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Abstract. We study the class of modules which are invariant under idempotents of
their envelopes. We say that a module M is X -idempotent-invariant if there exists an
X -envelope u : M → X such that for any idempotent g ∈ End(X) there exists an endo-
morphism f : M → M such that uf = gu. The properties of this class of modules are
discussed. We prove that M is X -idempotent-invariant if and only if for every decompo-
sition X =

⊕
i∈I Xi, we have M =

⊕
i∈I(u−1(Xi) ∩M). Moreover, some generalizations

of X -idempotent-invariant modules are considered.

1. Introduction. Recently, some generalizations of quasi-injective mod-
ules have been studied and several interesting results have been obtained.
In 1961, Johnson and Wong [10] proved that a module is quasi-injective if
it is invariant under endomorphisms of its injective envelope. This is one of
the most interesting characterizations of quasi-injective modules. It shows
that quasi-injectivity can be checked by means of an intrinsic property of
the module. Other characterizations of quasi-injective modules have been
studied and generalized to other classes of modules.

Let us begin by discussing the class of modules which are invariant under
automorphisms of their envelopes.

Let C be a class of right R-modules closed under isomorphisms. An R-
homomorphism g : M → E is a C-preenvelope of the module M provided
that E ∈ C and each diagram

M E

E′
?

g′

-g ppppp	α
with E′ ∈ C can be completed by a homomorphism α : E → E′ to a
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commutative diagram. If, moreover, the diagram

M E

E
?

g

-g ppppp	α
can only be completed by automorphisms α, we call g a C-envelope of M . It
is easy to see that the C-envelope is unique up to isomorphisms. Dualizing,
one defines the notions of a C-precover and a C-cover of a module M .

It is well known that when C is the class of all injective modules, a C-
(pre)cover of each module exists if and only if R is a right noetherian ring
(see e.g. [5, 5.4.1]). Moreover, C-envelope is usually called injective hull.

Dickson–Fuller [3] proved in 1969 that if R is any algebra over a field
F with more than two elements, then an indecomposable module M is
quasi-injective iff M is invariant under automorphisms of the injective hull
E(M). In 2013 this concept was extended to modules over a general ring
by Lee and Zhou [11]. They defined a module M to be automorphism-
invariant if ϕ(M) ≤ M for every ϕ ∈ Aut(E(M)). They also obtained
several characterizations and applications of such modules. Er, Sing and
Srivastava [6] proved that a module is automorphism-invariant if and only
if every monomorphism from a submodule of M to M can be extended to
an endomorphism of M (modules M with this property are called pseudo-
injective). And Guil Asensio, Keskin Tütüncü and Srivastava [9] proved
that the endomorphism ring of every automorphism-invariant module is
semiregular. These results are interesting because of their applications to
the structure of modules.

Along this paper, we will always assume that X is a class of modules
which is closed under isomorphisms.

The concept of automorphism-invariant modules was generalized in 2014
by Guil Asensio, Keskin Tütüncü and Srivastava [9]. A module M is called
X -automorphism-invariant if there exists an X -envelope u : M → X such
that for any automorphism g : X → X, there exists an endomorphism
f : M → M such that uf = gu. Various properties of X -automorphism-
invariant modules have been studied.

Next, we discuss the class of modules which are invariant under an idem-
potent endomorphism of their envelopes. Let us consider the following con-
ditions:

(C1) Every submodule of M is essential in a direct summand of M .
(C2) If a submodule A of M is isomorphic to a direct summand of M ,

then A is a direct summand of M .
(C3) If M1 and M2 are direct summands of M and M1 ∩M2 = 0, then

M1 ⊕M2 is a direct summand of M .
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A module M is called continuous if it satisfies (C1) and (C2); and M is
called quasi-continuous if it enjoys (C1) and (C3). A module M satisfying
(C1) is usually called an extending (or CS ) module.

In 1978, Goel and Jain [7] proved that M is quasi-continuous if and
only if M is invariant under all idempotent endomorphisms of E(M). More-
over, M is quasi-continuous if and only if for any decomposition E(M) =⊕

i∈I Ei, we have M =
⊕

i∈I(Ei ∩M). In this paper, we generalize this re-
sult to X -idempotent-invariant modules. Let u : M → X be a monomorphic
X -envelope (i.e., an X -envelope in which u is a monomorphism). Then M is
X -idempotent-invariant if and only if for every decomposition X =

⊕
i∈I Xi,

we have M =
⊕

i∈I(u
−1(Xi) ∩M) (Theorem 2.7). This definition suggests

that one can extend the concept of quasi-continuous modules by considering
different enveloping classes of modules.

On the other hand, we also extend the concept of extending modules.
We will say that M is X -extending-invariant (or X -extending) if there exists
an X -envelope u : M → X such that for any idempotent g ∈ End(X) there
exists an idempotent f : M → M such that g(X) ∩ u(M) = uf(M) or
uf = guf . It is clear that if X is the class of all injective modules, then the
concept of extending module and X -extending-invariant module coincide.
Let u : M → X be a monomorphic X -envelope. Then we prove that M is an
X -extending-invariant module if and only if u−1(U)∩M is a direct summand
of M whenever U is a direct summand of X (Theorem 2.11). Moreover, for
enveloping classes C satisfying certain special properties, we also show that
M is an C-idempotent-invariant module if and only if M is an C-extending-
invariant module such that whenever M = M1 ⊕ M2 is a direct sum of
submodules, then M1 and M2 are relatively C-injective (Theorem 3.2).

Throughout this article all rings are associative rings with unit, and all
modules are right unital modules. The notation N ≤M (resp. N < M) will
mean that N is a submodule of a module M (resp. proper submodule). And
we will write N ≤e M to indicate that N is an essential submodule of M . Let
M be an arbitrary module. We denote by I(M) the set of all idempotent
elements of End(M). Recall that Z(M) = {m ∈ M | ann(m) ≤e RR}
is called the singular submodule of M . And M is called singular (resp.
nonsingular) if Z(M) = M (resp. Z(M) = 0).

General background material can be found in [1], [4], [12].

2. Classes of modules via their envelopes

Definition 2.1. Let M be a right R-module. We will say that M is
X -idempotent-invariant if there exists an X -envelope u : M → X such that
for any idempotent g ∈ End(X) there exists an endomorphism f : M →M
such that uf = gu.
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M X

M X

-uppppp?f ?
g

-u

Remark 2.2. (1) Assume that M is an X -idempotent-invariant module.
Let u : M → X be a monomorphic X -envelope and g ∈ I(X). Then there
exists an f ∈ I(M) with uf = gu (see a detailed proof in Proposition 2.5).
Moreover, f is unique since u is a monomorphism. Thus, we get a map

∇ : I(X)→ I(M), g 7→ f,

between idempotents in End(X) and in End(M).
(2) If X is the class of all injective modules, then the X -idempotent-

invariant modules are precisely the quasi-continuous modules.

Example 2.3. (i) If X = Mod-R, then each right R-module is trivially
X -idempotent-invariant.

(ii) Let M be an R-S-bimodule such that M is linearly compact as a left
R-module, but it is not quasi-continuous as a right module (for example,
a left artinian ring R which is not right quasi-continuous) and let X be the
class of all pure-injective right R-modules. Then M is right pure-injective
by [13] and thus X -idempotent-invariant, but it is not quasi-continuous (see
also [14, 52.4(ii)]).

(iii) Let R be a local ring and let X be the class of right cotorsion
R-modules. Then the cotorsion envelope of the right regular module R is
indecomposable by [8, Theorem 21], and thus R is clearly X -idempotent-
invariant. However, R need not be a right cotorsion ring.

(iv) Let R be a ring and

X = {X injective | Im(f) is orthogonal to Ker(f), ∀f = f2 ∈ End(X)}.
In particular, we can choose X = {X is uniform injective nonsingular}.
Then a right R-module M is X -idempotent-invariant if and only if M is
a TS-module with property T3 (see [15]).

Definition 2.4. Let M be a right R-module. We will say that M is
X -extending-invariant (or X -extending) if there exists an X -envelope u :
M → X such that for any idempotent g ∈ End(X) there exists an idempo-
tent f : M →M with g(X) ∩ u(M) = uf(M). In this case, uf = guf .

M X

M X

-ufppppp?f ?
g

-u

Proposition 2.5. Let u : M → X be a monomorphic X -envelope. If M
is X -idempotent-invariant then it is X -extending-invariant.
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Proof. Choose g ∈ End(X) such that g2 = g. Since M is X -idempotent-
invariant, there exists f : M →M such that uf = gu. Furthermore, 1− g ∈
I(X), and thus there is f ′ : M → M such that uf ′ = (1 − g)u. Then
uf ′f = 0, and so f ′f = 0. It follows that u = gu + (1 − g)u = uf + uf ′ =
u(f + f ′). Then f + f ′ = id (since u is a monomorphism). Thus, f2 = f and
g(X) ∩ u(M) = uf(M).

Note. (1) If X is the class I of all injective modules, then the I-extend-
ing-invariant modules are precisely the extending modules.

(2) Let F be a field and R = T2(F), the 2 × 2 upper triangular matrix
ring over F. It is easy to check that R is I-extending-invariant. Let us show
that, however, RR is not I-idempotent-invariant. Let Eij ∈ R be the matrix
with 1 in the (i, j)-position and 0 elsewhere, and set E = E12 + E22 and
F = F22. Then E and F are idempotents in R and ER ∩ FR = 0. But it
can be checked that ERR⊕FRR is not a direct summand of RR. Therefore
RR is not quasi-continuous, and thus not I-idempotent-invariant.

Lemma 2.6. Let M be a module, and N a direct summand of M .

(1) If M is X -idempotent-invariant and N has an X -envelope, then N
is also X -idempotent-invariant.

(2) If M is X -extending-invariant and N has an X -envelope and is
invariant under all idempotents of End(M), then N is also X -
extending-invariant.

Proof. (1) Let u : M → X and u1 : N → X1 be X -envelopes, π : M → N
the projection map and ι : N → M the inclusion. Let g2 be an idempotent
endomorphism of X1. We claim that there exists f2 : N → N such that
u1f2 = g2u1.

By the X -envelope property, there exist h1 : X → X1 and h2 : X1 → X
such that h1u = u1π and h2u1 = uι. It follows that h1h2u1 = u1, and so h1h2
is an isomorphism. There exists h : X1 → X1 such that (h1h2)h = idX1 . Let
g1 = h2(hg2)h1 : X → X. Then g1 is an idempotent endomorphism of X.
As M is an X -idempotent-invariant module, there exists f1 : M →M such
that uf1 = g1u. Let f2 = πf1ι. Then

u1f2 = u1πf1ι = h1uf1ι = h1g1uι = h1h2hg2h1uι

= g2h1uι = g2u1πι = g2u1.

Thus, N is X -idempotent-invariant.

(2) Let u, u1, π, ι, g2, h1, h2 be as above. We will show that there exists
an idempotent f2 : N → N such that g2(X1) ∩ u1(N) = u1f2(M).

Since h1h2 is an isomorphism, there exists h : X1 → X1 such that
h(h1h2) = idX1 . It follows that h2 splits. This means that X1 is isomorphic
to a direct summand of X. We may assume that X1 is a direct summand
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of X and u1 = uι. Let g1 = ι0g2π0 : X → X with π0 : X → X1 the
canonical projection and ι0 : X1 → X the inclusion. Then g1 is an idem-
potent of End(X). As M is an X -idempotent-invariant module, there exists
an idempotent f1 : M → M such that g1(X) ∩ u(M) = uf1(M). As N is
invariant under all idempotent endomorphisms of M , we have f1(N) ≤ N .
Define f2 = f1|N : N → N . Then f2 is an idempotent endomorphism of N .
It is easy to see that g2(X1) ∩ u1(N) = u1f2(N).

Thus, N is X -extending-invariant.

Theorem 2.7. Let u : M → X be a monomorphic X -envelope. The
following conditions are equivalent:

(1) M is X -idempotent-invariant.
(2) If X =

⊕
i∈I Xi, then M =

⊕
i∈I(u

−1(Xi) ∩M).

(3) If X = X1 ⊕X2, then M = (u−1(X1) ∩M)⊕ (u−1(X2) ∩M).

Proof. (1)⇒(2). Assume that X =
⊕

i∈I Xi. For each m ∈ M , there is
a finite subset F ⊆ I such that u(m) ∈

⊕
k∈F Xk. But there also exists a set

{gk : k ∈ F} of orthogonal idempotents of End(X) such that gk(X) = Xk.
We know that M is X -idempotent-invariant, and thus there exists a family
{fk : k ∈ F} ⊆ End(M) such that ufk = gku for all k ∈ F . On the other hand,

u(m) =
∑
F

gku(m) =
∑
F

ufk(m) or m =
∑
F

fk(m).

Note fk(m)∈M∩u−1(Xk) for every k∈F . Therefore,m∈
∑

F (M∩u−1(Xi)),
and thus M =

⊕
i∈I(u

−1(Xi) ∩ M).
(2)⇒(3). This is obvious.
(3)⇒(1). Let g be an idempotent endomorphism ofX. ThenX = g(X)⊕

(1 − g)(X). By (3), we get M = (M ∩ u−1(g(X)) ⊕ u−1((1 − g)(X)). Let
f : M →M ∩u−1(g(X)) be the projection. Then, for every m = x+y ∈M ,
where x ∈M ∩u−1(g(X)) and y ∈M ∩u−1((1−g)(X)), we obtain uf(m) =
u(x). But x ∈ M ∩ u−1(g(X)), and so u(x) = g(m0) for some m0 ∈ M . On
the other hand,

gu(m) = gu(x+ y) = gu(x) + gu(y) = g(g(m0)) + gu(y) = g(m0) + gu(y).

We have y ∈ M ∩ u−1((1 − g)(X)), and thus gu(y) = 0. It follows that
uf(m) = gu(m). Therefore, uf = gu.

Recall that if M is a module and N ≤M , then a submodule C of M is
a complement of N if it is maximal with respect to C ∩N = 0.

Proposition 2.8. Let u : M → X be a monomorphic X -envelope with
u(M) essential in X. Consider the following conditions:

(1) M = U ⊕ V for any U, V which are complements of each other.
(2) M is X -idempotent-invariant.
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Then (1) always implies (2). Moreover, if X is a quasi-continuous module,
then M is also quasi-continuous and so (2)⇒(1).

Proof. (1)⇒(2). Let g be an idempotent endomorphism of X and let
A1 = M∩u−1(g(X)) and A2 = M∩u−1((1−g)(X)). Let B1 be a complement
of A2 in M containing A1, and B2 a complement of B1 in M containing A2.
It follows that B1 and B2 are complements of each other in M . Therefore,
M = B1 ⊕B2. Let π : B1 ⊕B2 → B1 be the projection.

Let us now show that uπ = gu. Assume that uπ 6= gu. As u(M) ≤e X,
there exist m = b1 + b2 ∈ M with b1 ∈ B1, b2 ∈ B2, and m0 ∈ M such
that u(m0) = (uπ − gu)(m) 6= 0. It follows that u(m0 + π(m)) = gu(m) or
m0 + π(m) ∈ A1. Furthermore, gu(m0 + π(m)) = gu(m) or m0 + π(m)−m
∈ A2. Then m0 + π(m)− b1 − b2 ∈ A2 and m0 + π(m)− b1 ∈ B1 ∩B2 = 0.
Note that π(m)− b1 = 0, and thus m0 = 0, a contradiction.

(2)⇒(1). Assume that X is quasi-continuous. Let A ≤M . There exists
H ≤ X such that X = H ⊕K and u(A) ≤e H. We have A ≤e u−1(H) ∩M
(since u is a monomorphism). By (3), we get

M = (u−1(H) ∩M)⊕ (u−1(K) ∩M).

Thus M satisfies (C1).

Next, we show that M also satisfies (C3). Assume that U, V are direct
summands of M such that U ∩ V = 0. There exist decompositions X =
X1 ⊕ Y1 = X2 ⊕ Y2 such that u(U) ≤e X1 and u(V ) ≤e X2. We have
U ∩ V = 0, and so X1 ∩X2 = 0. On the other hand, since X satisfies (C3),
we have X = (X1 ⊕X2)⊕X3. Thus

M = (u−1(X1) ∩M)⊕ (u−1(X2) ∩M)⊕ (u−1(X3) ∩M).

Since U, V are direct summands of M , U ≤e u−1(X1) ∩M and V ≤e
u−1(X2) ∩M , we deduce that U = u−1(X1) ∩M and V = u−1(X2) ∩M .
Therefore, M = (U ⊕ V )⊕ (u−1(X3) ∩M).

Recall that if M is a module, then E(M) denotes the injective hull of M ,
that is, the minimal injective extension of M .

Corollary 2.9 ([2, Proposition 2.1.25]). Let M be a module. The fol-
lowing conditions are equivalent:

(1) M is quasi-continuous.
(2) M = X ⊕ Y for any pair of submodules X and Y which are comple-

ments of each other.
(3) f(M) ≤M for every idempotent f ∈ End(E(M)).
(4) For every decomposition E(M) =

⊕
i∈ΛEi, we have

M =
⊕
i∈Λ

(M ∩ Ei).
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Proof. Apply Theorem 2.7 and Proposition 2.8 in the special case where C
is the class I of all injective modules.

Let us recall that a closed submodule of M has the form X∩M for some
direct summand X of E(M).

Definition 2.10. Let u : M → X be an X -envelope, and A a submodule
of M . Then A is said to be X -closed in M if there exists an idempotent
endomorphism g of X such that A = u−1(g(X)) ∩M .

Theorem 2.11. Assume that u : M → X is a monomorphic X -envelope.
The following conditions are equivalent:

(1) M is an X -extending-invariant module.
(2) Every X -closed submodule is a direct summand of M .

Proof. (1)⇒(2). Let U = g(X) with g ∈ I(X). There exists f ∈ I(M)
such that g(X) ∩ u(M) = uf(M). It follows that u−1(U) ∩M = f(M) is a
direct summand of M .

(2)⇒(1). Let g be an idempotent of End(X). By hypothesis, u−1(g(X))
∩M is a direct summand of M . If π : M → u−1(g(X))∩M is the canonical
projection, then π ∈ I(M) and g(X) ∩ u(M) = uπ(M). Thus, M is an
X -extending-invariant module.

Specializing the above theorem to the case C = I, we get:

Corollary 2.12 ([2, Proposition 2.1.15]). Let M be a module. Then
the following conditions are equivalent:

(1) M is an extending module.
(2) Every closed submodule of M is a direct summand of M .

Recall that M is X -endomorphism-invariant (resp. X -automorphism-
invariant) if there exists an X -envelope u : M → X such that for any
endomorphism (resp. automorphism) g of X there is an endomorphism f :
M →M such that uf = gu.

Definition 2.13. Let M1 and M2 be modules. We will say that M2 is
X -M1-injective if there exist X -envelopes u1 : M1 → X1, u2 : M2 → X2

such that for any homomorphism g : X1 → X2 there is a homomorphism
f : M1 →M2 such that gu1 = u2f .

M1 X1

M2 X2

-u1pppppp?f ?
g

-u2

It is easy to see that M is X -endomorphism-invariant if and only if it is
X -M -injective.
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Two modules M1 and M2 are called relatively X -injective if M1 is
X -M2-injective and M2 is X -M1-injective.

Lemma 2.14. LetM1 andM2 be relatively X -injective and let ui : Mi→Xi

be the relevant X -envelopes. If X1 ' X2 then M1 'M2.

Proof. Assume that g : X1 → X2 is an isomorphism. There exist ho-
momorphisms f1 : M1 → M2 and f2 : M2 → M1 such that u2f1 = gu1
and u1f2 = g−1u2. Then u1f2f1 = u1 and u2f1f2 = u2. It follows that
f1f2 = idM2 and f2f1 = idM1 .

Lemma 2.15. Let M =
⊕n

i=1Mi be a module and ui : Mi → Xi be
X -envelopes. The following are equivalent:

(1) M is X -endomorphism-invariant.
(2) Mi is X -Mj-injective for all i, j ∈ {1, . . . , n}.

Proof. We will prove this for n = 2.

(1)⇒(2). Let g : Xi → Xj be a homomorphism. Denote by πi : X1⊕X2

→ Xi and ιi : Xi → X1 ⊕ X2 the canonical projections and injections,
for i = 1, 2. By (1), there exists f : M1 ⊕ M2 → M1 ⊕ M2 such that
(u1⊕u2)f = ιjgπi(u1⊕u2). Let k = qjfvi, where qj : M1⊕M2 →Mj is the
canonical projection and vi : Mi → M1 ⊕M2 the canonical injection. Then
ujk = gui.

(2)⇒(1). Assume that Mi is X -Mj-injective for every i, j ∈ {1, 2} and
u1⊕u2 : M1⊕M2 → X1⊕X2 is an X -envelope. Let g ∈ End(X1⊕X2), ι1 :
X1 → X1⊕X2, ι2 : X2 → X1⊕X2 and π1 : X1⊕X2 → X1, π2 : X1⊕X2 → X2

be the canonical maps. For i, j ∈ {1, 2}, there exist fij : Mi →Mj such that
πjgιiui = ujfij . Let f : M1 ⊕M2 →M1 ⊕M2 be defined via f(m1 +m2) =
f11(m1)+f21(m1)+f12(m2)+f22(m2). Then g(u1⊕u2) = (u1⊕u2)f . Thus,
M = M1 ⊕M2 is X -endomorphism-invariant.

Corollary 2.16. A module M is X -endomorphism-invariant if and
only if Mn is.

In particular, when X = I, we obtain the following two corollaries.

Corollary 2.17 ([2, Proposition 2.2.2]). Let M1, . . . ,Mn be modules.
Then the following conditions are equivalent:

(1) M1 ⊕ · · · ⊕Mn is quasi-injective.
(2) Mi and Mj are relatively injective for i, j = 1, . . . , n.

Corollary 2.18 ([2, Proposition 2.2.3]). Let M be a module and n
a positive integer. Then M is quasi-injective if and only if Mn is quasi-
injective.
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Lemma 2.19. Assume that M = M1 ⊕ M2, and ui : Mi → Xi and
u1 ⊕ u2 : M → X1 ⊕X2 are X -envelopes. If M is X -idempotent-invariant,
then Mi is X -Mj-injective for all i 6= j.

Proof. Let g : X1 → X2 be a homomorphism. Define g′ : X1 ⊕ X2 →
X1⊕X2 by g′(x1+x2) = x1+g(x1). Then g′ is an idempotent endomorphism.
Since M is X -idempotent-invariant, there exists f ′ : M → M such that
uf ′ = g′u. For any m1 ∈ M1, there exist m′1 ∈ M1 and m2 ∈ M2 such that
f ′(m1) = m′1 + m2. Define f : M1 → M2 by f(m1) = m2; note that f is
well-defined. Furthermore, for every m1 ∈M1, we have

g′u(m1) = g′(u1(m1)) = u1(m1) + gu1(m1)

and

uf ′(m1) = u(m′1 +m2) = u1(m
′
1) + u2(m2) = u1(m

′
1) + u2f(m1).

It follows that gu1(m1) = u2f(m1). Thus, gu1 = u2f .

Corollary 2.20. M is X -endomorphism-invariant if and only if M⊕M
is X -idempotent-invariant.

Proof. One implication follows from Lemma 2.19, and the other from
Corollary 2.16.

Corollary 2.21. Let M be a module. Then M is quasi-injective if and
only if M ⊕M is quasi-continuous.

Proof. Apply Lemma 2.19 and Corollary 2.16 to the case X = I.

A module M is called purely infinite if M ∼= M ⊕M , and directly finite
if M is is not isomorphic to a proper summand of itself.

Proposition 2.22. Assume that M is an X -idempotent-invariant mod-
ule and every direct summand of M has an X -envelope. Let u : M → X be
a monomorphic X -envelope with X a direct sum of a directly finite module
and a purely infinite module. Then

(1) M is purely infinite if and only if X is.
(2) M is directly finite if and only if X is.

Proof. (1) (⇒) Assume that M is purely infinite. Then M = M1 ⊕M2

with M1 'M2 'M . Let u1 : M1 → X1 and u2 : M2 → X2 be X -envelopes.
We deduce that X ' X1⊕X2 and X ' X1 ' X2. Thus, X is purely infinite.

(⇐) Assume that X = X1 ⊕X2 with X1 ' X2 ' X. By Theorem 2.7,

M = [M ∩ u−1(X1)]⊕ [M ∩ u−1(X2)].

Furthermore, M ∩ u−1(X1) and M ∩ u−1(X2) are relatively injective. Let
M1 = M ∩ u−1(X1) and M2 = M ∩ u−1(X2). Then M = M1 ⊕M2 and
u1 = u|M1 : M ∩ u−1(X1) → X1, u2 = u|X2 : M ∩ X2 → u−1(X2) are
X -envelopes. Indeed, X1, X2 ∈ X . Let f : M1 → U be a homomorphism with
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U ∈ X . There exists h : X → U such that hu = fπ1, where π1 : M →M1 is
the canonical projection. Note that u(M1) ≤ X1. Let k = hπX1 : X → X1

be the canonical projection. Then ku1 = f . On the other hand, assume that
αu1 = u1 with α : X1 → X1. Let β = α ⊕ idX2 : X → X. Then βu = u.
So β is an isomorphism. Therefore so is α. This shows that u1 : M1 → X1

is an X -envelope. Similarly, u2 : M2 → X2 is an X -envelope. It is easy
to check that Mi is X -M -injective. It follows now from Lemma 2.14 that
M1 'M2 'M . Thus, M is purely infinite.

(2) (⇐) Assume that M is not directly finite. Then M = M1⊕M2 with
M1 ' M . It is easy to see that X ' X1 ⊕X2 and X1 ' X. Thus X is not
directly finite either.

(⇒) Now assume that X is not directly finite. There exist submodules
X1 and X2 of X such that X = X1 ⊕ X2 and X1 ' X2

1 . It follows that
M = (M ∩ u−1(X1)) ⊕ (M ∩ u−1(X2)). Set M1 = M ∩ u−1(X1). It is easy
to check that u1 = u|M1 : M ∩ u−1(X1) → X1 is an X -envelope, and thus
M1 'M2

1 by (1). Thus M is not directly finite.

Corollary 2.23. Assume that M is X -idempotent-invariant and every
direct summand of M has an X -envelope. If u : M → X is an X -envelope
and X is a direct sum of a directly finite module and a purely infinite module,
then M has a decomposition M = M1 ⊕M2 such that M1 is directly finite,
M2 is purely infinite and M1,M2 are relatively X -injective.

3. Relationships between X -idempotent-invariant modules and
X -extending-invariant modules for some special classes X

Lemma 3.1. Let A ≤ M , and let uA : A → XA and u : M → X be
monomorphic X -envelopes with uA(A) ≤e XA. Then there exists a mono-
morphic X -envelope v : A→ Y such that u|A = v.

Proof. As uA is an X -envelope, u|A factors through uA. So there exists
h : XA → X such that huA = u|A. Let us factor h = w ◦ p with p :
XA → Y an epimorphism and w : Y → X the inclusion. As uA is an
essential monomorphism, p : XA → Y must be a monomorphism, and thus
an isomorphism. Thus, v = puA : A→ Y is an X -envelope.

Next we are going to consider the situation where M has a C-envelope u :
M → X, for a certain class of modules C, satisfying the following conditions:

(1) C is closed under isomorphisms and finite direct sums.
(2) Every submodule A of M has a C-envelope uA : A → XA with uA

an essential monomorphism.
(3) If A ≤ B ≤ M and u1 : A → X1 and u2 : B → X2 are C-envelopes,

then X1 is a direct summand of X2.



248 L. V. THUYET ET AL.

Note that, in particular, the class I of all injective modules satisfies the
above conditions.

Then by Lemma 3.1, for every submodule A of M with envelope u :
M → X, we can choose a v : A→ XA such that u|A = v and XA is a direct
summand of X. We can prove the following result.

Theorem 3.2. Under the above assumptions, the following conditions
are equivalent:

(1) M is a C-idempotent-invariant module.
(2) M is a C-extending-invariant module such that whenever M =

M1 ⊕M2 is a direct sum of submodules, then M1 and M2 are rela-
tively C-injective.

Proof. (1)⇒(2) by Lemmas 2.5, 2.6(1) and 2.19.
(2)⇒(1). Let u : M → X be a C-envelope. Assume g ∈ I(X). Since M

is C-extending-invariant, u−1((1 − g)(X)) ∩M is a direct summands of M
by Theorem 2.11. Let A1 = u−1(g(X))∩M and B1 = u−1((1− g)(X))∩M .
Then A1 ∩B1 = 0 and M = B1 ⊕B2 for some B2 ≤M .

We claim that there exists M ′ ≤ M such that M = B1 ⊕ M ′ and
A1 ≤M ′.

Let πi : M → Bi be the projections. Then A′1 := π2(A1) ' A1 and π′1 :
π2(A1) → B1 via π′1(π2(a1)) = π1(a1) for all a1 ∈ A1 is a monomorphism.
Assume that u|A′1 : A′1 → X ′1 is a C-envelope and X = X ′1 ⊕ X ′2 with

πX′1 : X → X ′1 is the projection. We have the diagram

A
′
1

π
′
1
��

u|A′1 // X
′
1

h

��

X
π
X
′
1oo X2

oo

B1

u|B1
��

X1

where u|Bi : Bi → Xi are C-envelopes and Xi are the direct summands of X.
By definition of envelope, there exists h : X ′1 → X1 such that h◦(u|A′1) =

(u|B1) ◦ π′1. Let k = (hπX′1)|X2 .

B2 X2

B1 X1

-
u|B2pppppp?v ?

k

-
u|B1

Since B2 is C-B1-injective, there exists v : B2 → B1 such that

(u|B1) ◦ v = k ◦ u|B2 .
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Let M ′ = {b2 + v(b2) | b2 ∈ B2}. For every a1 ∈ A1, we have a1 =
π1(a1) + π2(a1). Hence

uv(π2(a1)) = ku(π2(a1)) = hπX′1u(π2(a1)) = hu(π2(a1))

= uπ′1(π2(a1)) = u(π1(a1)).

It follows that v(π2(a1)) = π1(a1), and so a1 ∈ M ′. Then A1 ≤ M ′. It is
easy to see that M = B1 ⊕M ′.

Now we will show that there exists f2 = f ∈ End(M) such that uf =
gu. Thus M is C-idempotent-invariant. In fact, let π : M → M ′ be the
projection. Then π = π2. For any u(m1) = uπ(m2) − gu(m2) ∈ u(M) ∩
(uπ − gu)(M) with m1,m2 ∈M , we have

(∗) π(m2)−m1 ∈ A1 ≤M ′

and
u(m1 − π(m2) +m2) = (1− g)u(m2).

It follows that
m1 − π(m2) +m2 ∈ B1.

We obtain π(m1 − π(m2) + m2) = 0 or π(m1) − π(m2) + π(m2) = 0. It
follows that

(∗∗) m1 ∈ B1.

From (∗) and (∗∗), we have m1 = 0, which implies u(M)∩ (uπ−gu)(M)
= 0. It follows that uπ = gu (since u(M) ≤e X).

Corollary 3.3. The following conditions are equivalent:

(1) M is a quasi-continuous module.
(2) M is an extending module such that whenever M = M1 ⊕M2, then

M1 and M2 are relatively injective.

Proof. Apply Theorem 3.2 for C = I.
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