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Introduction

Bonjour à toutes et à tous. Je suis très heureux d’être ici aujourd’hui
pour vous présenter mon travail de thèse que j’effectue sous la direction
de Monsieur Evans GOUNO.
It is my pleasure standing here today giving you the presentation of my
work under the supervision of Mr. Evans GOUNO.
Relying of the work of ??, we introduce the H-B distribution which
appears as a natural conjugate prior for Bayesian analysis of the Power
Law Process. Then we investigate some properties of H-B distribution in
order to make elicitation of the hyper-parameters. Finally, we conduct
Bayesian estimation of the parameters using different priors and make
comparison between them and Maximum Likelihood Estimation.
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What is PLP ?

The stochastic point process {N(t), t ≥ 0} is called PLP if it is a
Non-homogeneous Poisson Process (NHPP) with intensity function

m(t) = β

αβ
tβ−1.

That means, the numbers of events in a time interval (s, t], say N(s, t)
follows the Poison distribution with parameter

λ(s, t) =
∫ t

s
m(u)du = (t/α)β − (s/α)β .

So, on average, the number of events in the time interval (0, t] is

M(t) = E (N(t)) =
∫ t

0
m(u)du = (t/α)β .
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What is PLP ?

In order to make statistical inferences on N(t), we need to estimate the
two parameters α,β.
If β > 1 then the intensity m(t) increases, the PLP is getting more events
overtime. If β < 1 then the intensity m(t) decreases, the PLP is getting
less events overtime. In case of β = 1, the PLP degenerates to the HPP
with the constant rate of events.
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Duane Plot

In 1964, Duane found that when he plotted the data of failure dates
collecting from repairable systems, they followed up straight lines. With
the mathematical view, the Power Law Process fit well in explaining that
phenomenon.
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Life data from the electronics system

i= Failure number ti= Failure time ti/i=cum MTBF
1 0,1 0,10
2 5,6 2,80
3 18,6 6,20
4 19,5 4,88
5 24,2 4,84
6 26,7 4,45
7 45,1 6,44
8 45,6 5,70
9 75,7 8,41
10 79,7 7,97
11 98,6 8,96
12 120,1 10,01
13 161,8 12,45
14 180,6 12,90
15 190,8 12,72
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Life data from the electronics system
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Figure: Visualizing the life data from the electronics system
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Duane plot for graphical test
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Figure: Duane plot the life data from the electronics system
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How to explain the Duane Plot

Suppose that the observation (t1, t2, . . . , tn) follows the PLP. The MTBF
is

K (t) = t
M(t) = αβ .t1−β

⇔ log(K (t)) = log(αβ) + (1− β) log(t) (1)

Therefore, {log(ti ), log(ti/i); i = 1, . . . ,n} fit the linear model with the
slope 1− β and the intercept log(αβ)
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Describing the successive dates of events of the PLP

Let’s consider the sequence of successive dates of events, say
(T1,T2, . . . ,Tn), of the PLP {N(t), t ≥ 0}, where Ti is the random
variable referring to the date of the i-th event.
It can be shown that T1 has Weibull distribution with scale parameter
α and shape parameter β because its survival function has form

ST1 (t) = P(T1 > t) = P(N(t) = 0)

= exp
{
−
∫ t

ti−1

β

α

( s
α

)β−1
ds
}

= exp
{
−
(

t
α

)β}
. (2)
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Describing the successive dates of events of the PLP

Now we can find the conditionally distribution of random variable Ti
given the successive dates of events that happened before
(Ti−1 = ti−1, . . . ,T1 = t1). For t ≥ ti−1 we have

S(t | Ti−1 = ti−1, . . . ,T1 = t1) = P(Ti > t | Ti−1 = ti−1, . . . ,T1 = t1)

= P(N(ti−1, t) = 0) = exp
{
−
∫ t

ti−1

β

α

( s
α

)β−1
ds
}

= exp
{
−
[

t
α

]t

ti−1

}
= exp

{
− 1
αβ

[tβ − tβi−1]
}
. (3)

So T1 has left-truncated Weibull distribution at the left point ti−1.
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The likelihood function of PLP

Let’s find the likelihood of the observation (t1, t2, . . . , tn) (in this paper,
we only talk about the failure truncation case).

f (t1, t2, . . . , tn | α,β) = fT1 (t1).fT2|T1=t1 (t2). . . . .fTn|Ti−1=ti−1,...,T1=t1 (tn)

With the parameters (α,β) of intensity form m(t) = β
αβ tβ−1 , the

corresponding likelihood of the PLP is

L(α,β) = α−nβ .βn

( n∏
i=1

ti

)β−1

. exp
{
−
(

tn
α

)β}
(4)
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Maximum Likelihood Estimation

It is not difficult to find the Maximum Likelihood Estimators of both
α,β. In fact, they have closed form without any numerical calculation.

β̂MLE = n∑n
i=1 log(y/Ti )

, (5)

α̂MLE = y
n1/β̂

. (6)

Because
E (β̂MLE ) = n

n− 2β

so β̂MLE is biased estimator of β. It is useful to note that 2nβ/β̂MLE has
chi-square distribution with 2(n− 1) degrees of freedom so we can
conduct hypothesis testing for parameter β.
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Draw-backs of frequentist approach and the Advantages of
Bayesian approach

However, there is no pivotal quantity for the ML estimator of parameter
α and numerical integration is needed. That is why we name α the
nuisance parameter. In fact, this is one of the drawback of the frequentist
approach. That is when the Bayesian approach come in !
Frequentist base on the fact that there are infinitive repetitive
observations in the same condition. It could not be true in the real life.
Each data we observe can be drawn by different parameters. Therefore, it
is reasonable to consider parameters as random variables, not the given
fixed values.
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Draw-backs of frequentist approach and the Advantages of
Bayesian approach

The Bayesian approach provides a natural, unified environment for
carrying out the estimation and prediction process based on finite-sample
calculations rather than the large-sample approximation often needed for
the frequentist case. Moreover, it can readily incorporate any strong prior
information in the inference process if one such is available. Most
importantly, in the specific case of inference for the PLP, the Bayesian
approach take advance to the frequentist framework. In the context of
observing the failure process of a repairable system, two types of
inspection schemes are typically adopted in practice.
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Draw-backs of frequentist approach and the Advantages of
Bayesian approach

The schemes, refered to as "time truncation" and "time truncation",
closely resemble "Type I" and "Type II" censoring, respectively, in that
the process terminates either at a predetermined time or a number of
failures. The inference for the two sampling schemes (time-truncated and
failure-truncated) are intrinsically different in the frequentist case.
However, from the Bayesian perspective both failure truncation and time
truncation data can be handled in the same manner and result in the
same type of posterior inference on α and β in contrast to the classical
frequentist approach in which each case must be treated separately and
different types of results are obtained.
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Draw-backs of frequentist approach and the Advantages of
Bayesian approach

An important, relevant aspect is that in many situations collection of
failure data on repairable systems can be too expensive or time
consuming so that a limited number of failures can be observed. Hence,
Bayes methods may be desirable as they allow for prior information to be
incorporated into inferential procedure. (For references, see Bar-Lev et al.
(1991), Crow (1982), Sen, A. (2002), Guida et al. (1989)).
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Non-Informativ Prior for both α and β

For convenience in writing, we use these notation

t = (t1, . . . , tn),u =
n∏

i=1
ti , v = log(tn

n/u). (7)

According to the Jefreys’ rule, a non-informative joint prior for α and β is

π(α,β) ∝ (αβ)−1. (8)

The likelihood is

L(α,β) = α−nββnuβ−1. exp
{
−
( y
α

)β}
. (9)
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Non-Informativ Prior for both α and β

Applying Bayes’ rule, the posterior is

π(α,β | t) = K (t).α−(nβ+1)βn−1uβ . exp
{
−
(

tn
α

)β}
, (10)

where

K (t) = vn−1

Γ(n)Γ(n− 1) . (11)
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Non-Informativ Prior for both α and β

The marginal posterior density for β can be obtained by integrating out α

π(β | t) = wn−1

Γ(n− 1)β
n−2e−vβ . (12)

That means, the marginal posterior of β is Gamma distribution with
parameters (n− 1, v). The Bayesian Estimation of parameter β is then

β̂Bayes1 = E (β | t) = n− 1
v (13)

Unfortunatly, the Bayesian Estimation of parameter α does not has
closed form and must be done numerically by MCMC.
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Two independent Gamma distributions as conjugate prior

Olivera, M. D. Colosimo, E. A. and Gilardoni, G. L. (2011) proposed the
new re-parametrization of the PLP in terms of (θ,β) where
θ = M(tn) = (tn/α)β . The likelihood becomes

L(θ,β) ∝ (θne−θ)× (βne−vβ). (14)

It means that θ and β are independent, so the natural conjugate family is
the product of two Gamma distributions θ ∼ Gamma(a,b),
β ∼ Gamma(c,d)

π(θ,β) = π(θ)× π(β) ∝ θa−1e−bθ × βc−1e−dβ . (15)

The posterior is then

π(θ,β | t) ∝ θa+n−1e−(b+1)θ × βc+n−1e−(d+v)β . (16)
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Bayesian Estimators of α and β

That means θ | t ∼ Gamma(a + n,b + 1), β | t ∼ Gamma(c + n,d + v).
Assuming a quadratic loss, the Bayesian estimators are the expectation of
the posterior distributions. The Bayesian estimator of parameter β is then

β̂Bayes2 = E (β | t) = c + n
d + v , (17)

θ̂Bayes2 = E (θ | t) = a + n
b + 1 . (18)
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Relation between Maximum Likelihood Estimators and
Bayesian Estimators

Remark that E (β) = c/d , β̂MLE = n/v and E (θ) = a/b, θ̂MLE = n. There
is a relation between Maximum Likelihood Estimators and Bayesian
Estimators :

β̂Bayes2 = E (β | t) = pβ̂MLE + (1− p)E (β), (19)
θ̂Bayes2 = E (θ | t) = qθ̂MLE + (1− q)E (θ) (20)

where

p = v
v + d ,q = 1

b + 1 (21)
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Elicitation of the hyper-parameters

The hypothesis of independent Gamma distributions priors make it easy
to elicitate the hyper-parameters. If we have the prior information about
the expectation and variance of θ, say E (θ) = m1,Var(θ) = v1 ; the
expectation and variance of β, say E (β) = m2,Var(β) = v2 then

a = m2
1

v1
,b = m1

v1
, (22)

c = m2
2

v2
,d = m2

v2
. (23)
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Narural Conjugate Prior

Relying on the work of Huang and Bier (1998), we propose the
re-parametrization of the PLP in terms of (λ,β) where λ = 1/αβ , then
the likelihood becomes

L(λ,β) ∝ λnβnuβ exp
{
−λtβn

}
. (24)

The natural conjugate prior family should be in the form

π(λ,β) ∝ λa−1βa−1cβ exp
{
−bλtβn

}
(25)

This conjugate prior looks like an unfamiliar distribution. We introduce
here the new distribution named as H-B distribution.
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The H-B distribution

Definition
A bivariate random variable (X ,Y ) ∈ R+ ×R+ is said to be distributed
as the H-B distribution with four-parameter (a,b, c,d) if it has density of
the form

fX ,Y (x , y) = K (xy)a−1cy exp{−bdy x} (26)

where a,b, c,d > 0 and such that c > da; K = [b log(da/c)]a/Γ(a)2.

We denote : (X ,Y ) ∼ H-B(a,b, c,d)
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Contour plot and density plot of the H-B distribution
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Figure: Contour plot of the H-B
distribution with a = 1.5, b = 5,
c = 0.5 and d = 1
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Figure: Density plot of the H-B
distribution with a = 1.5, b = 5,
c = 0.5 and d = 1.
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Some properties of the H-B distribution

To make elicitation of the hyper-parameters, we need to investigate some
properties of the H-B distribution. The second part of the bivariate, say
Y can be marginalized to have Gamma distribution while the first part,
say X , can not be marginalized to any closed form. However, the
expectations and the variances of both components can be obtained.

Theorem
If (X ,Y ) ∼ H-B(a,b, c,d) then
(i) X given Y = y has a gamma distribution with parameters (a,bdy ),

(ii) Y has a gamma distribution with parameters
(

a, log(da/c)
)

.
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Expectations and Variance of X and Y

The previous theorem allows us to compute the expectation and the
variance of X and Y .

Theorem
Let (X ,Y ) ∼ H-B(a,b, c,d) and denote k = log(da/c).

E (Y ) = a/k E (X ) = a
b

[
k

k + logd

]a

CV (Y ) = a−1/2 CV (X ) = a−1/2

[
(k + logd)√
k(k + 2 logd)

]a

(27)
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Special case when d = 1

It is interesting to remark that in the case of d = 1, the two components
of the bivariate random variable (X ,Y ) become independent and both of
them have Gamma distribution with parameters (a,b) and (a, log(1/c))
respectively. Note that in this case, the simple forms of the expectations
and the variances can make the elicitation of the hyper-parameters
become easy.

E (Y ) = a/ log(1/c) E (X ) = a
b

CV (Y ) = a−1/2 CV (X ) = a−1/2 (28)

This remark can be useful when we use the transformation data
(t1, t2, . . . , tn)→ (t1/tn, t2/tn, . . . ,1)
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HB-distribution as natural conjugate prior for Bayesian
analysis of the PLP

The following theorem show that the HB-distribution is a natural
conjugate prior of the PLP.

Theorem
Let t = (t1, . . . , tn) be the jump dates of the PLP with intensity
m(t) = λβtβ−1. The natural conjugate prior for Bayesian analysis of the
PLP is H-B distribution with parameters (a,b, c, tn) and the posterior is a
H-B distribution with parameters (a + n,b + 1, cu, tn).
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HB-distribution as natural conjugate prior for Bayesian
analysis of the PLP

The likelihood

L(λ,β) ∝ λnβnuβ exp
{
−λtβn

}
. (29)

If the bivariate random variable (λ,β) ∼ H-B(a,b, c, tn) then it has the
joint density by the form

π(λ,β) ∝ λa−1βa−1cβ exp
{
−bλtβn

}
. (30)

The posterior is the product of the likelihood and the prior

π(λ,β | t) ∝ π(λ,β)× L(λ,β)
∝ λa+n−1βa+n−1(cu)β exp

{
−(b + 1)λtβn

}
. (31)

It indicates that (λ,β) | t ∼ H-B(a + n,b + 1, cu, tn).
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Bayesian Estimators of α and β

Assuming a quadratic loss, the Bayesian estimators are the expectation of
the posterior distributions. The Bayesian Estimator of parameter α and β
are

β̂Bayes3 = a + n
k ′ + v , (32)

λ̂Bayes3 =
(

a + n
b + 1

)
.

(
k ′ + v

k ′ + v + log(tn)

)a+n
(33)

where k ′ = log(ta
n/c).
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Bayesian Estimators as a convex combination of the MLEs
and the expectation of the prior distribution

Recall that

E (β) = a/k ′, E (λ | β) = a
btβn

β̂MLE = n/v , λ̂MLE = n/t β̂MLE
n (34)

We find that β̂Bayes3 can be expressed as a convex combination of the
MLE and the expectation of the prior distribution

β̂Bayes3 = pβ̂MLE + (1− p)E (β) (35)

where p = v
k′+v .
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Bayesian Estimators as a convex combination of the MLEs
and the expectation of the prior distribution

The relationship between λ̂Bayes3 and λ̂MLE can be obtained
approximately as following

λ̂Bayes3 =
(

a + n
b + 1

)
.

(
1

1 + log(t β̂Bayes3
n )/(a + n)

)a+n

≈
(

a + n
b + 1

)
. exp

{
− log(t β̂Bayes3

n )
}

=
(

a + n
b + 1

)
.

n

t β̂Bayes3
n

(36)
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Bayesian Estimators as a convex combination of the MLEs
and the expectation of the prior distribution

Therefore, λ̂Bayes3 approximates a convex combination of the MLE and
the prior expectation of λ given β

λ̂Bayes3 = qλ̂MLE + (1− q)E (λ | β) (37)

where q = 1
b+1 . These relationship will be very important to make

elicitation on hyper-parameters.
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Elicitation on hyper-parameters

Based on Bayesian Estimators of parameters α and β, we propose a
strategy to integrate prior information on picking up values for
hyper-parameters a,b, c. Suppose that we have prior information of the
expectation and the coefficient of variation of β, say E (β) = m and
CV (β) = r , then the value for a and c can be easily obtained

a = 1
r2 , c = ta

n
ea/m (38)

Now we know the value of p = v
k′+v . We can find the value of b by

setting p = q or p = 1− q to obtain

b = 1
p − 1. (39)
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Special case when d = 1

Recall that, if (X ,Y ) ∼ H-B(a,b, c,1) then X and Y are independent, X
has Gamma distribution with parameters (a,b) and X has Gamma
distribution with parameters (a, log(1/c)). In last section we see that
(λ,β) ∼ H-B(a,b, c, tn) is the natural conjugate prior for PLP. We can
transform the observation (t1, t2, . . . , tn−1, tn) to (s1, s2, . . . , sn−1, sn)
where si = ti/tn.
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Transformed data

The following theorem show how the PLP change with the transformed
data.

Theorem
Let (t1, t2, . . . , tn−1, tn) be date of events of the Non-homogeneous
Poisson Process {N(t), t > 0} with intensity m(t). For the positive
constant γ > 0 and the transformation si = ti/γ; i = 1, . . . ,n, the
collection (s1, s2, . . . , sn−1, sn) is then date of events of the other
Non-homogeneous Poisson Process {N∗(s), s > 0} with intensity
m∗(s) = γ.m(γs).
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Transformed data

Assume that we have the observation (t1, t2, . . . , tn−1, tn) from the Power
Law Process {N(t), t > 0} with intensity m(t) = β/α(t/α)β−1. Applying
the transformation s = t/tn, we have the observation (s1, s2, . . . , sn−1,1)
from the Power Law Process {N∗(s), s > 0} having intensity
m∗(s) = (tn/α)ββsβ−1. From now on, we can conduct Bayesian analysis
for the Power Law Process {N∗(s), s > 0}.
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Re-parametrization

Because the intensity has the form m∗(s) = (tn/α)ββsβ−1, it is
reasonable to re-parametrize η = (tn/α)β . The intensity and the mean
function become m∗(s) = ηβsβ−1, M∗(s) = ηsβ respectively. The
likelihood is

L(η,β) =
[ n∏

i=1
m∗(si )

]
. exp{−M∗(sn)}

= ηnβn

[ n∏
i=1

si

]β−1

e−η

∝ ηne−η × βne− log(1/w)β (40)

where w =
∏n

i=1 si < 1.
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Re-parametrization

The natural conjugate prior joint distribution for (η,β) turns out to be

(η,β) ∼ Gamma(aη,bη)×Gamma(aβ ,bβ). (41)

The posterior is then

(η,β | s) ∼ Gamma(aη + n,bη + 1)×Gamma(aβ + n,bβ + log(1/w)),
(42)

where s = {s1, . . . , sn−1,1}.
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Re-parametrization

It means that η and β are independent and each parameter is distributed
by Gamma law

η | s ∼ Gamma(aη + n,bη + 1) (43)
β | s ∼ Gamma(aβ + n,bβ + log(1/w)). (44)

Note that

1/w = 1/
n∏

i=1
si =

n∏
i=1

(tn/ti ) (45)

therefore

log(1/w) = v = n/β̂MLE . (46)
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Re-parametrization

Here we can see again exact the same result of Olivera et al. (2012).
Therefore, applying H-B distribution as the natural conjugate prior is
more general than independent conjugate prior by Gamma distribution.
Using the method of re-parametrization is quit useful for Bayesian
analysis. Note that Maximum Likelihood Estimator is invariant under
re-parametrization but Bayes estimator is not. Let’s look at the summary
table before we go to the application section.
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Summary table

Table: Table of parametric estimation for PLP

Maximum Likelihood Estimation
MLE for β MLE for α, θ, λ
β̂MLE = n/v α̂MLE = tn/n1/β̂MLE

re-parametrize θ = (tn/α)β
u =

∏n
i=1 ti θ̂MLE = n

re-parametrize λ = 1/αβ

v =
∑n

i=1 log(tn/ti ) λ̂MLE = n/t β̂MLE
n
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Summary table

Table: Table of parametric estimation for PLP

Non-informative Prior
Prior distribution
π(α,β) ∝ (α,β)−1

Posterior distribution
π(α,β | t) ∝ Kα−(nβ+1)βn−1uβe−(tn/α)β K = vn−1/(Γ(n)Γ(n− 1))
Bayes Estimate for β Bayes Estimate for α
β̂Bayes1 = (n− 1)/v α̂Bayes1 has no close form
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Summary table

Table: Table of parametric estimation for PLP

Independent conjugate prior with
two Gamma distributions
Prior distribution
π(θ,β) ∼ Gamma(aθ,bθ)×Gamma(aβ ,bβ)
Posterior distribution
π(θ,β | t) ∼ Gamma(aθ + n,bθ + 1)
×Gamma(aβ + n,bβ + v)
Bayes Estimate for β Bayes Estimate for θ
β̂Bayes2 = (aβ + n)/(bβ + v) θ̂Bayes2 = (aθ + n)/(bθ + 1)
Convex combination Convex combination
β̂Bayes2 = pβ̂MLE + (1− p)E (β) θ̂Bayes2 = qθ̂MLE + (1− q)E (θ)
p = v/(bβ + v) q = 1/(btheta + 1)
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Summary table

Table: Table of parametric estimation for PLP

Natural conjugate prior
with H-B distribution
Prior distribution
π(λ,β) ∼ H −B(a,b, c, tn)
Posterior distribution
π(λ,β | t) ∼ H −B(a + n,b + 1, cu, tn)
Bayes Estimate for β Bayes Estimate for λ
β̂Bayes3 = (a + n)/(k + v) λ̂Bayes3 = (a + n)/(b + 1).
k = log(ta

n/c) [(k + v)/(k + v + log(tn))]a+n

Convex combination Convex combination
β̂Bayes3 = pβ̂MLE + (1− p)E (β) λ̂Bayes3 = qλ̂MLE + (1− q)E (λ | β)
p = v/(k + v) q = 1/(b + 1)
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Simulation data

In order to investigate the behaviour of the H-B distribution as natural
conjugate prior, we make a comparison between Bayesian estimation and
MLE relying on simulated data from PLP. We simulating three sets of
data varying from small size n = 20 to medium size n = 150 and then to
very large size n = 2000. The three data sets generated by a PLP with
true parameters β = 1.38, λ = 0.008. The case of small size is in favour
to show the advantage of Bayesian approach.
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Prior mean and variability

For the elicitation strategy, three different values of prior means for β are
investigated
(1) Prior mean underestimates the true value.
(2) Prior mean is relatively close to the true value.
(3) Prior mean overestimates the true value.
In each scenario of prior mean guess m, we use three different degree of
variability r = 0.3 (corresponding to relatively small variability), r = 0.6
(corresponding to relatively moderate variability), and r = 0.9
(corresponding to relatively large variability).
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Bayesian estimation for simulated data from a PLP with
input parameter values β = 1.38 and λ = 0.0008

Sample-size Prior guess Bayes estimates

n m r β̂Bayes3 λ̂Bayes3

10 0,90 0,27 1,1338 0,006949
0,54 1,4009 0,012574
0,81 1,5412 0,014838

1,40 0,42 1,4973 0,002126
0,84 1,6157 0,007978
1,26 1,6750 0,011449

2,10 0,63 1,8461 0,000892
1,26 1,7543 0,006538
1,89 1,7318 0,010739

MLE 1.4343 0.001604
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Bayesian estimation for simulated data from a PLP with
input parameter values β = 1.38 and λ = 0.0008

Sample-size Prior guess Bayes estimates

n m r β̂Bayes3 λ̂Bayes3

150 0,90 0,27 1,3545 0,001994
0,54 1,3936 0,001714
0,81 1,4016 0,001662

1,40 0,42 1,4114 0,001363
0,84 1,4124 0,001506
1,26 1,4127 0,001535

2,10 0,63 1,4464 0,001085
1,26 1,4226 0,001411
1,89 1,4180 0,001484

MLE 1.3995 0.001082
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Bayesian estimation for simulated data from a PLP with
input parameter values β = 1.38 and λ = 0.0008

Sample-size Prior guess Bayes estimates

n m r β̂Bayes3 λ̂Bayes3

2000 0,90 0,27 1,3848 0,000904
0,54 1,3879 0,000881
0,81 1,3885 0,000877

1,40 0,42 1,3855 0,000899
0,84 1,3855 0,000904
1,26 1,3854 0,000905

2,10 0,63 1,3906 0,000854
1,26 1,3887 0,000875
1,89 1,3883 0,000879

MLE 1.3803 0.000834
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Commentary

Table 1 describes the result of Bayesian Estimation based on the
simulated data from a PLP with input parameter values β = 1.38 and
λ = 0.0008. We take m = 0.9 for underestimated guess of prior mean,
m = 1.4 for relative accurate guess of prior mean and m = 2.1 for
overestimated guess of prior mean.
In case of large sample size, it is not surprising that Bayesian estimates
are relatively close to MLEs and both are close to the true values of λ
and β. That fact holds no matter how the prior mean underestimates or
overestimates the true value of the parameters. For small and medium
size, one can see that the underestimating scenario is more accurate than
the two other scenarios. More detail, the Bayesian estimates seem to
increase with respect to the variability. In case of medium sample size,
the underestimated prior guess with moderate variability r = 0.6 Bayesian
estimators produce more accurate result than MLEs but in small sample
size case, the MLEs tend to perform better.
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Concluding remarks

In this work we introduce a new distribution : the H-B distribution. This
distribution is a natural conjugate prior to make Bayesian inference on
the PLP. More investigations concerning the properties of this
distribution need to be carried out. In particular a better understanding
of the properties will be helpful to elicit prior hyper-parameters. Our
strategy is quit easy to implement, relying on expert guessing. The
simulation result shows that the choice of the elicitation strategy is very
sensitive. More need to be done in order to improve the accuracy of the
estimates. Other strategies should be investigated. We are working in this
direction in the present time.
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Thank you for your attention !
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For references of Power Law Process, please see (?), (?).
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