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Abstract. Let (M, g, f, J, λ) be a complete Kähler gradient Ricci soliton. Our first
theorem classifies such a structure in real dimension four when f has a geodesic
gradient, a notion weaker than isoparametric. The soliton must be either a product
metric or of cohomogeneity one with deformed homogeneous Sasakian orbits. The
second result is a partially reverse statement in any dimension. Suppose that each
regular level set of f is a deformed contact metric structure then the soliton is totally
determined by a regular Sasakian model, which is a Riemannian submersion, with
circle fibers, over a Kähler-Einstein manifold. In particular, f must be isoparametric.
An important ingredient of the proof is a characterization of a deformed Sasakian
structure which generalizes a classical result.

1. Introduction

A gradient Ricci soliton (GRS) (M, g, f, λ) is a Riemannian manifold with metric g,
potential function f , and a constant λ such that, for Rc denoting the Ricci curvature,

(1.1) Rc + Hessf = λg.

Such a structure is a self-similar solution to the Ricci flow and plays a crucial role in
its analysis. The general theory was introduced by R. Hamilton [40] and has several
celebrated applications including [52, 53, 8, 10, 11, 16].

A Kähler GRS (M, g, f, J, λ) is a GRS such that (M, g, J) is Kähler for a complex
structure J . That is, g(JX, JY ) = g(X, Y ) and the Kähler form ω := g(·, J ·) is closed.
The subject has an extensive literature; see, for examples, [64, 68, 15, 22, 47, 12, 26,
29, 32]. In particular, tremendous recent efforts lead to the classification of all Kähler
GRS surfaces with λ > 0 [30, 28, 2, 44].
This paper reveals connections between a Kähler GRS, an isoparametric function,

and contact structures. The study of isoparametric functions and their level sets in
space forms was motivated by questions in geometric optics and initial contributions
were given in [61, 17, 43]. The classification in an ambient round sphere, formulated
as Question 34 in S.T. Yau’s list [69], is remarkably deep. It has attracted enormous
interest and important developments are given by, for example, [49, 48, 1, 19, 24]; see
[25] for a recent survey. Certain aspects of the theory can be extended to a general
Riemannian manifold [67, 39, 46, 56, 33].

In the study of a GRS, the potential function being isoparametric arises as a conse-
quence of constant scalar curvature [37, 23]. Also, it is observed that∇f is a eigenvector
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of Rc if and only if f is rectifiable or has a geodesic gradient, a slightly weaker notion
than isoparametric; see Subsection 2.4. Our first theorem classifies all Kähler GRS in
real dimension four with such a potential function.

Theorem 1.1. Let (M, g, J, f) be a complete connected Kähler GRS of real dimension

four. If ∇f is an eigenvector of Rc whenever ∇f ̸= 0⃗ then the manifold must be either

• a product of a constant curvature surface with a 2D Kähler GRS, or
• of cohomogeneity one, f is invariant by its action, and each principal orbit is a
connected deformed homogeneous Sasakian structure.

Remark 1.1. The classification includes all U(2)-invairant metrics constructed earlier
by [42, 13, 20, 14, 36, 51]. The dimension assumption is crucial as [31] describes a
general construction in higher dimensions such that f satisfies the above property.

Remark 1.2. Corresponding to space forms, there are three models of simply connected
Sasakian structures with constant holomorphic sectional curvature [63]. If simply-
connected is replaced by compact then there is also a classification [3, 9]. It must
be a quotient by a discrete subgroup of the connected component of the isometry group

of either S3, S̃L(2,R) the universal cover of SL(2,R), and Nil3, the Heisenberg group,
diffeomorphic to R3, of 3 × 3 nilpotent real matrices. There are standard Sasakian
structures on these models with constant holomorphic sectional curvature 1,−4,−3 re-
spectively. Each is a circle bundle over a compact Riemann surface.

We then deduce an immediate consequence.

Corollary 1.2. Let (M, g, J, f) be a simply connected irreducible non-compact Kähler

GRS of real dimension four. If ∇f is an eigenvector of Rc whenever ∇f ̸= 0⃗ then
each deformed Sasakian orbit is a Riemannian submersion, with circle fibers, over a
simply connected surface of constant curvature. Consequently, the isometry group is of
dimension four.

Remark 1.3. Such a Kähler GRS is of maximal irreducible symmetry by [66].

The results above suggest a connection between a Kähler GRS and a Sasakian struc-
ture, a fundamental notion of contact and almost contact geometry. This arguably
is an odd-dimensional counterpart of symplectic geometry and both lie at the heart
of classical mechanics. In general, one can consider either the even-dimensional phase
space of a mechanical system or odd-dimensional constant-energy hypersurfaces. Thus,
it has rich literature; for example, contact transformation was studied by S. Lie [45].
Here we focus on a direction with more attention to an associated Riemannian metric.
The current theory owns much to the foundational work of S. Sasaki, D. Blair, and
others [59, 58, 60, 5, 6]; see also a recent book [9] and a survey [7].

An odd-dimensional Riemannian manifold (P, gP )- with a vector field ζ, an 1-form
η, and a tensor field of type (1, 1) Φ- is called an almost contact metric structure if

η(ζ) = 1, Φ2 = −Id + ζ ⊗ η, and gP (Φ(X),Φ(Y )) = gP (X, Y )− η(X)η(Y ).

An almost contact metric structure (M, ζ, η,Φ, g) is called a deformed contact metric
structure if one further assumes, for some constant a ̸= 0,

dη(X, Y ) = ag(X,Φ(Y )).
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Naturally, it is called contact if a = 1. Moreover, a Sasakian structure is a contact
metric structure (M, ζ, η,Φ, g) such that the cone C(M) = M × R+ with the cone
metric r2g + dr2 is Kähler.
It is well-known that a real hypersurface of a Kähler manifold is naturally endowed

with an almost contact metric structure [9]. Let (M, g, J, f) be a Kähler GRS. Let Mc

be a regular level set of f and

V : =
∇f

|∇f |
, gc := g|Mc , ζc := −J(V ), ηc(·) := g(·, ζc), Φc(·) := −ηc(·)V + J(·).(1.2)

Together, (Mc, ζc, ηc,Φc, gc) is an almost contact metric structure. Our next theorem
shows that going from almost contact to deformed contact imposes significant restric-
tion on the soliton structure leading to a full classification.

Theorem 1.3. Let (M, g, J, f, λ) be a complete connected Kähler GRS. For each regular
value c, supposed that (Mc, ζc, ηc,Φc, gc) is a deformed contact structure. Then the
soliton is totally determined by a connected Sasakian model (P, η, ζ,Φ, gP ) which is a
Riemannian submersion, with circle fibers, over a Kähler-Einstein manifold (N, gN , JN)
with RcN = kgN . That is, there is submersion map π : P 7→ N such that

gP = η ⊗ η + π∗gN , dη = π∗ωN .

There is an interval I with coordinate s such that there is a diffeomorphism ϕ : I×P 7→
Mo, a dense subset of M , f ◦ ϕ = Bs+ C, and

(1.3) ϕ∗g =
ds2

α(s)
+ α(s)η ⊗ η + (2s+ A)π∗gN .

Here A,B,C are constant and α solves a first order equation, for n = dimCN ,

λ(2s+ A) = k − dα

ds
− 2nα

2s+ A
+Bα.

There is a boundary point of I such that, α → 0. Furthermore, if (2s+A) → 0 towards
that end point, then (P, η, ζ,Φ, gP ) is the standard Sasakian sphere and (N, gN , JN) is,
up to homothety, isomorphic to a standard complex projective space.

Remark 1.4. Equation (1.3) is a version of the Calabi ansatz. Also, at each finite end
point of I, α must satisfy certain conditions to make the metric smooth [31, 66].

Remark 1.5. There are also other studies which construct Kähler GRS from Sasaki-
Einstein manifolds [38, 7].

Remark 1.6. The main content of the theorem is about rectifiable f , constant Ricci,
and the regular Sasakian structure.

Indeed, the proofs of Theorem 1.1 and 1.3 both rely on understanding a deformed
contact structure. The following result might be of independent interest.

Theorem 1.4. An almost contact metric manifold (M, ζ, η,Φ, g) satisfies

(1.4) (∇XΦ)(Y ) = bg(X, Y )ζ − η(Y )bX.

for every vector fields X and Y if and only if
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(i) for b ̸= 0, it is a deformed Sasakian structure;
(ii) for b = 0, it is a product of a line or circle with a Kähler manifold whose almost

complex structure is induced by Φ.

Remark 1.7. The case b = 1 is a classical result [9].

Theorem 1.4 has an important consequence. Let (N, g, J) be a Kähler manifold and
M a real hypersurface with unit normal V . Let ζ = −JV , η the dual 1-form, and

Φ(·) := J(·)− η(·)V.
It is immediate that (M, ζ, η,Φ, g) is an almost contact metric structure. We recall the
shape operator

LX = ∇XV.

Theorem 1.5. L = αId+ βζ ⊗ η for a constant α iff (M, η, ζ,Φ, g) is

(i) for α ̸= 0, a deformed-Sasakian structure.
(ii) for α = 0, a Riemannian product of a line or a circle with a Kähler manifold.

The organization of the paper is as follows. Section 2 will recall fundamental def-
initions and preliminary results. The proofs of Theorems 1.4 and 1.5 will be given
in Section 3. It is basically about tracking how the covariant derivative of Φ changes
under a deformation. Our arguments are based on meticulous analysis of the trans-
verse metric using foliation theory and the toolkit developed by B. O’Neill [50]. Then
Section 4 investigates the case each level set of a Kähler GRS is a deformed contact
structure and proves Theorem 1.3. The first consequence is that the potential f must
be rectifiable and the metric can be written in an explicit way. Then, analysis of the
metric’s smoothness leads to the conclusion. Finally, the proofs of Theorem 1.1 and
Corollary 1.2 will be given in Section 5 combining our earlier developments.

1.1. Acknowledgment. We benefit greatly from discussion with Profs. Ronan Con-
lon, McKenzie Wang, and Detang Zhou.

2. Preliminaries

In this section, we recall preliminary results and certain observations which will be
used throughout the article.

2.1. GRS and Kählerity. Here we recall the definition of a gradient Ricci soliton, the
Kähler setup, and some identities. A Riemannian manifold (Mn, g) with a potential
function f is called a GRS if, for Rc denoting the Ricci curvature and L the Lie
derivative,

Rc + L∇fg = Rc + Hessf = λg.

Taking the trace yields, for S = trgRc the scalar curvature,

(2.1) S +△f = nλ.

Due to its symmetry, the Ricci curvature is frequently considered as an endormorphism
on TM . Thus, via the second Bianchi’s identity, we deduce that

(2.2) Rc(∇f) =
1

2
∇S = δRc.
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Here δ is the divergence operator or the co-differential, for an orthonormal basis,

δRc(X) =
∑
i

g((∇eiRc)X, ei).

Consequently, the following is considered as a conservation law,

(2.3) S + |∇f |2 − 2λf = constant.

Here is another interesting identity [27],

△S + 2|Rc|2 = ⟨∇f,∇S⟩+ 2λS.(2.4)

Remark 2.1. If λ ≥ 0, then S ≥ 0 by the maximum principle and equation (2.4).
Moreover, such a complete GRS has positive scalar curvature unless it is isometric to
the flat Euclidean space [70, 21].

In the presence of a complex structure, there are further observations. When a
manifold M is of an even dimension, an almost complex structure is defined to be a
smooth section J of the bundle of endormorphisms End(TM) such that

J2 = −Id.

J is said to be integrable if it is genuinely induced from an atlas of complex charts with
holomorphic transition functions.

(M, g, J) is called an almost Hermitian manifold and g a Hermitian metric if

g(JX, JY ) = g(X, Y ).

The fundamental 2-form or Kähler form is given by

ωg(X, Y ) = g(X, JY ).

(M, g, J) is called almost Kähler if dω = 0. When J is integrable, one upgrades
an almost Hermitian to Hermitian and almost Kähler to Kähler. For a Riemannian
manifold to be Kähler, the following is well-known.

Proposition 2.1. [9, Proposition 3.1.9] Let (M, g, J) be an almost Hermitian real
manifold. The followings are equivalent:

(i) ∇J = 0,
(ii) ∇ωg = 0,
(iii) (M, g, J) is Kähler.

Definition 2.1. (M, g, J, f) is a Kähler GRS if (M, g, f) is a GRS and (M, g, J) is a
Kähler manifold.

It is crucial to observe that, on a Kähler manifold (M, g, J), Rc is J-invariant. Thus,
for a Kähler GRS, so is Hessf which leads to the followings.

Lemma 2.2. Let (M, g, J) be a Kähler manifold and f : M 7→ R such that Hessf is
J-invariant. Then, we have the followings:

(i) J(∇f) is a Killing vector field.
(ii) ∇f is an infinitesimal automorphism of J .
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Proof. We compute, since J is parallel, for any vector fields Y and Z,

g(∇Y (J(∇f)), Z) + g(∇Z(J(∇f)), Y ) = g(J∇Y (∇f), Z) + g(J∇Z(∇f), Y ),

= −g(∇Y (∇f), JZ)− g(∇Z(∇f), JY ),

= −(Hess f)(Y, JZ)− (Hess f)(Z, JY ) = 0.

The last equality follows because Hessf is J-invariant. For the second statement, we
consider

(L∇fJ)Y = [∇f, JY ]− J([∇f, Y ])

g((L∇fJ)Y, Z) = g([∇f, JY ], Z)− g(J([∇f, Y ]), Z)

= g(J∇∇fY, Z)− Hessf(JY, Z) + g(∇∇fY −∇Y∇f, JZ)

= −Hessf(JY, Z)− Hessf(Y, JZ) = 0.

□

2.2. Foliation. In this subsection, we recall the concept of a foliation and related
properties. The references are [65, 9]. A p-dimensional foliation F of an n-dimensional
manifoldM refers to the partition ofM into a union of disjoint p-dimensional immersed
submanifolds {Lα}α∈A, called leaves, with the following property. Every point is on
a chart U with coordinates (x1, ...xp; y1, ...yq), p + q = n, such that, for each Lα, a
connected component of U ∩ Lα is described by the equations

y1 = constant, ..., yq = constant.

Consequently, it is called a foliated coordinate chart.
Equivalently, one considers a p-dimensional distribution which is a choice of p-

dimensional sub-bundle E of the tangent bundle TM . E is associated with a foliation if
each point has a foliated coordinate chart U with coordinates (x1, ...xp; y1, ...yq), p+q =
n, such that ( ∂

∂x1
, ..., ∂

∂xp
) spans E and the Jacobian matrix of the change of foliated

charts belongs to the group that stabilizes E given by

GL(p; q;R) = {
[
A 0
C B

]
| A ∈ GL(p;R);B ∈ GL(q;R)}.

By the classical Frobenius Theorem, a p-dimensional distribution is integrable if and
only if it involutive, that is the Lie bracket of any sections of the subbundle E is also
a section of E.

A vector field X is said to be foliate with respect to foliation F if for every vector
field Y tangential to leaves of F , LXY is also tangential. That is, in a local foliated
coordinate chart (x1, ...xp; y1, ...yq) as above, a foliate vector field takes the form

X =

p∑
i=1

Ai(x1, ...xp; y1, ..., yq)
∂

∂xi

+

q∑
j=1

Bj(y1, ..., yq)
∂

∂yj
.

A Riemannian metric g induces an orthogonal decomposition TM = E ⊕ E⊥. A
section of E⊥ is said to be horizontal.
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Definition 2.2. A Riemannian metric is said to be bundle-like with respect to a folia-
tion F if for any foliate horizontal vector fields X, Y and a tangential V ,

V g(X, Y ) = 0.

In that case, the foliation is said to be Riemannian.

Remark 2.2. Locally a foliation looks like a submersion and a Riemannian foliation
corresponds to a Riemannian submersion.

The followings will be important to our investigation.

Proposition 2.3. [9, Prop. 2.6.7 and 2.6.9] An 1-dimensional foliation induced by
a Killing vector field is Riemannian. Also, a Riemannian foliation whose orbits are
geodesics is isometric.

For a Riemannian foliation, the toolkit originally developed by B. O’Neill’s to study
submersion [50] will play a crucial role. We let π and π⊥ be the projections from TM
onto E and E⊥ accordingly. Let ∇⊥ denote the following induced connection, for Y a
smooth section of E⊥:

∇⊥
XY =

{
π⊥(∇XY ) if X is a smooth section of E⊥

π⊥[X, Y ] if X is a smooth section of E.

It is verified that∇⊥ is the unique Levi-Civita connection with respect to the transverse
metric

g⊥ := g|
E⊥ .

Furthermore, we make the simplifying assumption that each leaf of F is totally geodesic.
Let U be a smooth section of E and X, Y be ones of E⊥. Then tensor A is given as
follows:

AXU = π⊥(∇XU),

AXY = π(∇XY ) = −AYX =
1

2
π([X, Y ]).

We collect useful identities:

g(AXU, Y ) = −g(U,AXY ),

∇UX = π⊥(∇UX),

∇XU = π(∇XU) + AXU,

∇XY = AXY +∇⊥
XY.

2.3. Almost Contact and Contact Structures. In this subsection, we give a brief
introduction to almost contact geometry. The reference is [9].

Definition 2.3. An odd dimensional manifold M is called almost contact if there exists
a triple (ζ, η,Φ) where ζ is a vector field, η is a 1-form, Φ is a tensor field of type (1, 1),
and they satisfy, everywhere on M ,

η(ζ) = 1 and Φ2 = −Id + ζ ⊗ η.
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It is immediate from the definition that ζ is no-where vanishing and

Φ(ζ) = 0, η ◦ Φ = 0.

Additionally, by Frobenius theorem, ζ generates an 1-dimensional foliation F since an
1-dim sub-bundle of the tangent bundle is always involutive.

In the presence of a Riemannian metric g, (M, ζ, η,Φ) is called an almost contact
metric structure if g is compatible with Φ. That is,

g(Φ(X),Φ(Y )) = g(X, Y )− η(X)η(Y ).

Immediately, ζ has unit length as

0 = g(ζ, ζ)− η(ζ)η(ζ) = |ζ|2 − 1.

It is of great interest to determine when leaves of F are geodesics.

Lemma 2.4. Let (M, ζ, η,Φ) be an almost contact metric structure. Then the follow-
ings are equivalent:

(i) Integral curves of ζ are geodesics.
(ii) η is invariant along the flow of ζ.
(iii) (∇ζΦ)ζ = 0.
(iv) dη(ζ, ·) = 0.

Proof. As observed earlier, ζ has unit length.
Claim: (i) ↔ (ii).
Proof. It is sufficient to observe, for any horizontal vector X,

g(∇ζζ,X) = (Lζη)(X)− 1

2
X|ζ|2.

Therefore, integral curves of ζ are geodesics if and only if (Lζη)(X) = 0.

Claim: (i) ↔ (iii).
Proof. We compute

(∇ζΦ)(ζ) = ∇ζ(Φ(ζ))− Φ(∇ζζ) = −Φ(∇ζζ).

Since Φ is non-degenerate on the sub-bundle perpendicular to ζ, the conclusion follows.
Claim: (i) ↔ (iv).
Proof. We compute

(dη)(ζ,X) = (∇ζη)(X)− (∇Xη)(ζ),

= ζg(ζ,X)− g(ζ,∇ζX)−Xg(ζ, ζ) + g(ζ,∇Xζ),

= g(∇ζζ,X)− 1

2
X|ζ|2.

□

Furthermore, the tensor A can be computed immediately.
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Lemma 2.5. Let (M, ζ, η,Φ) be an almost contact metric structure such that g is
bundle-like with respect to the foliation generated by ζ. Then, for horizontal vector
fields X and Y ,

2g(AXY, ζ) = −2dη(X, Y ) = g([X, Y ], ζ),

g(AXζ, Y ) = dη(X, Y ).

Proof. By our convention of the exterior derivative,

2dη(X, Y ) = (∇Xη)(Y ))− (∇Y η)X

= ∇X(η(Y ))− η(∇XY )−∇Y (η(X)) + η(∇YX)

=
(
∇Xg(ζ, Y )− g(ζ, [X, Y ])−∇Y g(ζ,X)

)
= −g([X, Y ], ζ) = −2g(AXY, ζ).

The bundle-like assumption is used for the last equality. The first statement then
follows. Similarly,

g(AXζ, Y ) = −g(∇XY, ζ) = −g(AXY, ζ) = dη(X, Y ).

□

The Φ-sectional curvature of an almost contact manifold (M, ζ, η,Φ) is defined on
the horizontal sub-bundle (perpendicular to ζ), for unit length X,

KΦ(X) = K(X,Φ(X)).

Next, we discuss the notion of a contact structure.

Definition 2.4. A (2n + 1)-dimensional manifold M is a contact manifold if there
exists a 1-form η, called a contact 1-form, on M such that

η ∧ (dη)n ̸= 0

everywhere on M . A contact structure is an equivalence class of such 1-forms.

On a contact manifold, there is a unique vector field ζ, called the Reeb vector field
[57], such that

η(ζ) = 1 and dη(ζ, ·) = 0.

Furthermore, η gives the contact bundle, the kernel of η, the setup of a symplectic
vector bundle via dη. An almost complex structure J in such bundle is said to be
compatible with the symplectic form dη if, for all vector fields X and Y ,

dη(X, Y ) = dη(JX, JY ).

J can then be extended trivially to Φ acting on the whole tangent space. It is straight-
forward to check that (ζ, η,Φ) defines an almost contact structure.

Definition 2.5. An almost contact metric structure (M, ζ, η,Φ, g) is called a contact
metric structure if one further assumes

g(X,Φ(Y )) = dη(X, Y ).

In that case, it is called a contact metric manifold.
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The convention here is to be consistent with our definition of the Kähler form. It
is immediate to check that a contact metric structure is indeed a contact manifold by
the above definition. Additionally, a contact metric manifold (M, ζ, η,Φ, g) is called
K-contact if ζ is Killing; that is,

Lζg = 0.

We are interested in certain K-contact structures which give a concrete bridge from
almost contact (contact) to almost complex (complex).

Definition 2.6. A Sasakian structure is a contact metric structure (M, ζ, η,Φ, g) such
that the cone C(M) = M × R+ with the cone metric r2g + dr2 is Kähler. Moreover,
the Kähler form is given by d(r2η).

Remark 2.3. Equivalently, a Sasakian structure is a K-contact structure whose almost
CR-structure is integrable.

Next we define a transformation which will play crucial roles later. This is essentially
the combination of two transformations defined in [62].

Definition 2.7. Let (M, ζ, η,Φ, g) be an almost contact metric structure. For H,F ∈
R+, a ±(H,F )-deformation is given by

ζ∗ =
ζ

H
, η∗ = Hη, Φ∗ = ±Φ, g∗ = F 2g + (H2 − F 2)η ⊗ η.

Lemma 2.6. Let (M, ζ, η,Φ, g) be an almost contact metric structure and (M, g∗, ζ∗, η∗,Φ∗)
be its ± (H,F ) deformation. Let F be the foliation generated by η. Then we have the
followings:

(i) (M, g∗, ζ∗, η∗,Φ∗) is an almost contact metric structure.
(ii) g is bundle-like with respect to F if and only if so is g∗.
(iii) Lζg = 0 ↔ Lζ∗g

∗ = 0.

Proof. The proof is via straightforward verification. For example, for any vector fields
X and Y ,

g∗(Φ∗X,Φ∗X) = (F 2g + (H2 − F 2)η ⊗ η)(ΦX,ΦX)

= F 2(g(X, Y )− η(X)η(Y )),

= (F 2g + (H2 − F 2)η ⊗ η)(X, Y )−H2η(X)η(Y ),

= g∗(X, Y )− η∗(X)η∗(Y ).

□

Remark 2.4. A ±(H,F )-deformation of a contact metric is not necessarily contact.
If dη(X, Y ) = g(X,ΦY ) then,

dη∗(X, Y ) = Hdη(X, Y ) = Hg(X,ΦY ) = ±H

F 2
g∗(X,Φ∗Y ).

Thus, a (H,F ) transformation preserves the contact structure if and only if H = F 2.
That motivates the following definition.
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Definition 2.8. A deformed contact metric structure is obtained via an ±(1, F )-
deformation of a contact metric structure.

It is of interest to relate the curvature of a ±(H,F ) deformation with one of the
original metric. Towards that end, we recall, for g = g⊥ + η ⊗ η,

g∗ = H2η ⊗ η + F 2g⊥.

In case of a K-contact structure, the calculation is relatively simple.

Proposition 2.7. Let (M, ζ, η,Φ, g) be a K-contact structure and (M, g∗, ζ∗, η∗,Φ∗)
be its ± (H,F ) deformation. Then the curvatures are related by, for orthonormal
horizontal vectors X and Y

K∗(X, Y ) =
1

F 2
K⊥(FX,FY )− 3

H2

F 4
g∗(X,Φ∗Y )2,

K∗(X, ζ∗) =
H2

F 4
,

Rc∗(X, Y ) = Rc⊥(X, Y )− 2
H2

F 4
g∗(X, Y )

Rc∗(ζ∗, ζ∗) =
H2

F 4
(dim(M)− 1).

Here K⊥ and Rc⊥ are the sectional and Ricci curvature of (g⊥,∇⊥).

Proof. Since ζ is a Killing vector field, its generated foliation F is Riemannian by
Prop. 2.3. By Lemma 2.6, (M, g∗, ζ∗, η∗,Φ∗) is an almost contact metric structure, g∗

is bundle-like with respect to F , and Lζg = 0 = Lζ∗g
∗. Therefore, by Lemma 2.4,

orbits of F are geodesics with respect to either g or g∗.
For a Riemannian totally geodesic foliation, the curvature can be computed via tensor

A; see [4, Chapter 9] or [9, Theorem 2.5.16]. By Lemma 2.5,

g∗(A∗
Xζ

∗, Y ) = dη∗(X, Y ) = Hdη(X, Y ) = Hg⊥(X,ΦY ) =
−H

F 2
(g∗)⊥(ΦX, Y ).

Thus,

A∗
Xζ

∗ =
−H

F 2
Φ(X).

Then,

Rc∗(X, Y ) = (Rc∗)⊥(X, Y )− 2g∗(A∗
X , A

∗
Y ),

= (Rc∗)⊥(X, Y )− 2g∗(A∗
Xζ

∗, A∗
Xζ

∗),

= Rc⊥(X, Y )− 2
H2

F 4
g∗(X, Y )
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Similarly,

Rc∗(ζ∗, ζ∗) = g∗(A∗ζ∗, A∗ζ∗),

=
∑
i

g∗(A∗
Xi
ζ∗, A∗

Xi
ζ∗),

=
H2

F 4
(dim(M)− 1).

□

2.4. Rectifiable, Transnormal, and Isoparametric Functions. In this subsection,
for a complete connected Riemannian manifold (M, g), we consider a smooth function
f : Mn 7→ R. First, we recall the definition of rectifiable which appears in [55, 18].

Definition 2.9. f is rectifiable if |∇f | is constant along every regular connected com-
ponent of the level sets of f .

The following observation gives a geometric interpretation.

Lemma 2.8. The followings are equivalent:

(i) f is rectifiable.
(ii) Integral curves of ∇f are geodesic after reparametrization.
(iii) The gradient of f is an eigenvector of its Hessian.

Proof. Integral curves of ∇f are geodesic if and only if, when ∇f ̸= 0,

0 =
1

|∇f |
∇∇f

∇f

|∇f |

=
1

|∇f |3
(|∇f |∇∇f∇f − (∇∇f |∇f |)∇f).

Thus, it is equivalent to that, for any unit vector field Ei ⊥ ∇f ,

0 = g(∇∇f∇f, Ei) = Hessf(∇f, Ei) =
1

2
∇Ei

|∇f |2.

Equivalently, |∇f |2 is constant on each connected component of a regular level set. □

Remark 2.5. Consequently, it justifies the terminology that a rectifiable function is
also called one with a geodesic gradient [33, 34].

A priori, |∇f | might vary between different connected components. Thus, it is useful
to have a global condition.

Definition 2.10. f is called transnormal if there is a continuous function b : R 7→ R
such that

|∇f |2 = b(f).

Furthermore, a transnormal function is called isoparametric if there is a continuous
function a : R 7→ R such that

∆f = a(f).

Remark 2.6. Generally speaking, the former condition corresponds to equidistant level
sets while the latter implies that each regular one has constant mean curvature.
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Remark 2.7. The level sets of a transnormal f could be formulated as a singular
Riemannian foliation. Thus, its study is closely related to the theory of a transnormal
system and polar foliations [46].

The followings is immediate.

Lemma 2.9. f is rectifiable and each level set is connected then f is transnormal.

Proof. It follows immediately from the definitions and Sard’s theorem about regular
values being dense in the range of f . □

Definition 2.11. A geodesic segment γ : [α, β] 7→ M is called an f -segment if γ′(t) =
∇f
|∇f | whenever |∇f | ≠ 0.

Remark 2.8. At a point p such that ∇f(p) ̸= 0, it is possible to reparametrize an
f -segment γ via translation such that γ ◦ f = Id in a neighborhood of p. If f(p) is a
local minimum or maximum, one can only reparametrize to obtain such a property in
an one-sided neighborhood.

For c ∈ f(M), denote Mc = f−1(c).

Lemma 2.10. If f is transnormal and [α, β] ⊂ f(M) contains no critical value of f
then for any x ∈ Mα, y ∈ Mβ, we have

(i) d(x,Mβ) = d(Mα, y) =
∫ β

α
df√
|∇f |

;

(ii) the integral curves of ∇f after reparametrization are f -segments;
(iii) the f -segments are the shortest curves among all curves connecting Mα and Mβ.

Proof. See [67, Lemma 1]. □

Obviously, there is a local version when f is rectifiable. Thus, a Riemannian manifold
with a rectifiable function f is locally foliated by equidistant hypersurfaces. Following
[35, Section 2], let P be a differentiable manifold corresponding to a regular connected
component. There is a local diffeomorphism ϕ : I × P 7→ M such that the metric can
be written as

ϕ∗g = dt2 + gt.

Here t is a parametrization of f(M) with unit tangent vector (see Remark 2.8) and gt is
an one-parameter family of metrics P such that, for ϕc : {c} × P 7→ Mc the restriction
of ϕ to a slice,

ϕ∗
cg|Mc = gc.

That is, gt is equal to the pullback of the induced metric on the corresponding nearby
connected component of level sets.

For a level set Mc, we denote the normal exponential map

Πc : T
⊥Mc 7→ M.

When c is regular, Πc induces a diffeomorphism between nearby regular connected
components of level sets.

Πϵ
c = (Πc)|V=ϕ∗(ϵ∂t) : Mc 7→ Mc+ϵ.
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Lemma 2.11. Let I be a continuous open interval with regular values of f . Πϵ
c is just

the identification by the diffeomorphism ϕ.

Proof. For p a point in P and c ∈ I such that ϕ(p, c) = q ∈ Mc. Let γ(t) be the curve
given by, for t ∈ (c− ϵ, c+ ϵ)

γ(t) = ϕ(p, t).

It is readily verified that
d

dt
γ = ϕ∗∂t.

Thus γ is a geodesic segment and by the uniqueness of a geodesic given initial conditions,

Πϵ
c(q) = γ(ϵ) = ϕ(p, ϵ).

The result follows.
□

A soliton structure comes with a potential function and it is intriguing to deter-
mine exactly if or when it is transnormal and isoparametric. We have the following
observations. It is our convention that 0⃗ is parallel with any vector.

Proposition 2.12. Let (M, g, f) be a GRS with a non-constant f . The followings are
equivalent:

(i) f is rectifiable,
(ii) whenever ∇f ̸= 0, ∇f is an eigenvector of Rc,
(iii) ∇f ∥ ∇S everywhere.

Proof. We break down the proof into several claims.
Claim: (ii) ↔ (iii).
Proof: It is due to the equation (2.2).

Claim: (i) =⇒ (iii).
Proof: If f is rectifiable, |∇f | is constant on each connected component of a regular

level set and, by equation (2.3), so is S. Thus, ∇f ∥ ∇S on each such component. By
Sard’s theorem, the set of regular values is dense and, by continuity, the result follows.

Claim: (iii) =⇒ (i).
Proof: On each connected componentMc of regular level set of f ,∇S is perpendicular

to TMc and, consequently, S is constant on Mc. Because of equation (2.3), so is |∇f |.
The result then follows.

□

Proposition 2.13. Let (M, g, f) be a GRS with a non-constant f . The followings are
equivalent:

(i) f is transnormal,
(ii) f is isoparametric,
(iii) f is transnormal and b is C∞.
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Proof. The proof is based on the following claims.
Claim: (i) ↔ (ii).
Proof: If f is transnormal, then |∇f | is constant on each level set and, by equation

(2.3), so is S. Consequently, ∆f is also constant on each level set due to equation (2.1).

Claim: (i) ↔ (iii). Let γ : R 7→ M be an f -segment. Since γ is a geodesic, it is
smooth and so is S ◦ (f ◦ γ). By the remark following Definition 2.11, one may assume
f ◦ γ = Id up to a critical value of f . Thus, S, as a function of f on f(M), is smooth
and so is |∇f |2 by equation (2.3).

□

Remark 2.9. Here we only show that b : f(M) 7→ R is smooth at a regular value. At
a critical one, it is only smooth in the sense of one-sided limits.

Remark 2.10. When f is rectifiable, b can be defined locally and the smoothness also
follows.

Furthermore, the local foliation of equidistant hypersurfaces allows one to rewrite
the soliton equation as follows [31]. For N = ∂t, the shape operator is given as,

LX := ∇XN.

Denoting the ordinary derivative d
dt

by ′, it follows that

g′ = 2g ◦ L,(2.5)

∇NL = L′.

Due to Gauss, Codazzi, and Riccati equations, the Ricci curvature of (M, g) of is
totally determined by that of (Mt, gt) and the shape operator. Precisely, for tangential
vectors X and Y ,

Rc(X, Y ) = Rct(X, Y )− tr(Lt)gt(LX, Y )− gt(L
′(X), Y ),

Rc(X,N) = −∇Xtr(Lt)− gt(δL,X),(2.6)

Rc(N,N) = −tr(L′)− tr(L2).

Here Rct denotes the Ricci curvature of (Mt, gt) and trT = trgtTt. Next, we recall

Hessf(X, Y ) = g(∇X∇f, Y ) and ∇f = df
dt
N = f ′. Consequently,

Hessf(X,N) = 0,

Hessf(N,N) = f ′′,(2.7)

Hessf(X, Y ) = f ′gt(Lt(X), Y ).

The gradient Ricci soliton equation Rc+Hessf = λg is reduced to a system for each t,

0 = −(δL)−∇trL,

λ = −tr(L̇)− tr(L2) + f ′′,(2.8)

λg(X, Y ) = Rc(X, Y )− (trL)g(LX, Y )− g(L′(X), Y ) + f ′g(LX, Y ).
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3. Deformed Sasakian

In this section, we give a characterization for an almost contact metric manifold to
be a deformed Sasakian structure, proving Theorem 1.4. Consequently, it is possible
to detect such a structure on real hypersurface of a Kähler manifold via examining its
shape operator as in Theorem 1.5. Thus, they generalizes a classical result and might
be of independent interest.

Let (M, ζ, η,Φ, g) be an almost contact metric manifold and F be the foliation gen-
erated by ζ.

Lemma 3.1. If ∇XΦ(Y ) = bg(X, Y )ζ − bη(Y )X for a real number b and any vector
fields X and Y then g is bundle-like with respect to F and ζ is Killing.

Proof. The assumption implies that

b(η(X)Y − η(Y )X) = ∇XΦ(Y )−∇XΦ(Y ),

= ∇X(ΦY )−∇Y (ΦX)− Φ([X, Y ])

Let X = ζ and Y be a foliate horizontal vector field then [X, Y ] is tangential and, thus,

∇Y (ΦX) = Φ([X, Y ]) = 0.

Consequently, ∇ζ(ΦY ) = bY. Applying the assumption again yields

0 = bg(ζ,ΦY )ζ − η(Φ(Y ))bζ = ∇ζΦ(ΦY ),

= ∇ζΦ
2(Y )− Φ(∇ζ(ΦY )) = ∇ζ(−Y )− bΦ(Y ).

Thus, for foliate horizontal vector fields Y and Z,

ζg(Y, Z) = g(∇ζY, Z) + g(Y,∇ζZ),

= −bg(ΦY, Z)− bg(Y,ΦZ) = 0.

The last equality is due to the compatibility of g and Φ. Therefore, g is bundle-like
by Definition 2.2 and F is a Riemannian foliation. Furthermore, Lemma 2.4 is also
applicable since

∇ζΦ(ζ) = bζ − bζ = 0.

Thus F is a Riemannian foliation whose orbits are geodesics. By Lemma 2.3, ζ is a
Killing vector field.

□

Lemma 3.2. For a horizontal vector field X, the followings are equivalent

(i) (∇ζΦ)X = 0
(ii) [ζ,Φ(X)]− Φ([ζ,X]) = Φ(AXζ)− AΦXζ.

Proof. We compute, using the notation from Section 2,

(∇ζΦ)(X) = ∇ζ(ΦX)− Φ(∇ζX)

= [ζ,ΦX]− Φ([ζ,X])− Φ(∇Xζ) +∇ΦXζ,

= [ζ,ΦX]− Φ([ζ,X])− Φ(AXζ) + AΦXζ.

□
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Moreover, since F is Riemannian, by Lemma 2.5, the tensor A can be computed as,
for horizontal vector fields X and Y ,

2AXY = −2dη(X, Y )ζ = g([X, Y ], ζ)ζ

g(AXζ, Y ) = dη(X, Y ).

Lemma 3.3. For horizontal vector fields X, Y , the followings are equivalent

(i) (∇XΦ)Y = bg(X, Y )ζ
(ii) AX(ΦY ) = bg⊥(X, Y )ζ and ∇⊥

X(ΦY ) = Φ(∇⊥
XY )

Proof. We compute,

(∇XΦ)(Y ) = (∇X(ΦY )− Φ(∇XY )

= AX(ΦY ) + π⊥(∇X(ΦY ))− Φ(AXY + π⊥(∇XY ))

= AX(ΦY ) +∇⊥
X(ΦY ))− Φ(∇⊥

XY ).

□

Lemma 3.4. For horizontal vector fields X, Y , the followings are equivalent

(i) (∇XΦ)ζ = −bX
(ii) AXζ = −bΦX.

Proof. We compute

(∇XΦ)(ζ) = (∇X(Φ(ζ))− Φ(∇Xζ)

= −Φ(AXζ).

□

Thus, it is possible to track how the covariant derivative of Φ changes under a
deformation.

Theorem 3.5. Let (M, ζ, η,Φ, g) be an almost contact metric structure such that, for
every vector fields X and Y ,

∇XΦ(Y ) = bg(X, Y )ζ − η(Y )bX.

Let (M, ζ ′, η′,Φ′, g′) be an ±(1, c)-deformation then

∇′
XΦ

′(Y ) = ± b

c2
(g(X, Y )ζ ′ − η(Y )bX).

Proof. Let F be the foliation generated by ζ. By Lemma 3.1, F is Riemannian and ζ
is a Killing vector field. We write the metric as

g = g⊥ + η ⊗ η.

By Lemmas 3.3 and 3.4, for horizontal vector fields X, Y ,

AXΦ(Y ) = bg(X, Y )ζ,

∇⊥
XΦ(Y ) = Φ(∇⊥

XY ),(3.1)

AXζ = −bΦ(X).
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We will assume (M, ζ ′, η′,Φ′, g′) be an (1, c)-deformation as the minus case can be done
similarly. Thus, η′ = η, ζ ′ = ζ, Φ′ = Φ and

g′ = c2g + (1− c2)η ⊗ η = c2g⊥ + η ⊗ η.

By Lemma 2.6, (M, g′, η′, ζ ′,Φ′) is an almost contact metric structure; ζ = ζ ′ is a Killing
unit vector field with respect to g′; and g′ is bundle-like with respect to F . By Lemma
2.5 and equation (3.1), we have

A′
X(Φ

′Y ) = −dη′(X,Φ′(Y ))ζ ′ = dη(X,Φ(Y ))ζ = AXΦ(Y )

= bg⊥(X, Y )ζ =
b

c2
g′(X, Y )ζ ′.

Similarly,

g′(A′
Xζ

′, Y ) = dη′(X, Y ) = dη(X, Y ) = g(AXζ, Y )

= −g(bΦ(X), Y ) = − b

c2
g′(Φ(X), Y ).

Thus, A′
Xζ = − b

c2
Φ(X). As the Levi-Civita connection is scaling invariant, ∇c2g⊥ =

∇g⊥ = ∇⊥. By Lemma 3.2, ∇ζΦ(X) = 0 iff

[ζ,Φ(X)]− Φ([ζ,X]) = Φ(AXζ)− AΦXζ = Φ(−bΦ(X)) + bΦ(Φ(X)) = 0.

As the left-hand side is independent of the metric, ∇′
ζ′Φ

′(X) = 0. Together with
Lemmas 3.3 and 3.4, we obtain, for any vector fields V and W ,

∇′
VΦ

′(W ) =
b

c2

(
g′(V,W )ζ ′ − η′(W )V

)
.

□

The following is classical.

Theorem 3.6. [9] An almost contact metric manifold (M, ζ, η,Φ, g) is Sasakian if and
only if, for every vector fields X and Y ,

(3.2) ∇XΦ(Y ) = g(X, Y )ζ − η(Y )X.

Corollary 3.7. Let (M, ζ, η,Φ, g) be a Sasakian manifold and (M, ζ ′, η′,Φ′, g′) be an
±(H,F )-deformation. Then

∇′
XΦ

′(Y ) =
±H

F 2
(g(X, Y )ζ ′ − η(Y )bX).

Proof. By Remark 2.4, a (H,
√
H)-deformation is Sasakian. Thus, applying Theorem

3.5 for b = 1, c = F√
|H|

in combination with Theorem 3.6 yields the result. □

We are ready to give the proof of Theorem 1.4.

Proof of Theorem 1.4. For part (i), without loss of generality, we assume b > 0 (if b < 0
then we consider (M, ζ, η,−Φ). One direction follows from Corollary 3.7. The other is

deduced by applying Theorem 3.5 for c =
√
b.
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For part (ii), b = 0 means Φ is parallel since, for every vector fields X and Y

∇XΦ(Y ) = 0.

By Lemmas 2.4 and 3.1, ζ is a Killing and geodesic vector field. By Lemma 3.4, for
any horizontal vector field X,

∇Xζ = AXζ = 0.

Thus, ζ is a global unit-length parallel vector field and, accordingly, the manifold splits
into a Riemannian product. The factor perpendicular to ζ has Φ as an almost complex
structure. Its compatibility with g makes the induced metric almost Herminian. Since
Φ is parallel, the metric is Kähler by Prop. 2.1. □

Proof of Theorem 1.5. We have

∇XY = (∇M
X Y )− g(LX, Y )V.

Since J is parallel with respect to ∇, ∇X(JY ) = J(∇XY ). Thus,

∇M
X (ΦY )− g(LX,ΦY )V +Xη(Y )V + η(Y )LX = Φ(∇M

X Y ) + η(∇XY )V + g(LX, Y )ζ.

Consequently, equating the normal and tangent components give

(∇M
X Φ)Y = −η(Y )LX + g(LX, Y )ζ,

−g(LX,ΦY ) +Xη(Y ) = η(∇XY )

For the first equation, substituting L = αId + βζ ⊗ η yields

(∇M
X Φ)Y = −η(Y )

(
αX + βζη(X)

)
+ g

(
αX + βζη(X), Y

)
ζ

= −αη(Y )X + αg(X, Y )ζ.

Similarly, for the second equation, we have

η(∇XY ) = −g(αX + βζη(X),ΦY ) +Xη(Y ),

↔ g(∇Xζ, Y ) = αg(X,Φ(Y )) = αg(Φ(X),−Y ),

↔ ∇Xζ = −αΦ(X).

By Lemmas 3.1 and 3.4, the second equation is implied by the first. The result then
follows from Theorem 1.4. □

4. Kähler Solitons and Contact Structures

In this section, we’ll study a Kähler GRS (M, g, J, f) under the assumption that each
regular connected component level set of f is a deformed contact structure. Thus, a
proof of Theorem 1.3 will be provided. For c ∈ f(M), we recall the construction (1.2),
for a regular value c,

V :=
∇f

|∇f |
, gc := g|Mc , ζc := −J(V ), ηc(·) := g(·, ζc), Φc(·) := −ηc(·)V + J(·).

Together, (Mc, ζc, ηc,Φc, gc) is an almost contact metric structure. Additionally, the
shape operator is given by

g(LX, Y ) = g(∇XV, Y ) = g(∇X
∇f

|∇f |
, Y ) =

|∇f |Hessf(X, Y )−X|∇f |g(∇f, Y )

|∇f |2
.
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Thus,

Hessf(X, Y ) = |∇f |g(LX, Y ) +
X|∇f |
|∇f |

g(∇f, Y ).

We first observe the following.

Lemma 4.1. If (Mc, ζc, ηc,Φc, gc) is a deformed connected contact metric structure,
then it is a deformed K-contact structure and |∇f | is constant along Mc.

Proof. For convenience, we drop the c dependence. By Lemma 2.2, W := J(∇f) =
−|∇f |ζ is a Killing vector field. It suffices to show |∇f | is constant along Mc. First,
we obverse that, since Hessf is J-invariant:

∇W |∇f |2 = 2g(∇W∇f,∇f) = 2Hessf(W,∇f) = 0.

Next, the deformed contact metric structure implies that

dη(ζ, ·) = 0.

By Lemma 2.4, the integral curves of ζ are geodesics. Therefore, and any X tangential
to Mc,

0 = g(∇ W
|W |

W

|W |
, X) =

|W |g(∇WW,X)−W |∇f |g(W,X)

|∇f |3
.

Since W |∇f |2 = 0 we have, g(∇WW,X) = 0. Since W is a Killing vector field,

0 = g(∇XW,W ) =
1

2
X|W |2.

As |W | = |∇f | the result follows.
□

Lemma 4.2. Let (P, ζ, η,Φ, η ⊗ η + g⊥) be a contact metric structure. Suppose the
metric and the almost complex structure, on I × P ,

g = dt2 +H2(t)η ⊗ η + F 2(t)g⊥,

J = ∂t ⊗Hη − 1

H
ζ ⊗ dt+ Φ,

are almost Kähler. Then,

FF ′ = H.

Proof. The contact structure implies dη = g⊥(·,Φ(·)) := ω⊥(·, ·). Recall ωg(X, Y ) =
g(X, JY ), the Kähler form becomes,

ωg = 2dt ∧Hη + F 2ω⊥.

Thus, dωg = −2Hdt ∧ ω⊥ + 2FF ′dt ∧ ω⊥ and one deduces

FF ′ = H.

□

We are ready to give the main proof of this section.
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Proof of Theorem 1.3. By Lemma 4.1, f is rectifiable and each level set is endowed with
a deformed K-contact structure. Let P be a differentiable manifold corresponding to a
regular connected component of a level set of f . As in Subsection 2.4, there is a local
diffeomorphism ϕ : I × P 7→ M such that

ϕ∗(g) = dt2 + gt.

for (P, gt) an one-parameter family of Riemannian metrics which are equal to the pull-
back of induced metric on nearby connected components.

Since each is a deformed K-contact structure, we can write

gt = ctg
⊥
t + ηt ⊗ ηt,

for ηt be a family of one-form dual, via gt, with ζt and g⊥t be a family of transverse
metrics on the sub-bundle gt-perpendicular to ζt. We observe, since f is invariant by
the Killing vector field J(∇f)

0 = LJ∇f∇f = −L∇fJ(∇f).

Therefore, J(∇f) = −|∇f |tζt is invariant by the flow generated by ∇f . Thus, by
Lemma 2.11, f ′ζt is identified with a fixed vector on P . Consequently, by continuity,
we can fix a background one-form η and its corresponding transverse metric g⊥ such
that (P, η, ζ,Φ, η ⊗ η + g⊥) a K-contact structure and, for some constant B,

gt = H2(t)η ⊗ η + F 2(t)g⊥,

H = f ′B

Due to g′t = 2gt ◦L, we have, for Id denoting the identity operator on the horizontal
subspace of TP , which is (g⊥ + η ⊗ η)- perpendicular to ζ,

Lt =
H ′

H
ζ ⊗ η +

F ′

F
Id.

L′
t =

(H ′′

H
−
(H ′

H

)2)
ζ ⊗ η +

(F ′′

F
−
(F ′

F

)2)
Id.

By Theorem 1.4, at regular values, F ′ ̸= 0 and (P, ηt, ζt,Φt, gt) is a deformed Sasakian
structure. Furthermore, for m = dimCM − 1,

trLt =
H ′

H
+ (2m)

F ′

F
,

trL2
t = (

H ′

H
)2 + (2m)

(F ′)2

F 2
,

trL′
t =

H ′′

H
+ (2m)

F ′′

F
− (H ′)2

H2
− (2m)

(F ′)2

F 2
.

Via equation (2.8) and Prop. 2.7,

Rc⊥ − 2
H2

F 4
gt = λgt + tr(L)gt ◦ L− gt ◦ L′ + f ′gt ◦ Lt.
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Since gt = F 2g⊥ + H2η ⊗ η, one deduces that Rc⊥ = kg⊥. Consequently, the soliton
equation 1.1 becomes

λ = −H ′′

H
− (2m)

F ′′

F
+ f ′′

=
H2

F 4
(2m)− H ′′

H
− 2m

H ′F ′

HF
+ f ′H

′

H

=
k

F 2
− H2

F 4
2− F ′′

F
− (2m− 1)(

F ′

F
)2 − H ′F ′

FH
+ f ′F

′

F
.(4.1)

By Lemma 4.2, the ODE system is augmented with additional constraints FF ′ =
H = f ′B. It was investigated and solved explicitly via a transformation to a modified
Calabi’s ansatz in [31] (see also [66]). In particular, f is monotonic and one concludes
that f is transnormal and each level set is connected.
Furthermore, there must be a finite t where either H → 0 or both H,F → 0. By

Lemmas 4.3 and 4.4 below, there is a Riemannian submersion from (P, η, ζ,Φ, g⊥+η⊗η)
to a Kähler-Einstein manifold. Thus, the result follows.

□

For the following results, one assumes the setup as in the proof of Theorem 1.3.

Lemma 4.3. Let I = (0, ϵ) for ϵ > 0 and suppose that

lim
t→0+

H(t) = lim
t→0+

F (t) = 0,

and the metric can be extended smoothly to t = 0. Then, (P, ζ, η,Φ, g⊥ + η ⊗ η) is a
Sasakian sphere with Hopf fibration over a complex projective space.

The proof models after one for [54, Theorem 4.3.3]. The idea is that, as H,F → 0,
the metric must become rounder and rounder. The rigidity of the deformed structure
implies that it is actually round.

Proof. Let p denotes the point compactification at t = 0. Since it is locally Euclidean
around p, each level set of f corresponds to a distance sphere. This also follows from
the Morse lemma as equation (2.7) implies

Hessf(p) = lim
t→0

f ′′(t)g.

Thus, P is diffeomorphic to a sphere. Consequently, there is a diffeomorphism ϕ̂
from an open ball in R2n to M such that each Euclidean round sphere is mapped to a
level set of f .

Let’s fixed a sphere with the standard round metric (S2n−1, ground). In R2n, the
intersection of a 2-dimensional plane through the origin with (S2n−1, ground) is a great
circle S1 with coordinate θ. That is,

ground(∂θ, ∂θ) = 1.

Next, we consider the image of that plane via ϕ̂. Since ϕ̂ is a diffeomorphism,
the image is a submanifold of dimension two with coordinates t and θ. Using polar
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coordinates

x = t cos θ,

y = t sin θ,

∂x = cos θ∂t −
1

t
sin θ∂θ,

∂y = sin θ∂t +
1

t
cos θ∂θ

Thus, for g = dt2 +H2(t)η ⊗ η + F 2(t)g⊥

gxx := g(∂x, ∂x) = cos2 θ +
1

t2
sin2 θ(H2η2(∂θ) + F 2g⊥(∂θ, ∂θ)),

gyy := g(∂y, ∂y) = sin2 θ +
1

t2
cos2 θ(H2η2(∂θ) + F 2g⊥(∂θ, ∂θ)).

Letting t → 0 yields

gxx(p) = cos2 θ + sin2 θ((H ′(0))2η2(∂θ) + (F ′(0))2g⊥(∂θ, ∂θ)),

gyy(p) = sin2 θ + cos2 θ((H ′(0))2η2(∂θ) + (F ′(0))2g⊥(∂θ, ∂θ)).

Adding them together we deduce that, since g(p) is independent of θ,

1 = H ′(0))2η2(∂θ) + (F ′(0))2g⊥(∂θ, ∂θ) = ground(∂θ, ∂θ).

Since ∂θ is arbitrary,

H ′(0)2η ⊗ η + F ′(0)2g⊥ = ground.

By Prop. 2.7, g⊥ + η ⊗ η has constant Φ-holomorphic sectional curvature. By the
classification of Tanno [63], it must be the standard round sphere with the contact
structure given by the Hopf fibration over a complex projective space.

□

Lemma 4.4. Suppose that

lim
t→0+

H(t) = 0 and lim
t→0+

F (t) ̸= 0,

and the metric can be extended smoothly to t = 0. Then, (P, η, ζ,Φ, g⊥ + η ⊗ η) is a
Riemannian submersion over a Kähler-Einstein manifold.

Proof. By the ODE system (4.1), the set of points corresponding to t = 0 and H → 0
corresponds to a level set, called N , of a critical value of f . Since f is monotonic, N is
focal variety and also the zero set of the Killing vector field J(∇f). Due to Kobayashi’s
[41], one deduces that N is a totally geodesic submanifold of co-dimension two. Let gN
be the induced metric of g on N .
Let’s recall the normal exponential map and its cousin

Πc : T
⊥Mc 7→ M, Πϵ

c = (Πc)|V=ϕ∗(ϵ∂t) : Mc 7→ Mc+ϵ.

Then, Π−ϵ
ϵ : Mϵ 7→ N is a smooth focal map. Let X be a vector field on P and we use

the same name for its identification on Mϵ via ϕ. Let X̃ be the push-forward of X via
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Π−ϵ
ϵ . By continuity and Lemma 2.11, it is just the limit, as t → 0, of t-identifications

of the same vector field X via ϕ. Thus,

gN(X̃, X̃) = lim
t→0

gt(X,X),

= F (0)2g⊥(X,X).

Thus, X̃ = 0⃗ if and only if X is a multiple of ζ. Thus, at each point q ∈ Mϵ, the
differential of Π−ϵ

ϵ is onto with an one-dimensional kernel. Thus, Π−ϵ
ϵ is a submersion

and the equation above shows that it is a Riemannian submersion (N,F (0)2gN). It
remains to show (N,F (0)2gN) is Kähler-Einstein with a compatible almost complex
structure.

Indeed, Φ induces an almost complex structure on N by

JNX̃ := Φ̃X.

Claim: JN(X̃) = J(X̃).
Proof. Without loss of generality, one may assume that X ⊥ ζ and, by the construc-

tion of Φ,

Φ̃X = J̃X.

On the other hand, X̃ = limt→0(ϕt)∗X and, by continuity,

J(X̃) = J(lim
t→0

(ϕt)∗X) = lim
t→0

J((ϕt)∗X)

= lim
t→0

(ϕt)∗(ϕ
∗
tJX) = lim

t→0
(ϕc)∗(JX)

= J̃X.

Claim: (N, gN , JN) is a Kähler-Einstein manifold.
Proof. By continuity,

RcN(X̃, X̃) = F 2(0)Rc⊥(X,X) = kF 2g⊥(X,X) = kgN(X̃, X̃).

Thus, it is Einstein. Then JN is parallel since JN = J|TN , J is parallel, and (N, gN) is
totally geodesic.

□

5. Dimension four

We restrict our investigation to real dimension four and great simplification occurs.

Lemma 5.1. Let (M, g, J, f) be a Kähler GRS in real dimension four. Suppose that
f is rectifiable then along each regular connected component, Hessf has two constant
eigenvalues, each of multiplicity two.

Proof. Let Mc be a connected component of a regular level set of f . Since |∇f | is
constant on Mc, for any vector field X tangent to Mc,

Hess f(∇f,X) = 0.
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Following Remark 2.10, b(f) = |∇f |2 is locally defined for nearby connected compo-
nents and it is smooth. Thus,

Hess f(∇f,∇f) = g(∇∇f (∇f),∇f)

=
1

2
∇∇f |∇f |2 = 1

2
∇∇f |∇f |2

=
1

2
b′(c)|∇f |2

Therefore, ∇f is an eigenvector with eigenvalue 1
2
b′(c). As each tangent space is of

dimension 4 and Hess f is J-invariant, Hess f has exactly two eigenvalues each of mul-
tiplicity two. By equations (2.1) and (2.3),

∆f = tr(Hessf) = nλ− |∇f |2 + 2λf − a constant.

Thus, it is also fixed along Mc and the result then follows.
□

We are now ready to classify all Kähler GRS with a rectifiable potential function f .

Proof of Theorem 1.1. Let Mc be a connected component of a regular level set of f .
Then, (Mc, ζc, ηc,Φc, gc) via (1.2) is an almost contact metric structure. Along a regular
connected component, |∇f | is a nonzero constant and we have, for L denoting the shape
operator,

Hessf(X, Y ) = |∇f |g(LX, Y ) +
X|∇f |
|∇f |

g(∇f, Y ),

= |∇f |g(LX, Y ).

By Lemma 5.1, Hessf has constant eigenvalues µ1, µ2 with ζ as one of the eigenvector.
Therefore,

L =
1

|∇f |
((µ1 − µ2)ζ ⊗ η + µ2Id).

Consequently, L satisfies the condition of Theorem 1.5 and (Mc, ζc, ηc,Φc, gc) must
be either a deformed Sasakian structure or a product of line or a circle with a Kähler
manifold. By continuity, nearby regular connected components must all be of the same
type. Thus, we consider two cases.

Case 1: Locally, each regular connected component is a deformed Sasakian struc-
ture. By Theorem 1.3, each is a Riemannian submersion over a Kähler-Einstein mani-
fold (N, gN , JN). Since N is of real dimension two, it must have constant curvature.

Case 2: Locally, each regular connected component is a product of a line or circle
with a Kähler manifold (N, gN). Thus, locally the metric can be written as

g = dt2 +H2(t)η ⊗ η + gN(t),

for (N, gN(t), JN(t)) an one-parameter family of Kähler metrics and dη = 0. Further-
more, JN = Φ|TN = J|TN . Since ωg(X, Y ) = g(X, JY ), the Kähler form becomes

ωg = 2dt ∧Hη + ωN(t).
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Thus, dωg = dt ∧ dωN (t)
dt

and one deduces that ωN is independent of t. Comparing
covariant and ordinary derivatives yield, for t-independent vector fields X, Y on TN ,

0 =
d

dt
(ωN(X, Y )) =

d

dt
(gN(X, JNY )) = ∇∂t(gN(X, JNY ))

= (∇∂tgN(t))(X, JNY ) + gN(X,∇∂t(JY ))

= (
d

dt
gN(t))(X, JNY ).

As a consequence, gN is independent of t and the soliton splits into a Riemannian
product

(M1, dt
2 +H2(t)η ⊗ η)× (N, gN , JN).

By the soliton system (2.8), (N,F 2gN) has constant Ricci curvature and, thus, constant
curvature due to its low dimension.

□

Proof of Corollary 1.2. By Theorem 1.1, as the metric is irreducible, (M, g, J, f) must
be of cohomogeneity one, f is invariant by the action, and each principal orbit is
a connected deformed Sasakian structure on a manifold P . By Theorem 1.3, it is a
Riemannian submersion, with circle fibers, over a Kähler-Einstein manifold (N, gN , JN).
Claim: If M is non-compact, then N is simply connected.
Proof of the claim: Since M is non-compact M is constructed by collapsing at one

end of P × [0,∞]. If the singular orbit is a point, the result follows immediately
from Theorem 1.3. If not, M could be written as a union of an one-sided tubular
neighborhood around the singular orbit, diffeomorphic to N , and P × (0,∞) and the
intersection is diffeomorphic to P × (0, ϵ). It is immediate to construct a deformation
retract from the tubular neighborhood toN and from each of P×(0, ϵ) and P×(0, infty)
to P . Consequently, Seifert-Van Kampen theorem deduces that, for π1 denoting the
fundamental group,

π1(M) = π1(N) ∗π1(P ) π1(P ).

Since M is simply connected, so is N .
Thus, N is simply connected and (N, gN , JN) is of constant curvature. Thus, its

isometry group is of dimension 22 − 1 = 3. The isometry group of (M, g, J, f) is then
constructed by that of N and the circle action generated by J(∇f); see [66, Theorem
1.5].

□
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