Mini-Course on Advanced Stationary Processes Analysis, VIASM. Part 2: Geostatistics Chapter 2: Estimation of the Variogram and Kriging

Jean-Yves Dauxois

INSA - Toulouse Mathematical Institute, Toulouse, FRANCE jean-yves.dauxois@insa-toulouse.fr

18th to 22th July 2016

Estimation of the Variogram Kriging Krigo Krigo Krigor Kri

Suppose that we have observed the realization of an intrinsic process X at sites: s_1, \ldots, s_n in $S \subset \mathbb{R}^d$.

Problem. The variogram is unknown and we want to estimate it.

The **dissimilarity** between observed values of X at sites s_i and s_j is defined by:

$$\gamma_{ij}^* = \frac{\left(X_{s_i} - X_{s_j}\right)^2}{2} = \gamma_{ji}^*$$

The **Variogram Cloud** is a set of n(n-1)/2 points:

$$\mathcal{N}_0 = \left\{ \left(|| \mathbf{s}_i - \mathbf{s}_j ||, \gamma^*_{ij}
ight); 1 \le i \ne j \le n
ight\}$$

Remark. We have:

$$\mathbb{E}\gamma_{ij}^*=\gamma(s_i-s_j).$$

Estimation of the Variogram Kriging

Empirical Estimate of the Variogram Property of the empirical variogram Parametric Estimate of the Variogram Checking Variogram Models

Variogram Cloud

Estimation of the Variogram Kriging Krigong Kr

A nonparametric estimation of the variogram, based on the observations X_{s_1}, \ldots, X_{s_n} , is roughly given by the function

$$h \in S \longmapsto \hat{\gamma}(h) = rac{1}{2N(h)} \sum_{s_i - s_j \simeq h} (X_{s_i} - X_{s_j})^2,$$

where

$$N(h) = Card\{(s_i, s_j); s_i - s_j \simeq h\}.$$

Of course, we need to define more precisely what means: $s_i - s_j \simeq h$.

Estimation of the Variogram Kriging Kriging Estimation of the Variogram Property of the empirical variogram Parametric Estimate of the Variogram Checking Variogram Models

In the isotropic case, we can consider:

Definition

For given distance ||h|| = r and tolerance Δ , the isotropic empirical variogram, based on the observations X_{s_1}, \ldots, X_{s_n} , is given by the function

$$h \in S \longmapsto \hat{\gamma}(h) = \gamma(r) = \frac{1}{2N(r)} \sum_{(s_i, s_j); r - \Delta \leq ||s_i - s_j|| \leq r + \Delta} (X_{s_i} - X_{s_j})^2$$

where

$$N(r) = Card\{(s_i, s_j); r - \Delta \leq ||s_i - s_j|| \leq r + \Delta\}.$$

Estimation of the Variogram Kriging

Empirical Estimate of the Variogram Property of the empirical variogram Parametric Estimate of the Variogram Checking Variogram Models

Empirical Variogram

Figure: Isotropic empirical Variogram.

In the anisotropic case, when $S = \mathbb{R}^2$, let us denote r and α the direction of h, i.e. $h = r(\cos(\alpha), \sin(\alpha))$.

Definition

For given distance r, direction α and tolerances Δ and δ , the anisotropic empirical variogram, based on the observations X_{s_1}, \ldots, X_{s_n} , is given by the function

$$h \in S \longmapsto \hat{\gamma}(h) = \gamma(r, \alpha) = \frac{1}{2N(\Delta, \delta)} \sum_{(s_i, s_j); \nu_{\Delta, \delta}(r, \alpha)} (X_{s_i} - X_{s_j})^2,$$

where

$$\nu_{\Delta,\delta}(\mathbf{r},\alpha) = \{\mathbf{v} = u(\cos(\beta),\sin(\beta)) \in \mathbb{R}^2; |u-\mathbf{r}| \le \Delta, |\beta-\alpha| \le \delta\}$$

and

$$N(r) = Card\{(s_i, s_j) \in \nu_{\Delta, \delta}(r, \alpha)\}.$$

Estimation of the Variogram Kriging Empirical Estimate of the Variogram Property of the empirical variogram Parametric Estimate of the Variogram Checking Variogram Models

Directional Empricial Variograms

Figure: Directional Variograms: $\alpha \in \{0, \frac{\pi}{4}, \frac{\pi}{2}\}.$

Estimation of the Variogram Kriging Kring Krigo Krig Krigo Krigo Krig Krigo Krigo Krig Krigo K

One can show that

$$2\hat{\gamma}(h) = X'A(h)X$$

where

$$X = (X_{s_1}, \ldots, X_{s_n})'$$

and A(h) is the matrix defined by:

$$egin{array}{rcl} A_{s_i,s_j}&=&-rac{1}{N(h)}, ext{ if } s_i
eq s_j\ A_{s_i,s_i}&=&rac{N(h)-1}{N(h)}, ext{ otherwise}. \end{array}$$

Estimation of the Variogram Kriging Krig Krig Krig Kriging Kriging Kriging Kriging Kriging Kri

Proposition

If $X \sim N_n(O, \Sigma)$, then

$$2\hat{\gamma}(h)\sim\sum_{i=1}^{N(h)}\lambda_i(h)\chi_{i1}^2,$$

where the $\lambda_i(h)$ are the nonzero eigenvectors of the matrix $A(h)\Sigma$ and the χ^2_{i1} are independent r.v. with a χ^2_1 distribution. Moreover, we have:

$$\mathbb{E}(2\hat{\gamma}(h)) = Tr(A(h)\Sigma)$$

$$Var(\hat{\gamma}(h)) = 2Tr(A(h)\Sigma)^{2}.$$

Let us assume a parametric model $\{\gamma(\cdot, \theta); \theta \in \Theta \subset \mathbb{R}^p\}$ for the variogram.

Definition

The Ordinary Least Squares (OLS) estimator of θ is:

$$\hat{\theta}_{OLS} = \arg_{\theta \in \Theta} \min \sum_{k=1}^{K} \left(\hat{\gamma}(h_k) - \gamma(h_k, \theta) \right)^2,$$

where K is the number of classes used for the (isotropic) empirical variogram at the distances h_1, \ldots, h_K .

Estimation of the Variogram Kriging Krig Krig Krig Kriging Kriging Kriging Kriging Kriging Kri

Parametric Estimate of the Variogam with OLS

Estimation of the Variogram Kriging Krigo Kr

Definition

The Generalized Least Squares (GLS) estimator of θ is:

$$\hat{ heta}_{{{\mathcal{G}}}{{\mathcal{L}}}{{\mathcal{S}}}} = {
m arg}_{ heta \in \Theta} \min \left(\hat{\gamma}_{{{\mathcal{K}}}} - \gamma_{{{\mathcal{K}}}}(heta)
ight)' \Sigma_{\hat{\gamma}_{{{\mathcal{K}}}}}^{-1}(heta) \left(\hat{\gamma}_{{{\mathcal{K}}}} - \gamma_{{{\mathcal{K}}}}(heta)
ight),$$

where

$$\begin{aligned} \hat{\gamma}_{\mathcal{K}} &= (\hat{\gamma}(h_1), \dots, \hat{\gamma}(h_{\mathcal{K}}))', \\ \gamma_{\mathcal{K}}(\theta) &= (\gamma(h_1, \theta), \dots, \gamma(h_{\mathcal{K}}, \theta))' \end{aligned}$$

and $\Sigma_{\hat{\gamma}_{\mathcal{K}}}(\theta)$ is the covariance matrix of $\hat{\gamma}_{\mathcal{K}}(\theta)$.

Estimation of the Variogram Kriging Krig Krig Krig Kriging Kriging Kriging Kriging Kriging Kri

Definition

The Weighted Least Squares (GLS) estimator of θ is:

$$\hat{\theta}_{WLS} = \arg_{\theta \in \Theta} \min \sum_{k=1}^{K} \frac{N(h_k)}{\gamma^2(h_k, \theta)} \left(\hat{\gamma}(h_k) - \gamma(h_k, \theta)\right)^2.$$

Assuming a specific distribution for the spatial process X, as for example a gaussian distribution, one can use the Maximum Likelihood technic to estimate the parameter θ of the variogram.

Estimation of the Variogram Kriging Krigo Krig

In order to select Variogram Models, one can use:

• Cross Validation. Put aside each observation (e.g. s_i), estimate it with Kriging $(\hat{X}_{s_i}(-s_i))$ and select the model according to one of the following criterions:

where $\sigma_{s_i}^2$ is the kriging variance.

• Parametric Bootstrap.

Jean-Yves Dauxois, Hanoi, 18th to 22th July 2016

Ν

Geostatistics: Estimation of the Variogram and Kriging

Suppose that we have observed the realization of an intrinsic process X at sites: s_1, \ldots, s_n in $S \subset \mathbb{R}^d$, i.e. we have observed X_{s_1}, \ldots, X_{s_n} .

Problem. We want to estimate the value of X at a site s_0 where we don't have the observation of its value. One says that we will do the **prediction** of X_{s_0} .

Hypothesis. We assume in the following that the stationary covariance function C (in case of a second order stationary process) or the variogram γ (in case of an Intrinsic process) is known.

If this is not the case, we will first estimate (empirically or parametrically) the Covariance function or the variogram.

Variance of the Ordinary kriging

Jean-Yves Dauxois, Hanoi, 18th to 22th July 2016

Geostatistics: Estimation of the Variogram and Kriging

Kriging

The idea of the Kriging is to predict X_{s_0} with an estimator \hat{X}_{s_0} of the form

$$\hat{X}_{s_0} = \sum_{i=1}^n \lambda_i(s_0) X_{s_i} + \lambda_0(s_0),$$

where the parameters $\lambda_0(s_0), \ldots, \lambda_n(s_0)$ are reals such that the Mean Square Error (MSE)

$$\mathsf{MSE}(s_0) = \mathbb{E}(\hat{X}_{s_0} - X_{s_0})^2$$

is minimum.

Notation. Let us write $\lambda_i = \lambda_i(s_0)$, but do not forget that these parameters usually depend on the point s_0 of prediction!

Estimation of the Variogram Kriging Simple Kriging Ordinary Kriging Universal Kriging

Notations

Let us write:

- X₀ = X_{s₀},
 X = (X_{s₁},...,X_{s_n})' ∈ ℝⁿ,
 Σ_X = the covariance matrix of the random vector X,
 σ₀² = Var(X₀)
- and $c = (\operatorname{Cov}(X_{s_1}, X_0), \dots, \operatorname{Cov}(X_{s_n}, X_0))' \in \mathbb{R}^n$.

 Σ_X, σ_0^2 and *c* are supposed to be known (or estimated).

Simple Kriging Ordinary Kriging Universal Kriging

Definition

The Kriging is called **Simple Kriging** if the mean function m of the random field X is known.

We know that we can write:

$$\mathsf{MSE}(s_0) = \mathbb{E}(\hat{X}_0 - X_0)^2 = \operatorname{Var}(X_0 - \hat{X}_0) + \mathbb{E}^2(X_0 - \hat{X}_0).$$

The variance being invariant by translation, we can first choose λ_0 such that

$$\mathbb{E}(X_0-\hat{X}_0)=0.$$

Estimation of the Variogram Kriging

Simple Kriging Ordinary Kriging Universal Kriging

We obtain:

$$\lambda_0 = m(s_0) - \sum_{i=1}^n \lambda_i m(s_i)$$

which leads to

$$\hat{X}_0 = m(s_0) + \sum_{i=1}^n \lambda_i (X_{s_i} - m(s_i)).$$

Thus, our problem reduces to predict the value of the mean zero process Y = X - m at s_0 by an estimator of the form

$$\hat{Y}_0 = \sum_{i=1}^n \lambda_i Y_{s_i}.$$

Simple Kriging

The Simple Kriging supposes that the random field X is mean zero and that we look for a predictor

$$\hat{X}_0 = \sum_{i=1}^n \lambda_i X_{s_i} = \lambda' X$$
, where $\lambda = (\lambda_1, \dots, \lambda_n)'$,

of X_0 which minimizes the MSE.

Proposition (Simple Kriging)

The linear prediction of X_0 which minimizes the MSE when X is mean zero is

$$\hat{X}_0 = c' \Sigma_X^{-1} X.$$

We say that this estimator is **BLUP: Best Linear Unbiased Predictor**.

The variance of the error of prediction (also called Simple Kriging Variance) is:

$$\sigma_{SK}^2(s_0) = \sigma_0^2 - c' \Sigma_X^{-1} X.$$

Simple Kriging Ordinary Kriging Universal Kriging

Proposition (Reminder)

Let $\mathbb{Y} = (\mathbb{Y}_1, \mathbb{Y}_2)' \in \mathbb{R}^{p+q}$ be a two blocs gaussian random vector with mean $\mu = (\mu_1, \mu_2)'$ and covariance matrix

$$\Sigma_{\mathbb{Y}} = \left(\begin{array}{cc} \Sigma_{\mathbb{Y}_1} & \Sigma_{\mathbb{Y}_1 \mathbb{Y}_2} \\ \Sigma_{\mathbb{Y}_2 \mathbb{Y}_1} & \Sigma_{\mathbb{Y}_2} \end{array} \right).$$

The conditional distribution of $\mathbb{Y}_1,$ given $\mathbb{Y}_2=y_2$ is gaussian with

$$\begin{split} \mathbb{E}(\mathbb{Y}_1|\mathbb{Y}_2) &= \mu_1 + \Sigma_{\mathbb{Y}_1\mathbb{Y}_2}\Sigma_{\mathbb{Y}_2}^{-1}(\mathbb{Y}_2 - \mu_2) \\ \Sigma_{\mathbb{Y}_1|\mathbb{Y}_2} &= \Sigma_{\mathbb{Y}_1} - \Sigma_{\mathbb{Y}_1\mathbb{Y}_2}\Sigma_{\mathbb{Y}_2}^{-1}\Sigma_{\mathbb{Y}_2\mathbb{Y}_1}. \end{split}$$

Proposition

If X is a mean zero gaussian random field, then the Simple Kriging \hat{X}_0 is such that

$$\hat{X}_0 = \mathbb{E}(X_0 | X_{s_1}, \dots, X_{s_n}).$$

Consequences.

- $X_0 \hat{X}_0$ and \hat{X}_0 are independent.
- The conditional distribution of X_0 , given $\hat{X}_0 = x$, is gaussian with mean x and variance σ_{SK}^2 .

Simple Kriging Ordinary Kriging Universal Kriging

Definition

The Kriging is called **Ordinary Kriging** if the mean function m of X is constant but unknown.

We still want to predict X_0 with an estimator \hat{X}_0 of the form

$$\hat{X}_0 = \sum_{i=1}^n \lambda_i X_{s_i} + \lambda_0,$$

which minimizes the MSE

$$\mathsf{MSE}(s_0) = \mathbb{E}(\hat{X}_0 - X_0)^2.$$

Ordinary Kriging for second order stationary processes

Let us denote by a_0 the value of the constant mean function m. We have:

$$\mathbb{E}(\hat{X}_0 - X_0) = \lambda_0 + a_0 \left(\sum_{i=1}^n \lambda_i - 1\right).$$

Thus, in order to get an unbiased linear estimator of X_0 , the parameters have to be such that

$$\lambda_0 = 0$$
 and $\sum_{i=1}^n \lambda_i = 1$.

Thus we have to solve the problem:

$$\begin{cases} \arg_{(\lambda_1,\dots,\lambda_n)} \min \left(\sigma_0^2 - 2\lambda' c + \lambda' \Sigma_X \lambda \right) \\ \text{subject to } \sum_{i=1}^n \lambda_i = 1 \end{cases}$$

Using the Lagrange multiplier, one has to solve the system of n+1 equations and n+1 unknown parameters $(\lambda_1, \ldots, \lambda_n, \mu)$:

$$\begin{cases} \Sigma_X \lambda + \mu \mathbb{1}_n = c \\ \sum_{i=1}^n \lambda_i = 1 \end{cases},$$

where $\mathbb{1}_n = (1, \ldots, 1)' \in \mathbb{R}^n$.

Proposition (Ordinary Kriging for second order stationary processes)

Suppose that X is second order stationary process with constant but unknown mean function.

The unbiased linear prediction of X_0 which minimizes the MSE is

$$\hat{X}_0 = \lambda' X,$$

where

$$\lambda = \Sigma_X^{-1} \left(c - \frac{c' \Sigma_X^{-1} \mathbb{1}_n - 1}{\mathbb{1}'_n \Sigma_X^{-1} \mathbb{1}_n} \mathbb{1}_n \right).$$

The variance of the error of prediction (also called Ordinary Kriging Variance) is:

$$\sigma_{OK}^2 = \sigma_0^2 - \lambda' c - \frac{c' \Sigma_X^{-1} \mathbb{1}_n - 1}{\mathbb{1}_n' \Sigma_X^{-1} \mathbb{1}_n}.$$

Jean-Yves Dauxois, Hanoi, 18th to 22th July 2016

Geostatistics: Estimation of the Variogram and Kriging

Simple Kriging Ordinary Kriging Universal Kriging

Ordinary Kriging for intrinsic processes

Since an intrinsic process doesn't have necessarily moments of order 1 and 2, we first have to check that we can keep our aim to find a Best (in terms of MSE) Linear Unbiased Predictor.

In fact, it appears that, if we still assume

$$\lambda_0 = 0 \text{ and } \sum_{i=1}^n \lambda_i = 1,$$

then the error of prediction $\hat{X}_0 - X_0$ has moment of order one and two.

Simple Kriging Ordinary Kriging Universal Kriging

After some calculus, we can show that:

$$\mathsf{MSE}(s_0) = \mathbb{E}(\hat{X}_0 - X_0)^2 = 2\lambda' \nu - \lambda' \Gamma_X \lambda,$$

where

$$v = \left(egin{array}{c} \gamma(s_0 - s_1) \ dots \ \gamma(s_0 - s_n) \end{array}
ight) ext{ and } \Gamma_X = (\gamma(s_i - s_j))_{1 \leq i,j \leq n}.$$

Thus, we have to solve the problem:

$$\begin{cases} \arg_{(\lambda_1,...,\lambda_n)} \min \left(2\lambda' v - \lambda' \Gamma_X \lambda \right) \\ \text{subject to } \sum_{i=1}^n \lambda_i = 1 \end{cases}$$

٠

Using the Lagrange multiplier, one has to solve the system of n+1 equations and n+1 unknown parameters $(\lambda_1, \ldots, \lambda_n, \mu)$:

$$\begin{cases} \Gamma_X \lambda = \mathbf{v} + \mu \mathbb{1}_n \\ \lambda' \mathbb{1}_n = 1 \end{cases}$$

.

Proposition (Ordinary Kriging for intrinsic processes)

Suppose that X is an intrinsic process with constant but unknown mean function.

The unbiased linear prediction of X_0 which minimizes the MSE is

 $\hat{X}_0 = \lambda' X,$

where

$$\lambda = \Gamma_X^{-1} \left(v + \frac{1 - v' \Gamma_X^{-1} \mathbb{1}_n}{\mathbb{1}'_n \Gamma_X^{-1} \mathbb{1}_n} \mathbb{1}_n \right).$$

The variance of the error of prediction (also called Ordinary Kriging Variance) is:

$$\sigma_{OK}^2 = \lambda' v - \frac{1 - v' \Gamma_X^{-1} \mathbb{1}_n}{\mathbb{1}_n' \Gamma_X^{-1} \mathbb{1}_n}.$$

Geostatistics: Estimation of the Variogram and Kriging

Simple Kriging Ordinary Kriging Universal Kriging

Definition

The Kriging is called **Universal Kriging** if the mean function m of X is of the form:

$$m(s) = \sum_{l=0}^{L} \beta_l f_l(s),$$

where f_0, f_1, \ldots, f_L are known functions and $\beta_0, \beta_1, \ldots, \beta_L$ are unknown real parameters.

In other words, in case of Universal Kriging, we assume that

$$X_s = \sum_{l=0}^{L} \beta_l f_l(s) + \varepsilon_s,$$

where ε is a mean zero second order stationary (or intrinsic) process.

Estimation of the Variogram Kriging Universal Kriging

This model can be written like $X = Z\beta + \varepsilon$, where:

$$X = \begin{pmatrix} X_{s_1} \\ \vdots \\ X_{s_n} \end{pmatrix}, \ Z = \begin{pmatrix} f_0(s_1) & \dots & f_L(s_1) \\ \vdots & & \vdots \\ f_0(s_n) & \dots & f_L(s_n) \end{pmatrix},$$
$$\beta = \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_L \end{pmatrix} \text{ and } \varepsilon = \begin{pmatrix} \varepsilon_{s_1} \\ \vdots \\ \varepsilon_{s_n} \end{pmatrix}.$$

In order to get an unbiased linear predictor, the parameters $\lambda_1, \ldots, \lambda_n$ have to satisfy the **universality condition**: $\lambda' Z = z'_0$.

Universal Kriging for second order stationary processes

Here we have to solve the problem:

$$\begin{cases} \arg_{(\lambda_1,\dots,\lambda_n)} \min \left(\sigma_0^2 - 2\lambda' c + \lambda' \Sigma_X \lambda\right) \\ \text{subject to } \lambda' Z = z'_0 \end{cases}$$

Using the Lagrange multiplier, one has to solve the system of n + L + 1 equations and n + L + 1 unknown parameters $(\lambda_1, \ldots, \lambda_n)$ and $\mu \in \mathbb{R}^{L+1}$:

$$\begin{cases} \Sigma_X \lambda = c - Z \mu \\ Z' \lambda = z_0 \end{cases}$$

Simple Kriging Ordinary Kriging Universal Kriging

Proposition (Universal Kriging for second order stationary processes)

Suppose that X is second order stationary process with mean function of the form: $m(s) = \sum_{l=0}^{L} \beta_l f_l(s)$. The unbiased linear prediction of X_0 which minimizes the MSE is

$$\hat{X}_0 = \left(c' \Sigma_X^{-1} - \left(Z' \Sigma_X^{-1} c - z_0\right)' \left(Z' \Sigma_X^{-1} Z\right)^{-1} Z' \Sigma_X^{-1}\right) X.$$

The variance of the error of prediction (also called Universal Kriging Variance) is:

$$\sigma_{OK}^{2} = \sigma_{0}^{2} - c' \Sigma_{X}^{-1} c + \left(Z' \Sigma_{X}^{-1} c - z_{0} \right)' \left(Z' \Sigma_{X}^{-1} Z \right)^{-1} \left(Z' \Sigma_{X}^{-1} c - z_{0} \right).$$

Universal Kriging for intrinsic processes

One can show that the universality condition ensures here also that $\hat{X}_0 = \lambda' X$ is unbiased. If, in addition, the first baseline function f_0 is the constant function equal to 1, i.e. $f_0 \equiv 1$, then the variance of $\hat{X}_0 - X_0$ exists and we have:

$$\mathsf{MSE}(s_0) = 2\lambda' v - \lambda' \Gamma_X \lambda.$$

The problem to solve is:

$$\begin{cases} \arg_{(\lambda_1,...,\lambda_n)} \min (2\lambda' \nu - \lambda' \Gamma_X \lambda) \\ \text{subject to } \lambda' Z = z'_0 \end{cases}$$

Proposition (Universal Kriging for intrinsic processes)

Suppose that X is an intrinsic process with mean function of the form: $m(s) = \sum_{l=0}^{L} \beta_l f_l(s)$.

The unbiased linear prediction of X_0 which minimizes the MSE is

$$\hat{X}_0 = \left(\nu + Z \left(Z' \Gamma_X^{-1} Z \right)^{-1} \left(z_0 - Z' \Gamma_X^{-1} \nu \right) \right)' \Gamma_X^{-1} X.$$