
2 > 0. Finally, combining the last three displays we get Theorem 1.1.

9



3 The effect of resampling

As we will see in the next sections, in essence, the problem of sub-diffusive concentration of
D∗

n can be reduced to understand the effect of resampling the edges along the geodesic of the
modified graph distance. To study this issue, given an edge e, we introduce the effective radius
Re that measures how large the change of passage time when flipping the weight of e from 0
to log2 n (see Subsection 3.2). Our strategy goes as follows. In the generalized first passage
percolation models with a bounded distribution ζ, we define for any z ∈ Zd,

Tz := T(z, z + ne1).

Our goal is to study how the random variable Tz changes when resampling the value of each
single edge e. In particular, the change can be estimated as: for a given edge-weight configuration
(te)e∈Ed and edge e, let (r, tec) denote the configuration with value te = r and te′ if e′ ̸= e. If
b ≥ a, it is easy to check that

∀z ∈ Zd, 0 ≤ Tz(b, tec)− Tz(a, tec) ≤ (b− a)I(e ∈ γz),

where γz is the geodesic of T(a, tec) from z to z + ne1. However, this bound becomes less
effective when b is much larger than a. To circumvent this difficulty, in our modified model with
ζ = pδ1 + (1 − p)δlog2 n, we will construct a bypass of 1-weight edges avoiding the box centered
at e. Thus the cost of resampling te can be bounded by the length of the bypass. Furthermore,
we can control this length by the effective radius (see Proposition 3). The next question is to
estimate the total cost of resampling all the edges in Ed. We shall see that this problem leads
to an investigation of total weight in a dependent percolation for which we use greedy lattice
animal theory to deal with, see more in Section 4.

3.1. Connectivity properties of the cluster. In this section, we consider a Bernoulli per-
colation with parameter p > pc(d). We introduce the notion of good annulus, which plays an
important role to construct suitable modified paths. We first review some properties of percola-
tion related to the graph distance and crossing cluster.

Thanks to [28, Theorem 2], we can control the size of the holes in the infinite cluster:

Lemma 3.1. Let p > pc(d). There exists a constant c = c(p) > 0 such that

∀t > 0, P (Λt ∩ C∞ = ∅) ≤ c−1 exp(−ct).(3.1)

Consequently, for all x ∈ zd and t > 0,

P(∥x− x∗∥∞ ≥ t) ≤ c−1 exp(−ct).(3.2)

The existence of open crossing clusters for boxes with high probability is proved in [27,
Theorem 7.68].

Lemma 3.2. There exist a constant c = c(p) > 0 such that for all t > 0,

P(Λt has a open crossing cluster) ≥ 1− c−1 exp(−ct).

The following lemma which is a result of Antal and Pisztora [3, (4.49)] that provides the
large deviation estimates for graph distance between two connected points.
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Lemma 3.3. There exist ρ = ρ(p), ρ1 = ρ1(p), ρ2 = ρ2(p) > 0 such that for every x ∈ Zd and
t ≥ ρ∥x∥∞,

P(∞ > D(0, x) ≥ t) ≤ ρ−1
1 exp(−ρ1t),(3.3)

and consequently,

P(D∗(0, x) ≥ t) ≤ ρ−1
2 exp(−ρ2t).(3.4)

For each N ≥ 1, we define the family of N -annuli:

∀e ∈ Ed, AN (e) = Λ3N (e) \ ΛN (e).(3.5)

Next, we introduce properties of good annuli. Roughly speaking, a good annulus possesses the
geometry of its percolation cluster so similar to Euclidean space that guarantees the feasibility of
constructing a modified path. Before defining what is good annulus, let us give some definitions.
Fix ρ as in Lemma 3.1 and Nρ = ⌊ N

8ρ2
⌋. We now divide the annulus AN (e) into a family of sub-

boxes of side-length Nρ such that two adjacent sub-boxes have only one shared face (see Figure
1a). We enumerate these sub-boxes as (Λi

Nρ
)i∈[mρ] with some constant mρ ≤ (6N/Nρ)

d = (48ρ2)d

and write

AN (e) =

mρ⋃
i=1

Λi
Nρ

.

For each A,B ⊂ Zd, we define

D(A,B) := inf{D(x, y) : x ∈ A, y ∈ B} = inf{|γ| : x ∈ A, y ∈ B, γ is a open path from x to y}.

In addition, for A ⊆ Zd, let DA be the graph distance using only open paths inside A.

Definition 3.4. For each e ∈ Ed, we say that the annulus AN (e) is good if the following hold:

(i) There exists a open cluster C in AN (e) which is crossing all sub-boxes (Λi
Nρ

)i∈[mρ];

(ii) For all x, y ∈ AN (e) such that d∞({x, y}, ∂AN (e)) ≥ N/2, ∥x−y∥∞ ≤ 2Nρ, if DAN (e)(x, y) <
∞, then DAN (e)(x, y) = D(x, y).

(iii) If D is a connected component in AN (e) such that diam(D) ≥ Nρ, then D ∩ C ̸= ∅.

Remark 3.5. The event {AN (e) is good} depends only on the state of the edges in Λ4N (e).

We would like to control the probability of being good for AN (e).

Lemma 3.6. Let p > pc(d). There exists c = c(p) > 0 such that for all N ≥ 1,

P(AN (e) is good) ≥ 1− c−1 exp(−cN).

Before proving this lemma, we need the following result, whose proof is postponed until
Appendix A. For N ≥ 1 and ε > 0, we define

EN = {there exists a crossing C and a connected component D in ΛN

such that diam(D) ≥ εN and D ∩ C = ∅}
LN = {there exist two disjoint open clusters of diameter at least εN in ΛN}.

11



Lemma 3.7. Let p > pc(d). There exists c1 = c1(ε, p) > 0 such that for all N ≥ 1.

P(EN ) + P(LN ) ≤ c−1
1 exp(−c1N).

Proof of Lemma 3.6. We first observe that the property (ii) directly follows from the following:

For all x, y ∈ AN (e) such that d∞({x, y}, ∂AN (e)) ≥ N/2, ∥x− y∥∞ ≤ 2Nρ,(ii’)

if DAN (e)(x, y) <∞ then D(x, y) ≤ 4ρNρ.

Thanks to the union bound and Lemma 3.3,

P(AN (e) does not satisfy (ii’)) ≤ c−1
3 |AN (e)|2 exp(−4c3ρNρ) ≤ c−1

3 exp(−2c3ρNρ),

for some positive constant c3 = c3(p). Therefore,

P(AN (e) satisfies (ii)) ≥ 1− c−1
3 exp(−2c3ρNρ).(3.6)

To deal with (i), let us define

Crb := {Λi
Nρ

has a open crossing cluster Ci, ∀i ∈ [mρ]}.

We note that

P(AN (e) satisfies (i)) ≥ P(Crb ∩ {Ci ∩ Ci+1 ̸= ∅, ∀i ∈ [mρ − 1]}).(3.7)

By Lemma 3.2, there exist a constant c4 = c4(p) > 0 such that

P(Crb) ≥ 1− c−1
4 exp(−c4Nρ).(3.8)

Remark that two consecutive sub-boxes always belong to a box of side-length 2Nρ in AN (e).
Thus by Lemma 3.7,

P(Ci ∩ Ci+1 ̸= ∅ ∀i ∈ [mρ − 1] | Crb) ≥ 1− c−1
5 exp(−c5Nρ),

for some constant c5 = c5(p) > 0. Hence, combining this with (3.8) and (3.7) gives

P(AN (e) satisfies (i)) ≥ 1− (c4c5)
−1 exp(−c4c5Nρ).(3.9)

Suppose now that AN (e) satisfies (i) but not (iii). Let D be the connected component in AN (e)
with diam(D) ≥ Nρ and C be the open cluster that crosses all sub-boxes (Λi

Nρ
)i∈[mρ], such that

D ∩ C = ∅. Then, there exists a sub-box Λ of side-length Nρ in AN (e) such that D′-the largest
connected component of D ∩ Λ satisfies diam(D′) ≥ Nρ

mρ
and D′ ∩ C ∩ Λ = ∅. Hence, thanks to

Lemma 3.7, there exists c6 = c6(p) > 0 such that for all N ≥ 1

P(AN (e) satisfies (i) but not (iii))
≤ P(there exists a sub-box Λ of side-length Nρ and a connected component D′ ⊆ Λ

satisfying diam(D′) ≥ Nρ

mρ
and D′ ∩ C ∩ Λ = ∅)

≤ c−1
6 Nd exp(−c6Nρ).

Combining this estimate with (3.6) and (3.9) yields that

P[AN (e) is good] ≥ 1− P(AN (e) does not satisfy one of the three properties (i)–(iii))

≥ 1− c−1 exp(−cN),

for some constant c = c(p) > 0.
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3.2. Effective radius and its application. Given γ, the path inside AN (e), we say that γ is
a crossing path of AN (e) if it joins ∂ΛN (e) and ∂Λ3N (e). Let C (AN (e)) be the collection of all
crossing paths of AN (e). Let C∗ be a fixed positive constant chosen in Proposition 1. To each
e ∈ Ed, AN (e) is called C∗-connected if V1N (e) ∩ V2N (e) occur where

V1N (e) := {∀γ1, γ2 ∈ C (AN (e)), DAN (e)(γ1, γ2) ≤ C∗N},
V2N (e) := {∀x, y ∈ AN (e) with DΛ3N (e)(x, y) <∞, DΛ4N (e)(x, y) ≤ C∗N}.

For each e ∈ Ed, we define the C∗-effective radius of e as

Re := inf{N ≥ 1 : AN (e) is C∗-connected}.

Remark 3.8. By the construction of the effective radius, for any e ∈ Ed and t ≥ 1 the event
{Re = t} depends only on the state of edges in the box Λe(4t).

The following propositions give a large deviation estimate for the effective radius.

Proposition 1. Let p > pc(d). There exist C∗ = C∗(d, p) ≥ 1, α = α(p) > 0, such that for all
e ∈ Ed and t ≥ 1,

P[Re ≥ t] ≤ α−1 exp(−αt).

As a consequence, all (Re)e∈Ed are finite almost surely.

Proof. Fix e ∈ Ed. By the definition of Re, we have for each t ≥ 2

P(Re ≥ t) ≤ 1− P(V1t−1(e) ∩ V2t−1(e)) ≤ P((V1t−1(e))
c) + P((V2t−1(e))

c).

Thus we only need to show that there exist some positive constants C∗ = C∗(d, p), β = β(p),
such that for N large enough

max{P((V1N (e))c),P((V2N (e))c)} ≤ β−1 exp(−βN).(3.10)

We first consider P((V1N (e))c). Recall that ρ is the constant as in Lemma 3.3 and Nρ = ⌊ N
8ρ2
⌋.

We now show that

(V1N (e))c ∩ {AN (e) is good} ⊆ E1,(3.11)

where

E1 := {there exists (xj)
m
j=1 ⊂ AN (e) with m ≤ mρ, such that ∥xj − xj+1∥∞ ≤ 2Nρ ∀j ∈ [m− 1]

and ∞ >
m−1∑
j=1

D(xj , xj+1) > C∗N}.

Suppose that (V1N (e))c occurs, i.e. there exist γ1, γ2 ∈ C (AN (e)) such that DAN (e)(γ1, γ2) >
C∗N . The delicate part of the proof is the construction of a short path inside AN (e) that joins γ1
to γ2. For each j ∈ {1, 2}, let πj is the largest connected path of γj∩

{
Λ
2N+

Nρ
2

(e) \ Λ
2N−Nρ

2

(e)
}

.
It is straightforward to check that

∀j ∈ {1, 2}, diam(πj) ≥ |πj | ≥ Nρ, d∞(πj , ∂AN (e)) ≥ 3N/4.
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(a) Illustration of the short path (dashed red curve)
joining γ1 to γ2 inside annulus AN (e)

(b) Illustration of the short path (dashed red curve)
joining x to y inside Λ4N (e)

Suppose in addition that AN (e) is good. Then by Definition 3.4 (iii), we have π1 ∩ C ≠ ∅ and
π2 ∩ C ̸= ∅. Therefore, there exist ℓ1 = ℓ1(γ1, C), ℓ2 = ℓ2(γ2, C) ∈ [mρ] such that

∀j ∈ {1, 2}, πj ∩ C ∩ Λ
ℓj
Nρ
̸= ∅; d∞(Λ

ℓj
Nρ

, ∂AN (e)) ≥ N

2
.(3.12)

As consequence, we can take a tuple (ij)
m
j=1 ⊆ [mρ] for some m ≤ mρ with i1 = ℓ1, im = ℓ2, such

that (Λ
ij
Nρ

)mj=1 is the sequence of consecutive sub-boxes satisfying

∀j ∈ [m], d∞(Λ
ij
Nρ

, ∂AN (e)) ≥ N/2.(3.13)

Using Definition 3.4 (i) of being good of AN (e), we can take a sequence (xj)
m
j=1 ⊆ AN (e) such

that x1 ∈ γ1 ∩C ∩Λi1
Nρ

, xm ∈ γ2 ∩C ∩Λim
Nρ

, xj ∈ C ∩Λ
ij
Nρ

for all j = 2, . . . ,m− 1. We remark that

∞ >
m−1∑
j=1

DAN (e)(xj , xj+1) ≥ DAN (e)(γ1, γ2) > C∗N.

Moreover, notice that for all j ∈ [m−1], ∥xj−xj+1∥∞ ≤ 2Nρ and for all j ∈ [m],d∞(xj , ∂AN (e)) ≥
N/2, since Λ

ij
Nρ

and Λ
ij+1

Nρ
are two consecutive sub-boxes satisfying (3.13). Hence, it follows from

Definition 3.4 (ii) of being good of AN (e) that for all j ∈ [m− 1]

DAN (e)(xj , xj+1) = D(xj , xj+1).

In conclusion, the sequence (xj)
m
j=1 ⊂ AN (e) satisfies m ≤ mρ, ∀j ∈ [m−1], ∥xj−xj+1∥∞ ≤ 2Nρ

and ∞ >
∑m−1

j=1 D(xj , xj+1) > C∗N . We complete the proof of (3.11).
Next, we estimate P[E1]. By the union bound,

P[E1] ≤ P[there exist x, y ∈ AN (e) such that ∥x− y∥∞ ≤ 2Nρ,∞ > D(xj , xj+1) > C∗
N
m ]

≤ (6N)d max
x,y∈AN (e)

∥x−y∥∞≤2Nρ

P
[
∞ > D(x, y) > C∗

N
mρ

]
.(3.14)

Taking C∗ = 48dρ2d−1/2 such that C∗N/mρ ≥ N
2ρ ≥ 2ρNρ, thanks to Lemma 3.3, if ∥x− y∥∞ ≤

2Nρ then

P
[
∞ > D(x, y) > C∗

N
m

]
≤ exp(ρ22ρN).(3.15)
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Combining this with (3.11) and Lemma 3.6 give us for all N large enough,

P((V1N (e))c) ≤ P((V1N (e))c ∩ {AN (e) is good}) + c1 exp(−c2N)

≤ O(Nd) exp(−ρ2
2ρN) + c1 exp(−c2N)

≤ exp(−ν1N),(3.16)

for some positive constant ν1 = ν1(p).
Now by similar but simpler arguments as in (3.16), we also have for N large enough

P[(V2N (e))c] ≤ exp(−ν2N),(3.17)

for some positive constant ν2 = ν2(p). Hence, (3.10) follows by combining (3.16) and (3.17) and
taking β = ν1 ∧ ν2.

For any path γ, we denote by clo(γ) the set of all closed edges in γ. The following propositions
help us build a bypass for a given edge in an arbitrary path, with economical cost (comparable
to the effective radius).

Proposition 2. Let C∗ be the constant as in Proposition 1. The following holds.

(i) For any path γ between x and y with x, y ∈ Zd, if an edge e ∈ γ satisfies x, y ̸∈ Λ3Re(e),
then there exists another path ηe between x and y such that:

(i-a) ηe ∩ ΛRe(e) = ∅ and ηe \ γ consists only of open edges;
(i-b) |ηe \ γ| ≤ C∗Re;

(ii) Let γ be a path between x and y with x, y ∈ C∞. Suppose that an closed edge e ∈ γ satisfies
either x /∈ Λ3Re(e) or y /∈ Λ3Re(e). Then there exists a path ηe between x and y, such that:

(ii-a) clo(ηe) ∩ γ ∩ ΛRe(e) = ∅ and ηe \ γ consists only of open edges;
(ii-b) |ηe \ γ| ≤ 2C∗Re.

Proof. Let us first consider (i). Assume that γ is a arbitrary path between x and y with x, y ∈ Zd.
If e ∈ γ and x, y /∈ Λ3Re(e), then γ crosses the annulus ARe(e) at least twice. Let γ1 and
γ2 be theses first and last crossing, in the order from x to y. Notice that both γ1 and γ2
belong to C (AN (e)). Furthermore, by the definition of Re, the event V1Re

(e) occurs, and so
DARe (e)(γ1, γ2) ≤ C∗Re. Let η̃e be a geodesic of DARe (e)(γ1, γ2). Then η̃e consists of only open
edges and satisfies

|η̃e| = DARe (e)(γ1, γ2) ≤ C∗Re.

Suppose that η̃e intersects with γ1 and γ2 at z1 and z2, respectively. We define

ηe = γx,z1 ∪ η̃e ∪ γz2,y,

where for any path γ and u, v ∈ γ we write γu,v the sub-path of γ from u to v. Notice that
|ηe \ γ| = |η̃e| ≤ C∗Re. Moreover, since γ1 and γ2 are the first and last crossing path of the
annulus ARe(e), one has γx,z1 ∩ΛRe(e) = ∅ and γz2,y ∩ΛRe(e) = ∅. In addition, η̃∩ΛRe(e) = ∅
since η̃e ⊂ ARe(e). Hence, ηe ∩ ΛRe(e) = ∅ and so we get (i).

For (ii), assume that γ is a arbitrary path between x and y with x, y ∈ C∞. Let e ∈ γ such
that either x /∈ Λ3Re(e) or y /∈ Λ3Re(e). We consider two cases:
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Figure 2 – A bypass consists only of open edges (dashed red curve) avoiding the box
centered at e

• Case 1: {x, y} /∈ Λ3Re(e). Then by Proposition 1 (iii), there exists a path ηe from x to y,
such that ηe \ γ consists of only open edges, ηe ∩ΛRe(e) = ∅, and |ηe \ γ| ≤ C∗Re. Hence,
we get (ii).

• Case 2: there is only x ∈ Λ3Re(e) or y ∈ Λ3Re(e). We suppose that x ∈ Λ3Re(e), the proof
for the remaining case is similar and omitted. The path γ crosses the annulus ARe(e) at
least once. We call the last crossing path by γ1. Since x ∈ C∞, there exists a open path
ξx,∞ joining x to ∞.

Case 2a: ξx,∞ crosses the annulus ARe(e). Let γ2 ⊂ ξx,∞ be the first crossing path of
ARe(e), so γ2 ∈ C (ARe(e)). Since the event V1Re

(e) occurs, there exists a geodesic of
DARe (e)(γ1, γ2) inside ARe(e), denoted by η̃e, that consists of only open edges and satisfies
|η̃e| ≤ C∗Re. Suppose that η̃e intersects with γ1 and γ2 at z1 and z2, respectively. By
the definition of γ2 and z2, ξx,z2-the sub-path of ξx,∞ from x to z2 is open and satisfies
ξx,z2 ⊂ Λ3Re(e). Thus DΛ3Re (e)(x, z2) < ∞. Hence, by the definition of V2Re

(e), one has
DΛ4Re (e)(x, z2) ≤ C∗Re. Let us denote by ξ̃x,z2 the geodesic of DΛ4Re (e)(x, z2) and define

ηe = ξ̃x,z2 ∪ η̃e ∪ γz1,y.

We observe that ηe \ γ ⊆ ξ̃x,z2 ∪ η̃e consists of only open edges, and

|ηe \ γ| ≤ |γx,z2 |+ |η̃e| ≤ 2C∗Re, clo(ηe) ∩ γ ∩ ΛRe(e) = ∅,

since ηe ∩ γ ∩ ΛRe ⊂ ξ̃x,z2 , which is open and clo(ηe) is closed. Hence, (ii) follows.
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Figure 3 – Illustration of Case 2a: ξx,∞ crosses the annulus ARe(e)

Case 2b: ξx,∞ does not cross the annulus ARe(e). Let γe,x be the sub-path of γ joining e
to x. Hence, ηe,∞ := γe,x ∪ ξx,∞ crosses the annulus ARe(e). Let γ2 ⊂ ηe,∞ be the first
crossing path of ARe(e), and so γ2 ∈ C (ARe(e)). By the definition of V1Re

(e), there exists
a geodesic of DARe (e)(γ1, γ2) inside ARe(e), denoted by η̃e, that consists of only q-open
edges and satisfies |η̃e| ≤ C∗Re. Suppose that η̃e intersects with γ1 and γ2 at z1 and z2,
respectively.

(a) Sub-case 2b: z2 ∈ η̃e ∩ γe,x (b) Sub-case 2b: z2 ∈ η̃e ∩ ξx,∞

Figure 4 – Illustration of Case 2b: ξx,∞ does not cross the annulus ARe
(e)

If z2 ∈ η̃e ∩ γe,x, we set
ηe = γx,z2 ∪ η̃e ∪ γz1,y,

where γx,z2 is the sub-path of γ from x to z2. Therefore, ηe \γ = η̃e, consists of only q-open
edges, and

|ηe \ γ| = |η̃e| ≤ C∗Re, ηe ∩ ΛRe(e) = ∅.

If z2 ∈ η̃e ∩ ξx,∞, we have DΛ3Re (e)(x, z2) <∞. Using similar arguments as in Case 2a, we
have DΛ4Re (e)(x, z2) ≤ C∗Re. We then call ξ̃x,z2 the geodesic of DΛ4Re (e)(x, z2) and define

ηe = ξ̃x,z2 ∪ η̃e ∪ γz1,y.

Hence, ηe \ γ ⊂ ξ̃x,z2 ∪ η̃e consists of only open edges, and

|ηe \ γ| ≤ |ξ̃x,z2 |+ |η̃e| ≤ 2C∗Re, clo(ηe) ∩ γ ∩ ΛRe(e) = ∅,

since ηe ∩ γΛRe ⊂ ξ̃x,z2 is open and clo(ηe) is closed. Hence, we get (ii).
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As a consequence, we can control the effect of resampling an edges on the geodesic of the
modified graph distance by the following result.

Proposition 3. Let p > pc(d). Assume that (Re)e∈Ed be the sequence of C∗-effective radii as in
Proposition 1. The following holds for all z ∈ Zd and e ∈ Ed,

0 ≤ Tz(log
2 n, tec)− Tz(1, tec) ≤ (log2 nI(Uz,e) + R̂e)I(e ∈ γz),(3.18)

where γz is a geodesic of Tz(1, tec),

Uz,e = {Re ≥ rz,e}, rz,e =
1

3
(∥e− z∥∞ ∧ ∥e− (z + ne1)∥∞) ,

and
R̂e = C∗Re ∧ log2 n.

Proof. Since Tz is increasing, the first inequality in (3.18) is trivial. By the definition of the
modified graph distance, if e /∈ γz then

Tz(log
2 n, tec)− Tz(1, tec) = 0.(3.19)

If e ∈ γz and Uz,e occurs (or equivalently either z or z + ne1 is in Λ3Re(e)), we use the trivial
bound

(Tz((log n)
2, tec)− Tz(1, tec))I(e ∈ γz;Uz,e) ≤ (log2 n)I(e ∈ γz;Uz,e).(3.20)

On the other hand, suppose that e ∈ γz and Uc
z,e occurs (or neither z nor z+ ne1 is in Λ3Re(e)).

Applying Proposition 1 (iii) to γ = γz, we have there exists a path ηe between z and z + ne1
such that

Tz(log
2 n, tec)− Tz(1, tec) ≤ T(ηe \ γz) ≤ C∗Re.

Moreover, we always have Tz(log
2 n, tec)− Tz(1, tec) ≤ log2 n. Therefore,

(Tz((log n)
2, tec)− Tz(1, tec))I(e ∈ γz;Uc

z,e) ≤ (C∗Re ∧ log2 n)I(e ∈ γz).(3.21)

Combining this estimate with (3.20), we arrive at

Tz(log
2 n, tec)− Tz(1, tec) ≤ (log2 nI(Uz,e) + (C∗Re ∧ log2 n))I(e ∈ γz),(3.22)

with together with (3.19) implies the desirable result.

4 Lattice animals of dependent weight

We first recall the result derived from the theory of greedy lattice animals that helps us control
the maximal weight of paths in locally dependent percolation.

Given an integer M ≥ 1 and positive constants a,A, suppose that (Ie,M )e∈Ed is a collection
of Bernoulli random variables satisfying
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(E1) (Ie,M )e∈Ed are aM−dependent, i.e. for all e ∈ Ed, the variable Ie,M is independent of all
variables {Ie′,M : e′ ̸∈ ΛaM (e)}.

(E2)
qM = sup

e∈Ed

E[Ie,M ] ≤ AM−d.

For any path γ, we define

N(γ) =
∑
e∈γ

Ie,M , NL,M = max
γ∈ΞL

N(γ),

where for L ≥ 1,

ΞL = {γ : γ is a set of edges in ΛL; |γ| ≤ L}.

Lemma 4.1. [8, Lemma 2.6] Let M ≥ 1, a, A > 0 and (Ie,M )e∈Ed be a collection of random
variables satisfying (E1) and (E2). Then, there exists a positive constant C = C(a,A, d) such
that

(i) For all L ∈ N,

E[NL,M ] ≤ CLq
1/d
M Md+1.

(ii) If t ≥ CMdmax
(
1,MLq

1/d
M

)
, then

P(NL,M ≥ t) < 2d exp(−t/(16M)d).

We aim at extending this result to general weight distributions. Let a,A be positive constants.
Suppose that (Xe)e∈Ed is a collection of non-negative random variables satisfying the following:
for all M ≥ 1

(P1) for all e ∈ Ed, the event {M − 1 < Xe ≤ M} is independent of the state of all edges
{e′ : e′ /∈ ΛaM (e)},

(P2) there exists a function ϕ : R+ → R+ such that ϕ(M) ≤ AM−d and

qM = sup
e∈Ed

P(M − 1 < Xe ≤M) ≤ ϕ(M).

Lemma 4.2. Let X = (Xe)e∈Ed be a family of random variables satisfying (P1) and (P2) and
let f : R+ → R+ be an increasing function satisfying

∞∑
M=1

(
f(M) + f2(M) + f4(M)

)
Md+1ϕ(M)1/d <∞.(H)

Then there exits a positive constant C = C(a,A, f), such that the following holds.

(i) For all L ≥ 1,

E

(max
γ∈ΞL

∑
e∈γ

f(Xe)

)2
 ≤ CL2.
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(ii) Let γ be a random path starting from 0 in the same probability space of X. Then for all
L ≥ 1,

E

(∑
e∈γ

f(Xe)

)2
 ≤ CL2 + C

∑
ℓ≥L

ℓ2(P(|γ| = ℓ))1/2.

(iii) Let m ≥ 1 and γ be a random set of edges of B(m) in the same probability space of X.
Then for all L ≥ 1,

E

(∑
e∈γ

f(Xe)

)2
 ≤ C(L+m)2 + C

∑
ℓ≥L

(ℓ+m)2(P(|γ| = ℓ))1/2.

(iv) There exist constants α, β > 0 such that for any random path γ starting from 0 in the same
probability space of X and integers L,K satisfying LMϕ(M)1/d ≥ 1 for all K ≥M ≥ 1,

P

(∑
e∈γ

f(X̂e) ≥ αL

)
≤

K∑
M=1

exp(−βLMϕ(M)1/d) + P(|γ| ≥ L),

where X̂e = Xe ∧K.

Proof. We first prove (i). By Cauchy-Schwarz inequality,

E

(max
γ∈ΞL

∑
e∈γ

f(Xe)

)2
 ≤ E

[
max
γ∈ΞL

|γ|
∑
e∈γ

f2(Xe)

]
≤ LE

[
max
γ∈ΞL

∑
e∈γ

f2(Xe)

]
,(4.1)

since |γ| ≤ L for all γ ∈ ΞL. For set of edges γ, we define

Aγ
M := |{e ∈ γ : M − 1 < Xe ≤M}| =

∑
e∈γ

Ie,M ,

where

Ie,M := I(M − 1 < Xe ≤M).

Since f is increasing, ∑
e∈γ

f2(Xe) ≤
∑
M≥1

f2(M)Aγ
M + f2(0)|γ|,(4.2)

and hence

E

[
max
γ∈ΞL

∑
e∈γ

f2(Xe)

]
≤ E

[ ∑
M≥1

f2(M) max
γ∈ΞL

∑
e∈γ

Ie,M

]
+ f2(0)L

=
∑
M≥1

f2(M)E [NL,M ] + f2(0)L,(4.3)

where
NL,M = max

γ∈ΞL

∑
e∈γ

Ie,M .
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By (P1) and (P2), the conditions (E1) and (E2) are satisfied for all M ≥ 1. Now using Lemma
4.1 (i), we obtain that for all M ≥ 1,

E[NL,M ] = O(1)LMd+1ϕ(M)1/d.(4.4)

This together with (4.3) implies that

E

[
max
γ∈ΞL

∑
e∈γ

f2(Xe)

]
= O(1)L

∑
M≥1

f2(M)Md+1(ϕ(M))1/d = O(L),

using (H). Finally, combining the above estimate with (4.1), we obtain (i). Next, to prove (ii),
we decompose

E

(∑
e∈γ

f(Xe)

)2
 = E

(∑
e∈γ

f(Xe)

)2

I(|γ| < L)

+ E

(∑
e∈γ

f(Xe)

)2

I(|γ| ≥ L)


≤ E

(max
γ∈ΞL

∑
e∈γ

f(Xe)

)2
+

∞∑
ℓ=L

E

[
|γ|
∑
e∈γ

f2(Xe)I(|γ| = ℓ)

]

≤ O(L2) +
∞∑
ℓ=L

ℓE

[
max
γ∈Ξℓ

∑
e∈γ

f2(Xe)I(|γ| = ℓ)

]
,(4.5)

by using (i). Moreover, by Cauchy-Schwarz inequality and (i),

E

[
max
γ∈Ξℓ

∑
e∈γ

f2(Xe)I(|γ| = ℓ)

]
≤ E

(max
γ∈Ξℓ

∑
e∈γ

f2(Xe)

)2
1/2

E [I(|γ| = ℓ)]1/2

≤ O(ℓ)(P(|γ| = ℓ))1/2.

Combining the last two displays yields (ii). We can easily prove (iii) by using the same arguments
as for (ii) and the fact that if |γ| ≤ t then γ ∈ Ξt+m for all t ≥ 1.

Finally, we show (iv). Using X̂e ≤ K and the similar estimate as in (4.2), we have for any
α ≥ 2f(0)

P

(∑
e∈γ

f(X̂e) ≥ αL

)
≤ P

(∑
e∈γ

f(X̂e) ≥ αL, |γ| ≤ L

)
+ P (|γ| ≥ L)

≤ P

(
K∑

M=1

f(M)NL,M ≥ αL/2

)
+ P (|γ| ≥ L) ,(4.6)

Furthermore, the conditions (E1) and (E2) are satisfied for all M ≥ 1. Let C be the constant as
in Lemma 4.1, and set

α = 2f(0) + 2C

∞∑
M=1

f(M)(ϕ(M))1/dMd+1.
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Note that α ∈ (0,∞) by (H). Using Lemma 4.1 (ii),

P

(
K∑

M=1

f(M)NL,M ≥ αL/2

)
≤ P

(
K∑

M=1

f(M)NL,M ≥
K∑

M=1

Cf(M)ϕ(M)1/dLMd+1

)

≤
K∑

M=1

P
(
NL,M ≥ Cϕ(M)1/dLMd+1

)
≤

K∑
M=1

exp(−cLMϕ(M)1/d),

with c = c(d) a positive constant. Combining this with (4.6), we derive (iv).

In the next section, we shall apply Lemma 4.2 to the sequence of effective radii. Let C∗ be
the constant and (Re)e∈Ed be the collection of effective radii as in Proposition 1. We define also

R̂e = min{C∗Re, log
2 n}.

Corollary 4.3. There exists a positive constant C such that the following holds for all n,m
sufficiently large.

(i) Let γ be a random path in the same probability space of (Re)e∈Ed, starting from 0 and
satisfying P(|γ| = ℓ) ≤ Cℓ−7 for all l ≥ Cn. Then

E
[(∑

e∈γ
R̂e

)2]
≤ Cn2.

(ii) Let γ be a random set of edges of B(m) for some m ≥ 1 in the same probability space of
(Re)e∈Ed satisfying P(|γ| = ℓ) ≤ Cℓ−7 for all ℓ ≥ Cm. Then

E
[∑
e∈γ

R̂2
e

]
≤ Cm.

(iii) Let γ be a random path starting from 0 in the same probability space of (Re)e∈Ed. Then

P

(∑
e∈γ

R̂2
e ≥ Cn

)
≤ C log2 n exp

(
− n

C log2(d+10) n

)
+ P(|γ| ≥ Cn).

Proof. Let ϕ(x) = x−(d2+11d) for x > 0. We can take f(x) = x for the proof (i) and f(x) = x2 for
the proofs of (ii) and (iii). It is easy to check that the condition (H) holds true. By Proposition
1 (iii), the radii (Re)e∈Ed satisfy (P1). Moreover, the condition (P2) is verified using Proposition
1 (ii). Hence, the corollary directly follows from Lemma 4.2.

5 Subdiffusive concentration of Tn

The proof strategy for Theorem 2.2 relies on establishing a connection between bounds on
Var(eλTn/2) and exponential concentration ([5, Lemma 4.1]). To attain the required variance
bound (Theorem 5.3), we apply the Falik-Samorodnitsky inequality (Lemma 5.1) to a martin-
gale decomposition of the random variable eλFm , where Fm represents an averaged version of the
passage time. This approach was initially introduced by Benaïm and Rossignol in [5] and later
used by Damron, Hanson, and Sosoe in [15]. Finally, we estimate the tails of the true passage
time Tn based on those of Fm (see more details in Section 5.2).
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5.1. Variance bound via entropy inequality. Let us enumerate the edges Ed as {e1, e2, . . .}
and let a, b ∈ R ∪ {+∞}. Assume that (tei)i≥1 are i.i.d. random variables with the same
distribution as

ζ = pδa + (1− p)δb.

Let g : {a, b}Ed → R be a function of (tei)i≥1. Fix λ ∈ R and define

G = Gλ = eλg.

We write
G = G(tei , teci )

to emphasize G is the function of the random variables tei and teci = (tej )j ̸=i. We define the
natural filtration of these random variables as

F0 = ∅, Fi = σ(te1 , . . . , tei),

for each i ≥ 1. Now we consider the martingale increments

∀i ≥ 1, ∆i = E[G | Fi]− E[G | Fi−1] = E[G(t′ei , teci )−G(tei , teci ) | Fi−1],

where t′ei is an independent copy of tei . We will bound the variance of G based on the following
entropy inequality by Falik and Samorodnitsky [21, Lemma 2.3].

Lemma 5.1 (Falik-Samorodnitsky). If E[G2] <∞ then

∞∑
i=1

Ent[∆2
i ] ≥ Var[G] log

Var[G]∑∞
i=1(E[|∆i|])2

,(5.1)

where Ent denotes the entropy operator: if X is a non-negative random variable such that E[X] <
∞, then

Ent[X] = E
[
X log

X

E[X]

]
.

The following estimate on the total entropy is derived from the tensorization property of
entropy and the log-Sobolev inequality for the Bernoulli distribution. Notably, the proof of this
result follows the same approach as in [16, Lemma 6.3], albeit in a simpler context.

Lemma 5.2. Assume that E[G4] <∞. Then, there exists a positive constant C depending on p
such that

∞∑
i=1

Ent[∆2
i ] ≤ C

∞∑
i=1

E[(G(b, teci )−G(a, teci ))
2].(5.2)

5.2. Proof of Theorem 2.2. Instead of directly showing the subdiffusive concentration of Tn,
we will employ a strategy inspired by Benjamini, Kalai, and Schramm [6], known as the BKS
trick. This approach involves proving the subdiffusive concentration for a geometric average of
passage times, a notion previously used in both [2] and [29]. It is expected that the majority
of edges in the lattice have a low probability of lying in the geodesic of Tn, meaning they have
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a small influence. However, this does not hold for edges very close to the origin, and the BKS
trick provides a way to circumvent this challenge.

First of all, let us define a spatial average of the first passage time,

(5.3) Fm =
1

|Λm|
∑
z∈Λm

Tz,

where

Tz := T(z, z + ne1), m = ⌊n1/4⌋.

To prove Theorem 2.2, it now suffices to show the following variance bound.

Theorem 5.3. There exists a constant c > 0 such that

∀ |λ| < 1√
K

, Var
[
eλFm

]
≤ Kλ2E

[
e2λFm

]
<∞,(5.4)

where K =
cn

log n
.

The following result is a direct consequence of Theorem 5.3. We refer the reader to [5, Lemma
4.1] for a proof.

Corollary 5.4. There exist positive constants c′1, c
′
2 such that

P
(
|Fm − E[Fm]| ≥

√
n

log n
κ

)
≤ c′1e

−c′2κ, ∀κ ≥ 0.(5.5)

Next, we prepare a simple large deviation estimate for the first passage time which will be
used to compare Tn and Fm.

Lemma 5.5. There exist positive constants ρ, ρ1, ρ2 such that for all x, y ∈ Zd and t ≥ ρ∥x−y∥∞,

P(T(x, y) ≥ t) ≤ ρ1 exp(−ρ2t/ log2 n).(5.6)

Proof. Observe that T(u, v) ≤ log2 n∥u − v∥1 for all u, v ∈ Zd. Therefore, by the triangle
inequality

P (T(x, y) ≥ t) ≤ P (T(x, x∗) + T(y, y∗) + T(x∗, y∗) ≥ t)

≤ P (D∗(x, y) ≥ t/2) + P
(
∥x− x∗∥1 ≥ t

4 log2 n

)
+ P

(
∥y − y∗∥1 ≥ t

4 log2 n

)
,

where we recall that z∗ is the closest point of z in the infinite cluster C∞. The last two terms
are bounded by β1 exp

(
−β2t
log2 n

)
, for some positive constants β1, β2 using Lemma 3.1, whereas

by Lemma 3.3, the first term is bounded by ρ−1
2 exp(−ρ2t) when t ≥ ρ∥x − y∥∞ with some

ρ, ρ1, ρ2 > 0. Hence, the result follows.

Proof of Theorem 2.2. Since E[Fm] = E[Tn],

|Tn − E[Tn]| = |Fm − E[Tn] + Tn − Fm| = |Fm − E[Fm] + Tn − Fm|
≤ |Fm − E[Fm]|+ |Tn − Fm|.(5.7)
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Thus, for all M ≥ 1, using the union bound, we have

P (|Tn − E[Tn]| ≥ 4M) ≤ P (|Fm − E[Fm]| ≥ 2M) + P (|Tn − Fm| ≥ 2M) .(5.8)

By subadditivity property,

|Tn − Fm| =
∣∣∣Tn −

1

|Λm|
∑
z∈Λm

Tz

∣∣∣ ≤ 1

|Λm|
∑
z∈Λm

|T(0, ne1)− T(z, z + ne1)|

≤ 1

|Λm|
∑
z∈Λm

(T(0, z) + T(ne1, ne1 + z)).(5.9)

Observe that if the event
{

1
|Λm|

∑
z∈Λm

(T(0, z) + T(ne1, ne1 + z)) ≥ 2M
}

occurs,

max
z∈Λm

T(0, z) ≥M or max
z∈Λm

T(ne1, ne1 + z) ≥M.(5.10)

Combining this with union bound, it yields that

P

(
1

|Λm|
∑
z∈Λm

(T(0, z) + T(ne1, ne1 + z)) ≥ 2M

)

≤ P
(
max
z∈Λm

T(0, z) ≥M

)
+ P

(
max
z∈Λm

T(ne1, ne1 + z) ≥M

)
= 2P

(
max
z∈Λm

T(0, z) ≥M

)
≤ 2|Λm| max

z∈Λm

P (T(0, z) ≥M) ,(5.11)

where for the equation we have used the translation invariance.
Let M = 1

4

√
n

lognκ. Since m = o(M), Lemma 5.5 shows that

max
z∈Λm

P (T(0, z) ≥M) ≤ ρ1e
−ρ2M/ log2 n,(5.12)

for some positive constants ρ1, ρ2. Using this estimate, (5.9), and (5.11) yields

P
(
|Tn − Fm| ≥

κ

2

√
n

logn

)
≤ O(md) exp

(
− ρ2

√
n

4
√

log5 n
κ
)
.

Combining this with Corollary 5.4 and (5.8), it follows that

P
(
|Tn − E[Tn]| ≥

√
n

log n
κ

)
≤ c1e

−c2κ, ∀κ ≥ 0,(5.13)

for some positive constants c1, c2.

Proof of Theorem 5.3. According to the Lemma 5.1, the variance bound relies on two crucial
factors: the estimate of total influence and total entropy. These keys are presented in the
following results.

Proposition 4. Let d ≥ 2. There exists a positive constant C such that
∞∑
i=1

(E[|∆i|])2 ≤ Cλ2E
[
e2λFm

]
n(9−d)/8, ∀λ ∈ R.
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Proposition 5. Let d ≥ 2. There exists a positive constant C such that
∞∑
i=1

Ent[∆2
i ] ≤ Cλ2nE

[
e2λFm

]
, ∀|λ| ≤ 1

log2(d+11) n
.(5.14)

By Lemma 5.1, Propositions 4 and 5, we have

Var
[
eλFm

]
≤ C

(
log

Var[eλFm ]

Cλ2n(9−d)/8E [e2λFm ]

)−1

λ2nE
[
e2λFm

]
.(5.15)

We can assume that

Var[eλFm ] ≥ Cλ2n15/16E
[
e2λFm

]
,(5.16)

since otherwise there is nothing left to prove. By (5.15) and (5.16), there exist constants c, C > 0
such that for any λ ≤ C

log2(d+11) n
,

Var
[
eλFm

]
≤ cλ2 n

log n
E
[
e2λFm

]
.

This concludes the proof of Theorem 5.3 by substituting λ/2 for λ.
In the rest of Section 5, we prove Propositions 4 and 5 in subsections 5.3 and 5.4 respectively.

5.3. Bound on the total influence: Proof of Proposition 4. Proposition 4 is a direct
consequence of the following lemma with the notice that m = ⌊n1/4⌋.

Lemma 5.6. Let d ≥ 2. There exists a constant C > 0 such that the following holds.

(i)

sup
i≥1

E[|∆i|] ≤ C|λ|m(1−d)/2
(
E
[
e2λFm

])1/2
, ∀λ ∈ R.(5.17)

(ii)
∞∑
i=1

E[|∆i|] ≤ C|λ|n
(
E
[
e2λFm

])1/2
, ∀λ ∈ R.(5.18)

5.3.1. Proof of Lemma 5.6 (i). Fix i ≥ 1 and consider

∆i = E[G|Fi]− E[G|Fi−1] = E
[
G(t′ei , teci )−G(tei , teci )|Fi−1

]
.(5.19)

We have

E [|∆i|] ≤ E
[
|G(t′ei , teci )−G(tei , teci )|

]
= 2E

[(
e
λFm(t′ei ,teci

) − e
λFm(tei ,teci

))
+

]
,

where t′ei is the independent copy of tei . Furthermore, using the inequality that (eλa − eλb)+ ≤
|λ|(eλa + eλb)|a− b|, we get

E[|∆i|] ≤ 2|λ|E
[(

e
λFm(t′ei ,teci

)
+ e

λFm(tei ,teci
)
) ∣∣Fm(t′ei , teci )− Fm(tei , teci )

∣∣]
= 4|λ|E

[
e
λFm(tei ,teci

) ∣∣Fm(t′ei , teci )− Fm(tei , teci )
∣∣]

≤ 8|λ|E
[
e
λFm(tei ,teci

) (
Fm(log2 n, teci )− Fm(1, teci )

)]
,(5.20)
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where for the last line we have used
∣∣Fm(t′ei , teci )− Fm(tei , teci )

∣∣ ≤ 2
(
Fm(log2 n, teci )− Fm(1, teci )

)
.

For each z ∈ Zd, let γz be a geodesic of Tz(1, teci ). Let C∗ be the constant and (Rei)i≥1 be the
collection of random radii obtained in Proposition 1. By Proposition 3,

Tz(log
2 n, teci )− Tz(1, teci ) ≤ (log2 nI(Uz,ei) + R̂ei)I(ei ∈ γz),

where
Uz,ei = {Rei ≥ rz,ei}, rz,ei =

1
3∥ei − z∥∞ ∧ ∥ei − (z + ne1)∥∞,

and
R̂ei = C∗Rei ∧ log2 n.

Therefore,

Fm(log2 n, teci )− Fm(1, teci ) =
1

|Λm|
∑
z∈Λm

(Tz(log
2 n, teci )− Tz(1, teci ))

≤ 1

|Λm|
∑
z∈Λm

(
log2 nI(Uz,ei) + R̂ei

)
I(ei ∈ γz).

Observe that if the event Uz,ei ∩{rz,ei ≥ log3 n} occurs, then C∗Rei ≥ log2 n and so R̂ei = log2 n.
Therefore, the above estimate implies that

(5.21) 0 ≤ Fm(log2 n, teci )− Fm(1, teci ) ≤ Ai,

where

Ai =
1

|Λm|
∑
z∈Λm

(
2R̂ei + log2 nI(rz,ei ≤ log3 n)

)
I(ei ∈ γz).(5.22)

Combining this with (5.20) and Cauchy-Schwarz inequality yields

E[|∆i|] ≤ 8|λ|E
[
eλFmAi

]
(5.23)

≤ 8|λ|E
[
e2λFm

]1/2
E
[
A2

i

]1/2
.(5.24)

Here for the first line, we remark that Fm(tei , teci ) = Fm.
Next we will estimate E[A2

i ]. Notice that for all edges e ∈ Ed and Λ ⊂ Zd,

(5.25) |{z ∈ Λ : rz,e ≤ t}| ≤
∣∣∣{z ∈ Zd : rz,e ≤ t}

∣∣∣ = O(td).
Therefore,

1

Λm

∑
z∈Λm

I(rz,ei ≤ log3 n) ≤ O(log
3d n)

|Λm|
= O(m1−d),(5.26)

since m = ⌊n1/4⌋. Thus, by Cauchy-Schwarz inequality,

A2
i ≤

8

Λm

∑
z∈Λm

R̂2
eiI(ei ∈ γz) +O(m2−2d).(5.27)
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Combining this estimate and the translation invariance, we have

E[A2
i ] ≤

8

|Λm|
E

[ ∑
z∈Λm

R̂2
ei−zI(ei − z ∈ γ0)

]
+O(m2−2d)

=
8

|Λm|
E

[∑
e∈γ

R̂2
e

]
+O(m2−2d),(5.28)

where

γ = γ0 ∩ {ei − Λm}, {ei − Λm} = {e′ = (xei − z, yei − z) : z ∈ Λm}.

Observe that if |γ| ≥ ℓ then there exist x, y ∈ V (ei,m)-the vertex set of ei − Λm such that
T(x, y) ≥ ℓ. Therefore, using the union bound and Lemma 5.5 we have for all l ≥ ρm with ρ a
sufficiently large constant,

P(|γ| ≥ ℓ) ≤ P (∃x, y ∈ V (ei,m) : T(x, y) ≥ ℓ)

≤ (2m+ 1)2d max
x,y∈V (ei,m)

P (T(x, y) ≥ ℓ)

≤ O(1) exp
(
− cl

log2 n

)
,(5.29)

with some positive constant c > 0. Here, notice that to apply Lemma 5.5, we have used ∥x −
y∥∞ ≤ 2m for all x, y ∈ V (ei,m).

The above estimate verifies the condition in Corollary 4.3 (ii) and thus

E
[∑
e∈γ

R̂2
e

]
= O(m).(5.30)

Combining (5.28) and (5.30), it yields that for all i ≥ 1,

E[A2
i ] = O(m1−d).(5.31)

Finally, we conclude from (5.24) and (5.31) that

sup
i≥1

E[|∆i|] ≤ O(1)|λ|
(
E
[
e2λFm

])1/2
m(1−d)/2,(5.32)

and the result follows. □

5.3.2. Proof of Lemma 5.6 (ii). Using (5.23) and Cauchy-Schwarz inequality, we obtain that

∞∑
i=1

E[|∆i|] ≤ 8|λ|E
[
eλFm

∞∑
i=1

Ai

]
≤ 8|λ|

(
E
[
e2λFm

])1/2(E[( ∞∑
i=1

Ai

)2])1/2
,(5.33)
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where Ai is defined as in (5.22). Notice that

∞∑
i=1

Ai =
1

|Λm|
∑
z∈Λm

∞∑
i=1

(
2R̂ei + log2 nI(rz,ei ≤ log3 n)

)
I(ei ∈ γz)

=
2

|Λm|
∑
z∈Λm

∑
e∈γz

R̂e +
log2 n

|Λm|
∑
z∈Λm

∑
e∈γz

I(rz,e ≤ log3 n)

=
2

|Λm|
∑
z∈Λm

∑
e∈γz

R̂ei +O(log3d+2 n),

by using (5.25). Therefore, by Cauchy-Schwarz inequality,( ∞∑
i=1

Ai

)2
≤ 8

|Λm|
∑
z∈Λm

(∑
e∈γz

R̂e

)2
+O(log6d+4 n).(5.34)

It follows from Lemma 5.5 that

P(|γz| ≥ ρn) ≤ ρ1 exp(−ρ2n/ log2 n).

Then applying Corollary 4.3 (i) gives

E

(∑
e∈γz

R̂e

)2
 = O(n2).(5.35)

Combining (5.34) with (5.35) yields

E

( ∞∑
i=1

Ai

)2
 = O(n2),(5.36)

which together with (5.33) implies that

∞∑
i=1

E[|∆i|] ≤ O(1)|λ|n
(
E
[
e2λFm

])1/2
.

5.4. Entropy bound: Proof proposition 5 . Using Lemma 5.2, the total entropy is bounded
by

∞∑
i=1

Ent[∆2
i ] ≤ C

∞∑
i=1

E
[
(G(log2 n, teci )−G(1, teci ))

2
]

= C

∞∑
i=1

E
[(

e
λFm(log2 n,tec

i
) − e

λFm(1,tec
i
)
)2]

≤ 2C|λ|2
∞∑
i=1

E
[(

e
2λFm(log2 n,tec

i
)
+ e

2λFm(1,tec
i
)
)

×
(
Fm(log2 n, teci )− Fm(1, teci )

)2]
.(5.37)
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Here for the last line we used the inequality that |eλa − eλb| ≤ |λ|(eλa + eλb)(a− b) for all a ≥ b.
We remark that Fm(log2 n, teci ) and Fm(1, teci ) are independent of tei , and hence

E
[
e
2λFm(log2 n,tec

i
)(
Fm(log2 n, teci )− Fm(1, teci )

)2]
=

1

1− p
E
[
e
2λFm(log2 n,tec

i
)(
Fm(log2 n, teci )− Fm(1, teci )

)2I(tei = log2 n)
]

≤ 1

1− p
E
[
e2λFm

(
Fm(log2 n, teci )− Fm(1, teci )

)2]
.

Similarly,

E
[
e
2λFm(1,tec

i
)(
Fm(log2 n, teci )− Fm(1, teci )

)2] ≤ 1

p
E
[
e2λFm

(
Fm(log2 n, teci )− Fm(1, teci )

)2]
.

Combining these inequalities with (5.37) and (5.21), we get

∞∑
i=1

Ent[∆2
i ] ≤ O(1)λ2

∞∑
i=1

E
[
e2λFm

(
Fm(log2 n, teci )− Fm(1, teci )

)2]
≤ O(1)λ2

∞∑
i=1

E
[
e2λFmA2

i

]
.(5.38)

By Cauchy-Schwarz inequality and (5.25),

∞∑
i=1

A2
i ≤

1

|Λm|
∑
z∈Λm

∞∑
i=1

(
8R̂2

ei + 2 log4 nI(rz,ei ≤ log3 n)
)
I(ei ∈ γz)

=
8

|Λm|
∑
z∈Λm

∑
e∈γz

R̂2
e +

2 log4 n

|Λm|
∑
z∈Λm

∑
e∈γz

I(rz,e ≤ log3 n)

=
8

|Λm|
∑
z∈Λm

Yz +O(log3d+4 n),(5.39)

where
Yz =

∑
e∈γz

R̂2
e.

Combining the last two estimates, we obtain
∞∑
i=1

Ent[∆2
i ] ≤

O(1)λ2

|Λm|
∑
z∈Λm

E
[
e2λFmYz

]
+O(log3d+4 n)λ2E

[
e2λFm

]
.(5.40)

By Lemma 5.5, there exist positive constants c1, c2 and C such that

P(|γz| ≥ Cn) ≤ P(T(z, z + ne1) ≥ Cn)

= P(Tn ≥ Cn) ≤ c1 exp(−c2n/ log2 n).(5.41)

Using this estimate and Corollary 4.3 (iii),

P(Yz ≥ Cn) ≤ O(log2 n) exp
(
−c n

log2(d+10) n

)
,(5.42)
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where c is the positive constant. Moreover,

E
[
e2λFmYz

]
≤ CnE

[
e2λFm

]
+ E

[
e2λFmYzI(Yz ≥ Cn)

]
≤ CnE

[
e2λFm

]
+ (E[e8λFm ])1/4(P[Yz ≥ Cn])1/4(E[Y 2

z ])
1/2,(5.43)

using Cauchy-Schwarz inequality. Thanks to (5.42),

E[Y 2
z ] = O(n2).

It follows from Jensen inequality, the transition invariance, and Lemma 5.5 that for all λ ≤
1

log2(d+11) n
,

E[e8λFm ] ≤ 1

|Λm|
∑
z∈Λm

E[e8λTz ] = E[e8λTn ] ≤ O(1) exp
(

8ρn

log2(d+11) n

)
.

Notice that by Lemma 5.5, there exist ρ, ρ1, ρ2 such that for any t ≥ ρn,

P(Fm ≥ t) = P(∃z ∈ Λm : Tz ≥ t) ≤ ρ1 exp(−ρ2t/ log2 n).

This implies that for all |λ| ≤ 1
log2(d+11) n

,

E
[
e2λFm

]
≥ exp

(
− ρn

log2(d+11) n

)
.

Combining the last five display equations yields

E
[
e2λFmYz

]
≤ CnE

[
e2λFm

]
+O(1)n2 exp

(
ρn

log2(d+11) n

)
exp

(
−c n

4 log2(d+10) n

)
≤ O(n)E

[
e2λFm

]
,

which together with (5.40) implies the desired result.

6 Comparison of the graph distance and the first passage time

To control the difference between D∗
n and T(0∗, (ne1)

∗), we remove all log2 n-weight edges on
the geodesic of T(0∗, (ne1)∗) by constructing the family of bypasses using only 1-weight edges.
As a result, this discrepancy can be bounded from above by the total weight (or total length) of
these bypasses. Furthermore, we remark that the lengths of bypasses can be simply controlled
by using the effective radius, as defined in Proposition 1.

The following lemma is key result to prove Theorem 2.1.

Lemma 6.1. Let C∗ be the constant and (Re)e∈Ed be the effective radii as in Proposition 1. Let
γn be a geodesic of T(0∗, (ne1)

∗) satisfying {0∗, (ne1)∗} ̸⊂ Λ3Re(e) for all e ∈ γn. Then there
exists a subset Γn ⊂ γn such that

(i) if e ∈ Γn, then te = log2 n and Re ≥ log2 n
2C∗

,

(ii) for all e, e′ ∈ Γn,
∥e− e′∥∞ ≥ max{Re, Re′},

31



(iii)

|D∗
n − T(0∗, (ne1)

∗)| ≤ 2C∗
∑
e∈Γn

Re.

Proof. We recall the coupling between Bernoulli first passage percolation and Bernoulli percola-
tion with parameter p: each 1-weight edge (resp. log2 n) is open (resp. closed). We construct
Γn by the following process: Notice that clo(γn) = {e ∈ γn : te = log2 n}. Define

e = argmax{Re : e ∈ clo(γn)}.(6.1)

In the case that there several maximize edges, we choose one of them in a deterministic rule. By
Proposition 2 (ii), we obtain a modified path of γn, namely ηe, such that the following holds.

(a) clo(ηe) ⊂ clo(γn), clo(ηe) ∩ γn ∩ ΛRe(e) = ∅;

(b) ηe \ γn consists only of 1-weight (open) edges;

(c) T(ηe \ γn) = |ηe \ γn| ≤ 2C∗Re.

Therefore,

T(γn) ≤ T(ηe) ≤ T(γn) + T(ηe \ γn)− te ≤ T(γn) + 2C∗Re − log2 n,

which implies that Re ≥ log2 n
2C∗

. We now update

γn := ηe; clo(γn) := clo(γn) \ ΛRe(e) = clo(ηe).

We iteratively repeat this process until clo(γn) is empty. We call the final set of log2 n-weight
(closed) edges revealed along this process by Γn, and the final path composing only of 1-weight
(open) edges by γ̃n.

Therefore, by the property (c)

0 ≤ D∗
n − T(0∗, (ne1)

∗) ≤ |γ̃n| − T(0∗, (ne1)
∗) ≤ 2C∗

∑
e∈Γn

Re.(6.2)

We write the set Γn as {e1, . . . , eℓ} in the order of revealing. By its construction, the sequence
(Rei)1≤i≤ℓ is non-increasing. Moreover, by the property (a) and (6.1),

∀1 ≤ j ≤ k ≤ ℓ, ∥ej − ek∥∞ ≥ Rej = max(Rej , Rek),

and thus (ii) follows.

Proof of Theorem 2.1. For the convenience, we recall the desired statement: there exist
positive constants C, c, such that for all L ≥ log2 n,

P (|D∗
n − T(0∗, (ne1)

∗)| ≥ L) ≤ C exp(−cL/ logL).(6.3)

By Lemma 3.1 and Lemma 3.3, there exist positive constants C and c, such that

(6.4) min(P(D∗
n ≤ Cn/2),P(∥0− 0∗∥∞ ≤ n/4)) ≥ 1− C exp(−cn).
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Figure 5 – Illustration of the family of bypasses (the dashed red line) avoiding all
log2 n-weight edges (green line) on the geodesic γn

Remark further that T(0∗, (ne1)∗) ≤ D∗
n, and if T(0∗, (ne1)∗) ≤ k then γn ⊂ Λk(0

∗), since te ≥ 1
for all e. Therefore,

(6.5) P(E) ≥ 1− C exp(−cn), E := {γn ⊂ ΛCn}.

We define also
E∗ = {{0∗, (ne1)∗} ̸⊂ Λ3Re(e) ∀ e ∈ γn}.

Using (6.4), (6.5), and Proposition 1 (i), there are positive constants C and c, such that

P(Ec∗) ≤ P(Ec∗ ∩ E ∩ {∥0− 0∗∥∞ + ∥ne1 − (ne1)
∗∥∞ ≤ n/2}) + P(Ec)

+ P({∥0− 0∗∥∞ + ∥ne1 − (ne1)
∗∥∞ ≥ n/2)

≤ P(∃ e ∈ ΛCn : Re ≥ n/12) + 3C exp(−cn)
≤ 4C exp(−cn).(6.6)

Case 1: L ≥ Cn. Using Lemma 3.3,

P (|D∗
n − T(0∗, (ne1)

∗)| ≥ L) ≤ P (D∗
n ≥ L) ≤ exp(−cL),

and the result follows.

Case 2: L < Cn. Using (6.5), (6.6), Proposition 1 and Lemma 6.1,

P (|D∗
n − T(0∗, (ne1)

∗)| ≥ L)

≤ P(Ec) + P(Ec∗) + P
(
∃ e ∈ [−Cn,Cn]d : Re ≥ L

)
+ P (∃Γn ⊂ ΛCn satisfying (a)–(c))

≤ c−1 exp(−cL) + P (∃Γn ⊂ ΛCn satisfying (a)–(c)) ,(6.7)

where c is a positive constant and
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(a) log2 n
2C∗

≤ Re ≤ L for all e ∈ Γn,

(b) ∥e− e′∥∞ ≥ max{Re, Re′}, for all e, e′ ∈ Γn,

(c)
∑

e∈Γn
Re ≥ L/2C∗.

To estimate the last term of (6.7), we set M0 = ⌈log3/2 n⌉, and Mq = M02
q for 1 ≤ q ≤ an with

an = ⌈log2 L− log2 log n⌉. Remark that log3/2 n ≤ Re ≤ L ≤Man and thus,∑
e∈Γn

Re ≤
an∑
q=0

2MqNq,

where for each 1 ≤ q ≤ an,

Nq = |{e ∈ Γn : Re ∈ [Mq, 2Mq]}|.

Therefore, it follows from the union bound that

P (∃Γn ⊂ ΛCn satisfying (a)–(c)) ≤
an∑
q=0

P (∃Γn ⊂ ΛCn satisfying (a)–(c);Nq ≥ bq) ,(6.8)

where for each 1 ≤ q ≤ an,

bq :=
⌊ L

4C∗Mq log2 L

⌋
.

Moreover, by (b), if Re and Re′ are in [Mq, 2Mq] for some e, e′ ∈ Γn, then

(6.9) ∥e− e′∥∞ ≥ max(Re, Re′) ≥Mq.

Therefore,

P (∃Γn ⊂ ΛCn satisfying (a)–(c);Nq ≥ bq) ≤ Sq,(6.10)

where

Sq :=P
(
∃ {e1, . . . , ebq} ⊂ ΛCn : Rej ∈ [Mq, 2Mq] ∀ 1 ≤ j ≤ bq;

∥ej − ek∥∞ ≥Mq ∀ 1 ≤ j ̸= k ≤ bq

)
.(6.11)

The following claim is straightforward.

Claim There exists a constant c = c(d) > 0 such that the following holds: for any M ∈ N and
Λ ⊂ Ed satisfying

∥u− v∥∞ ≥M, ∀u, v ∈ Λ,

we can find Λ′ ⊂ Λ such that |Λ′| ≥ c|Λ| and ∥u− v∥∞ ≥ 17M for all u, v ∈ Λ′.

By this claim, there exists a positive constant c depending on d such that for any 1 ≤ q ≤ an
if the event in (6.11) occurs then we can find Λ′ ⊂ {e1, . . . , ebq} such that |Λ′| ≥ ⌊cbq⌋ and
∥e− e′∥∞ ≥ 17Mq for all e, e′ ∈ Λ′. As a result, we have

Sq ≤ P
(
∃ {e′1, . . . , e′cq} ∈ Tq : Re′j

∈ [Mq, 2Mq] ∀ 1 ≤ j ≤ cq

)
≤

∑
{e′1,...,e′cq}∈Tq

P
(
Re′j
∈ [Mq, 2Mq] ∀1 ≤ j ≤ cq

)
,(6.12)
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where cq = ⌊cbq⌋ and

Tq = {{e′1, . . . , e′cq} ⊂ ΛCn : ∥e′j − e′k∥∞ ≥ 17Mq ∀ 1 ≤ j, k ≤ cq}.

We remark that the event Re ∈ [Mq, 2Mq] only depends on the state of edges in Λ8Mq(e).
Therefore, given {e′1, . . . , e′cq} ∈ Tq, the family of the events ({Re′j

∈ [Mq, 2Mq]})1≤j≤cq are
independent. Hence,

P
(
Re′j
∈ [Mq, 2Mq] ∀1 ≤ j ≤ cq

)
=

cq∏
j=1

P
(
Re′j
∈ [Mq, 2Mq]

)
≤ α−1 exp(−αMqcq),

where α is a positive constant, by using Proposition 1. This estimate together with (6.12) yields
for all 1 ≤ q ≤ an,

Sq ≤ α−1|Tq| exp(−αcqMq) ≤ α−1(4Cn)dcq exp(−αcqMq)

≤ α−1 exp(−αcqMq/2) ≤ α−1 exp

(
− cαL

16C∗ log2 L

)
.

Combining the above estimate with (6.10), (6.8) and (6.7), we obtain (6.3).

A Proof of Lemma 3.7

By Lemma 3.2, there exists a positive constant c2 = c2(p) such that

P(LN ) ≤ P(EN ) + P(there does not exists a crossing cluster in ΛN ) ≤ P(EN ) + c−1
2 exp(−c2N).

Therefore, it remains to bound P(EN ).
Case 1: d = 2. Let C be a crossing cluster and let D be a connected component of ΛN such
that diam(D) ≥ εN . Then, there exists a sub-rectangle Λ of size εN × 2N in AN (e) such that
D is crossing for two opposite faces of size 2N in Λ. It follows from the proof of [27, Theorem
7.61] that

P(there exists a crossing cluster in Λ, denoted by Cr(Λ)) ≥ 1− c−1
1 exp(−c1N),

for some c1 = c1(ε, p). Furthermore, by the planar property of Z2, the crossing cluster Cr(Λ) of
Λ always intersect with D and C. Hence, we complete the proof of (i) for d = 2.
Case 2: d ≥ 3. We closely follows the proof of [27, Lemma 7.104]. For −N ≤ t ≤ N and
1 ≤ i ≤ d, let

H i
t = {x = (x1, . . . , xd) ∈ ΛN : xi = t}.

and for −N ≤ j1 < j2 ≤ N , define

Ki
j1,j2 = {x = (x1, . . . , xd) ∈ ΛN : j1 ≤ xi ≤ j2}.

Let U, V,X ⊆ Zd, we denote by U
X←→ V the event that there exists a q-open path between U

and V in X. Now for 1 ≤ i ≤ d and x, y ∈ ΛN ∩H i
a, we define

Qi
a,k(x, y) = {y

Ki
a,a+k←−−−→ H i

a+k} ∩ {∃ a path ηx ⊆ Ki
a,a+k joins x to H i

a+k; y ̸
Ki

a,a+k←−−−→ ηx}
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Suppose that the event Eq,N occurs. Then there exist C a q-crossing cluster and D a connected
component of ΛN such that diam(D) ≥ εN and D ∩ C = ∅. Notice that the diameter of D is
achieved in the ith coordinate for some 1 ≤ i ≤ d, i.e.

there exist u, v ∈ D with vi − ui = diam(D).

Therefore, if the event Eq,N occurs, then there exist 1 ≤ i ≤ d, a ∈ [−N, (1−ε)N ], and x, y ∈ H i
a

such that the event Qi
a,εN (x, y) occurs. By the union bound and the symmetry of Zd,

Figure 6 – Illustration the event Qi
a,εN (x, y)

P(Eq,N ) ≤
∑

1≤i≤d

∑
−N≤a≤(1−ε)N

∑
x,y∈Hi

a

P(Qi
a,εN (x, y)) ≤ d(2N)2d+2 sup

x,y∈H1
0

P((Q1
0,εN (x, y)).

(A.1)

Let L be a positive integer chosen later and write

εN = KL+ r, 0 ≤ r < L,(A.2)

where K is a non-negative integer. We have

Q1
0,εN (x, y) ⊆ Q1

0,KL(x, y) ⊆ Q1
0,(K−1)L(x, y) ⊆ · · · ⊆ Q1

0,L(x, y),

which implies that

P(Q1
0,εN (x, y)(x, y)) ≤ P

(
Q1

0,KL(x, y
)
=

K−1∏
i=0

P(Q1
0,(i+1)L(x, y) | Q

1
0,iL(x, y)).(A.3)

For x, y ∈ H1
0 and i ≥ 0, let

Oi(x, y) := {u ∈ H1
iL : ∃ a path ηx ⊆ K1

0,iL joins x to u; y ̸
K1

0,iL←−−→ ηx},

Oi(y) := {v ∈ H1
iL : y

K1
0,iL←−−→ v}
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We remark that the sets Oi(x, y) and Oi(y) only depend the state of edges inside K1
0,iL. Further-

more, on the event Q1
0,iL(x, y), Oi(x, y) and Oi(y) are non-empty and disjoint. On Q1

0,iL(x, y), if

the event Q1
0,(i+1)L(x, y) occurs, then u ̸

K1
iL,(i+1)L←−−−−−→ v for all u ∈ Oi(x, y) and v ∈ Oi(y). Therefore,

we have

P(Q1
0,(i+1)L(x, y) | Q

1
0,iL(x, y)) ≤ sup

u,v∈H1
iL

P(u ̸
K1

iL,(i+1)L←−−−−−→ v) = sup
u,v∈H1

0

P(u ̸
K1

0,L←−→ v)

= 1− min
u,v∈H1

0

P(u
K1

0,L←−→ v).

It is clear that P(u
K1

0,L←−→ v) is non-decreasing in q. Thus, for all q ≥ q0, using [27, Lemma 7.78],
there exist L = L(q0) and δ0 = δ0(q0, L) > 0 such that for all u, v ∈ H1

0

P(u
K1

0,L←−→ v) ≥ Pq0(u
K1

0,L←−→ v) ≥ δ0.

Combining the last two estimates and (A.3), it yields that

P(Q1
0,εN (x, y)) ≤ (1− δ0)

K ≤ (1− δ0)
εN/L, ∀x, y ∈ H1

0 .(A.4)

The desired bound for P(Eq,N ) follows from (A.1) and (A.4).

Acknowledgement. A part of this work was completed when the authors were visiting the
Vietnam Institute for Advanced Study in Mathematics (VIASM). We would like to thank VIASM
for providing a fruitful research environment during the visit.

References

[1] M. Aizenman, H. Kesten, and C. M Newman, Uniqueness of the infinite cluster and continuity of connectivity
functions for short and long range percolation, Communications in Mathematical Physics 111 (1987), no. 4,
505–531.

[2] K. Alexander and N. Zygouras, Subgaussian concentration and rates of convergence in directed polymers
(2013).

[3] P. Antal and A. Pisztora, On the chemical distance for supercritical bernoulli percolation, The Annals of
Probability 24 (1996), no. 2, 1036–1048.

[4] R. Basu, S. Ganguly, and A. Sly, Upper tail large deviations in first passage percolation, arXiv preprint
arXiv:1712.01255 (2017).

[5] M. Benaïm and R. Rossignol, Exponential concentration for first passage percolation through modified poincaré
inequalities, Annales de l’ihp probabilités et statistiques, 2008, pp. 544–573.

[6] I. Benjamini, G. Kalai, and O. Schramm, First passage percolation has sublinear distance variance, Selected
works of oded schramm, 2011, pp. 779–787.

[7] S. R Broadbent and J. M Hammersley, Percolation processes: I. crystals and mazes, Mathematical proceedings
of the cambridge philosophical society, 1957, pp. 629–641.

[8] V. H. Can and S. Nakajima, First passage time of the frog model has a sublinear variance, Electronic Journal
of Probability 24 (2019), 1–27.

[9] R. Cerf and B. Dembin, The time constant for bernoulli percolation is lipschitz continuous strictly above pc,
The Annals of Probability 50 (2022), no. 5, 1781–1812.

37



[10] R. Cerf and M. Théret, Weak shape theorem in first passage percolation with infinite passage times, Annales
de l’institut henri poincaré, probabilités et statistiques, 2016, pp. 1351–1381.

[11] S. Chatterjee, Chaos, concentration, and multiple valleys, arXiv preprint arXiv:0810.4221 (2008).

[12] , Disorder chaos and multiple valleys in spin glasses, arXiv preprint arXiv:0907.3381 (2009).

[13] , Superconcentration and related topics, Vol. 15, Springer, 2014.

[14] C. Cosco and S. Nakajima, A variational formula for large deviations in first-passage percolation under tail
estimates, The Annals of Applied Probability 33 (2023), no. 3, 2103–2135.

[15] M. Damron, J. Hanson, and P. Sosoe, Subdiffusive concentration in first passage percolation, Electronic
Journal of Probability 19 (2014), 1–27.

[16] , Sublinear variance in first-passage percolation for general distributions, Probability Theory and Re-
lated Fields 163 (2015), no. 1, 223–258.

[17] B. Dembin, The variance of the graph distance in the infinite cluster of percolation is sublinear, arXiv preprint
arXiv:2203.01083 (2022).

[18] B. Dembin and S. Nakajima, On the upper tail large deviation rate function for chemical distance in super-
critical percolation, arXiv preprint arXiv:2211.02605 (2022).

[19] H. Duminil-Copin, Introduction to bernoulli percolation, Lecture notes available on the webpage of the author
(2018).

[20] , Sixty years of percolation, Proceedings of the international congress of mathematicians: Rio de janeiro
2018, 2018, pp. 2829–2856.

[21] D. Falik and A. Samorodnitsky, Edge-isoperimetric inequalities and influences, Combinatorics, Probability
and Computing 16 (2007), no. 5, 693–712.

[22] O. Garet and R. Marchand, Asymptotic shape for the chemical distance and first-passage percolation in
random environment, arXiv preprint math (2003).

[23] , Asymptotic shape for the chemical distance and first-passage percolation on the infinite bernoulli
cluster, ESAIM: Probability and Statistics 8 (2004), 169–199.

[24] , Large deviations for the chemical distance in supercritical bernoulli percolation, The Annals of Prob-
ability 35 (2007), no. 3, 833–866.

[25] , Moderate deviations for the chemical distance in bernoulli percolation, ALEA, Lat. Am. J. Probab.
Math. Stat. 7 (2009), 171–191.

[26] O. Garet, R. Marchand, E. B Procaccia, and M. Théret, Continuity of the time and isoperimetric constants
in supercritical percolation (2017).

[27] G. Grimmett, Percolation, 1989.

[28] A. Pisztora, Surface order large deviations for ising, potts and percolation models, Probability Theory and
Related Fields 104 (1996), 427–466.

[29] S. Sodin, Positive temperature versions of two theorems on first-passage percolation, Geometric aspects of
functional analysis: Israel seminar (gafa) 2011-2013, 2014, pp. 441–453.

38


	Introduction
	Model and main result
	Connection to generalized first passage percolation
	Method of the proof
	Organization and notation of this paper

	The modified graph distance and proof of Theorem 1.1
	The effect of resampling
	Connectivity properties of the cluster
	Effective radius and its application

	Lattice animals of dependent weight
	Subdiffusive concentration of Tn
	Variance bound via entropy inequality
	Proof of Theorem 2.2
	Bound on the total influence: Proof of Proposition 4
	Proof of Lemma 5.6 (i)
	Proof of Lemma 5.6 (ii)

	Entropy bound: Proof proposition 5 

	Comparison of the graph distance and the first passage time
	Proof of Lemma 3.7

