MODULES WHICH ARE INVARIANT UNDER IDEMPOTENTS OF THEIR ENVELOPES

BY
\section*{LE VAN THUYET (Hue), PHAN DAN (Ho Chi Minh City) and TRUONG CONG QUYNH (DaNang)}

Abstract

We study the class of modules which are invariant under idempotents of their envelopes. We say that a module M is \mathcal{X}-idempotent-invariant if there exists an \mathcal{X}-envelope $u: M \rightarrow X$ such that for any idempotent $g \in \operatorname{End}(X)$ there exists an endomorphism $f: M \rightarrow M$ such that $u f=g u$. The properties of this class of modules are discussed. We prove that M is \mathcal{X}-idempotent-invariant if and only if for every decomposition $X=\bigoplus_{i \in I} X_{i}$, we have $M=\bigoplus_{i \in I}\left(u^{-1}\left(X_{i}\right) \cap M\right)$. Moreover, some generalizations of \mathcal{X}-idempotent-invariant modules are considered.

1. Introduction. Recently, some generalizations of quasi-injective modules have been studied and several interesting results have been obtained. In 1961, Johnson and Wong [10] proved that a module is quasi-injective if it is invariant under endomorphisms of its injective envelope. This is one of the most interesting characterizations of quasi-injective modules. It shows that quasi-injectivity can be checked by means of an intrinsic property of the module. Other characterizations of quasi-injective modules have been studied and generalized to other classes of modules.

Let us begin by discussing the class of modules which are invariant under automorphisms of their envelopes.

Let \mathcal{C} be a class of right R-modules closed under isomorphisms. An R homomorphism $g: M \rightarrow E$ is a \mathcal{C}-preenvelope of the module M provided that $E \in \mathcal{C}$ and each diagram

with $E^{\prime} \in \mathcal{C}$ can be completed by a homomorphism $\alpha: E \rightarrow E^{\prime}$ to a

[^0]commutative diagram. If, moreover, the diagram

can only be completed by automorphisms α, we call g a \mathcal{C}-envelope of M. It is easy to see that the \mathcal{C}-envelope is unique up to isomorphisms. Dualizing, one defines the notions of a \mathcal{C}-precover and a \mathcal{C}-cover of a module M.

It is well known that when \mathcal{C} is the class of all injective modules, a \mathcal{C} (pre)cover of each module exists if and only if R is a right noetherian ring (see e.g. [5, 5.4.1]). Moreover, \mathcal{C}-envelope is usually called injective hull.

Dickson-Fuller [3] proved in 1969 that if R is any algebra over a field F with more than two elements, then an indecomposable module M is quasi-injective iff M is invariant under automorphisms of the injective hull $E(M)$. In 2013 this concept was extended to modules over a general ring by Lee and Zhou [11]. They defined a module M to be automorphisminvariant if $\varphi(M) \leq M$ for every $\varphi \in \operatorname{Aut}(E(M))$. They also obtained several characterizations and applications of such modules. Er, Sing and Srivastava 6] proved that a module is automorphism-invariant if and only if every monomorphism from a submodule of M to M can be extended to an endomorphism of M (modules M with this property are called pseudoinjective). And Guil Asensio, Keskin Tütüncü and Srivastava 9 proved that the endomorphism ring of every automorphism-invariant module is semiregular. These results are interesting because of their applications to the structure of modules.

Along this paper, we will always assume that \mathcal{X} is a class of modules which is closed under isomorphisms.

The concept of automorphism-invariant modules was generalized in 2014 by Guil Asensio, Keskin Tütüncü and Srivastava [9]. A module M is called \mathcal{X}-automorphism-invariant if there exists an \mathcal{X}-envelope $u: M \rightarrow X$ such that for any automorphism $g: X \rightarrow X$, there exists an endomorphism $f: M \rightarrow M$ such that $u f=g u$. Various properties of \mathcal{X}-automorphisminvariant modules have been studied.

Next, we discuss the class of modules which are invariant under an idempotent endomorphism of their envelopes. Let us consider the following conditions:
(C1) Every submodule of M is essential in a direct summand of M.
(C2) If a submodule A of M is isomorphic to a direct summand of M, then A is a direct summand of M.
(C3) If M_{1} and M_{2} are direct summands of M and $M_{1} \cap M_{2}=0$, then $M_{1} \oplus M_{2}$ is a direct summand of M.

A module M is called continuous if it satisfies (C 1) and (C 2); and M is called quasi-continuous if it enjoys (C1) and (C3). A module M satisfying (C 1) is usually called an extending (or $C S$) module.

In 1978, Goel and Jain [7] proved that M is quasi-continuous if and only if M is invariant under all idempotent endomorphisms of $E(M)$. Moreover, M is quasi-continuous if and only if for any decomposition $E(M)=$ $\bigoplus_{i \in I} E_{i}$, we have $M=\bigoplus_{i \in I}\left(E_{i} \cap M\right)$. In this paper, we generalize this result to \mathcal{X}-idempotent-invariant modules. Let $u: M \rightarrow X$ be a monomorphic \mathcal{X}-envelope (i.e., an \mathcal{X}-envelope in which u is a monomorphism). Then M is \mathcal{X}-idempotent-invariant if and only if for every decomposition $X=\bigoplus_{i \in I} X_{i}$, we have $M=\bigoplus_{i \in I}\left(u^{-1}\left(X_{i}\right) \cap M\right)$ (Theorem 2.7). This definition suggests that one can extend the concept of quasi-continuous modules by considering different enveloping classes of modules.

On the other hand, we also extend the concept of extending modules. We will say that M is \mathcal{X}-extending-invariant (or \mathcal{X}-extending) if there exists an \mathcal{X}-envelope $u: M \rightarrow X$ such that for any idempotent $g \in \operatorname{End}(X)$ there exists an idempotent $f: M \rightarrow M$ such that $g(X) \cap u(M)=u f(M)$ or $u f=g u f$. It is clear that if \mathcal{X} is the class of all injective modules, then the concept of extending module and \mathcal{X}-extending-invariant module coincide. Let $u: M \rightarrow X$ be a monomorphic \mathcal{X}-envelope. Then we prove that M is an \mathcal{X}-extending-invariant module if and only if $u^{-1}(U) \cap M$ is a direct summand of M whenever U is a direct summand of X (Theorem 2.11). Moreover, for enveloping classes \mathcal{C} satisfying certain special properties, we also show that M is an \mathcal{C}-idempotent-invariant module if and only if M is an \mathcal{C}-extendinginvariant module such that whenever $M=M_{1} \oplus M_{2}$ is a direct sum of submodules, then M_{1} and M_{2} are relatively \mathcal{C}-injective (Theorem 3.2).

Throughout this article all rings are associative rings with unit, and all modules are right unital modules. The notation $N \leq M$ (resp. $N<M$) will mean that N is a submodule of a module M (resp. proper submodule). And we will write $N \leq^{e} M$ to indicate that N is an essential submodule of M. Let M be an arbitrary module. We denote by $I(M)$ the set of all idempotent elements of $\operatorname{End}(M)$. Recall that $Z(M)=\left\{m \in M \mid \operatorname{ann}(m) \leq^{e} R_{R}\right\}$ is called the singular submodule of M. And M is called singular (resp. nonsingular) if $Z(M)=M$ (resp. $Z(M)=0)$.

General background material can be found in [1], 4], [12].

2. Classes of modules via their envelopes

Definition 2.1. Let M be a right R-module. We will say that M is \mathcal{X}-idempotent-invariant if there exists an \mathcal{X}-envelope $u: M \rightarrow X$ such that for any idempotent $g \in \operatorname{End}(X)$ there exists an endomorphism $f: M \rightarrow M$ such that $u f=g u$.

Remark 2.2. (1) Assume that M is an \mathcal{X}-idempotent-invariant module. Let $u: M \rightarrow X$ be a monomorphic \mathcal{X}-envelope and $g \in I(X)$. Then there exists an $f \in I(M)$ with $u f=g u$ (see a detailed proof in Proposition 2.5). Moreover, f is unique since u is a monomorphism. Thus, we get a map

$$
\nabla: I(X) \rightarrow I(M), \quad g \mapsto f
$$

between idempotents in $\operatorname{End}(X)$ and in $\operatorname{End}(M)$.
(2) If \mathcal{X} is the class of all injective modules, then the \mathcal{X}-idempotentinvariant modules are precisely the quasi-continuous modules.

Example 2.3. (i) If $\mathcal{X}=\operatorname{Mod}-R$, then each right R-module is trivially \mathcal{X}-idempotent-invariant.
(ii) Let M be an R - S-bimodule such that M is linearly compact as a left R-module, but it is not quasi-continuous as a right module (for example, a left artinian ring R which is not right quasi-continuous) and let \mathcal{X} be the class of all pure-injective right R-modules. Then M is right pure-injective by [13] and thus \mathcal{X}-idempotent-invariant, but it is not quasi-continuous (see also [14, 52.4(ii)]).
(iii) Let R be a local ring and let \mathcal{X} be the class of right cotorsion R-modules. Then the cotorsion envelope of the right regular module R is indecomposable by [8, Theorem 21], and thus R is clearly \mathcal{X}-idempotentinvariant. However, R need not be a right cotorsion ring.
(iv) Let R be a ring and
$\mathcal{X}=\left\{X\right.$ injective $\mid \operatorname{Im}(f)$ is orthogonal to $\left.\operatorname{Ker}(f), \forall f=f^{2} \in \operatorname{End}(X)\right\}$.
In particular, we can choose $\mathcal{X}=\{X$ is uniform injective nonsingular $\}$. Then a right R-module M is \mathcal{X}-idempotent-invariant if and only if M is a TS-module with property T_{3} (see [15]).

Definition 2.4. Let M be a right R-module. We will say that M is \mathcal{X}-extending-invariant (or \mathcal{X}-extending) if there exists an \mathcal{X}-envelope u : $M \rightarrow X$ such that for any idempotent $g \in \operatorname{End}(X)$ there exists an idempotent $f: M \rightarrow M$ with $g(X) \cap u(M)=u f(M)$. In this case, $u f=g u f$.

Proposition 2.5. Let $u: M \rightarrow X$ be a monomorphic \mathcal{X}-envelope. If M is \mathcal{X}-idempotent-invariant then it is \mathcal{X}-extending-invariant.

Proof. Choose $g \in \operatorname{End}(X)$ such that $g^{2}=g$. Since M is \mathcal{X}-idempotentinvariant, there exists $f: M \rightarrow M$ such that $u f=g u$. Furthermore, $1-g \in$ $I(X)$, and thus there is $f^{\prime}: M \rightarrow M$ such that $u f^{\prime}=(1-g) u$. Then $u f^{\prime} f=0$, and so $f^{\prime} f=0$. It follows that $u=g u+(1-g) u=u f+u f^{\prime}=$ $u\left(f+f^{\prime}\right)$. Then $f+f^{\prime}=$ id (since u is a monomorphism). Thus, $f^{2}=f$ and $g(X) \cap u(M)=u f(M)$.

Note. (1) If \mathcal{X} is the class \mathcal{I} of all injective modules, then the \mathcal{I}-extend-ing-invariant modules are precisely the extending modules.
(2) Let \mathbb{F} be a field and $R=\mathbb{T}_{2}(\mathbb{F})$, the 2×2 upper triangular matrix ring over \mathbb{F}. It is easy to check that R is \mathcal{I}-extending-invariant. Let us show that, however, R_{R} is not \mathcal{I}-idempotent-invariant. Let $E_{i j} \in R$ be the matrix with 1 in the (i, j)-position and 0 elsewhere, and set $E=E_{12}+E_{22}$ and $F=F_{22}$. Then E and F are idempotents in R and $E R \cap F R=0$. But it can be checked that $E R_{R} \oplus F R_{R}$ is not a direct summand of R_{R}. Therefore R_{R} is not quasi-continuous, and thus not \mathcal{I}-idempotent-invariant.

Lemma 2.6. Let M be a module, and N a direct summand of M.
(1) If M is \mathcal{X}-idempotent-invariant and N has an \mathcal{X}-envelope, then N is also \mathcal{X}-idempotent-invariant.
(2) If M is \mathcal{X}-extending-invariant and N has an \mathcal{X}-envelope and is invariant under all idempotents of $\operatorname{End}(M)$, then N is also \mathcal{X} -extending-invariant.

Proof. (1) Let $u: M \rightarrow X$ and $u_{1}: N \rightarrow X_{1}$ be \mathcal{X}-envelopes, $\pi: M \rightarrow N$ the projection map and $\iota: N \rightarrow M$ the inclusion. Let g_{2} be an idempotent endomorphism of X_{1}. We claim that there exists $f_{2}: N \rightarrow N$ such that $u_{1} f_{2}=g_{2} u_{1}$.

By the \mathcal{X}-envelope property, there exist $h_{1}: X \rightarrow X_{1}$ and $h_{2}: X_{1} \rightarrow X$ such that $h_{1} u=u_{1} \pi$ and $h_{2} u_{1}=u \iota$. It follows that $h_{1} h_{2} u_{1}=u_{1}$, and so $h_{1} h_{2}$ is an isomorphism. There exists $h: X_{1} \rightarrow X_{1}$ such that $\left(h_{1} h_{2}\right) h=\mathrm{id}_{X_{1}}$. Let $g_{1}=h_{2}\left(h g_{2}\right) h_{1}: X \rightarrow X$. Then g_{1} is an idempotent endomorphism of X. As M is an \mathcal{X}-idempotent-invariant module, there exists $f_{1}: M \rightarrow M$ such that $u f_{1}=g_{1} u$. Let $f_{2}=\pi f_{1} \iota$. Then

$$
\begin{aligned}
u_{1} f_{2} & =u_{1} \pi f_{1} \iota=h_{1} u f_{1} \iota=h_{1} g_{1} u \iota=h_{1} h_{2} h g_{2} h_{1} u \iota \\
& =g_{2} h_{1} u \iota=g_{2} u_{1} \pi \iota=g_{2} u_{1} .
\end{aligned}
$$

Thus, N is \mathcal{X}-idempotent-invariant.
(2) Let $u, u_{1}, \pi, \iota, g_{2}, h_{1}, h_{2}$ be as above. We will show that there exists an idempotent $f_{2}: N \rightarrow N$ such that $g_{2}\left(X_{1}\right) \cap u_{1}(N)=u_{1} f_{2}(M)$.

Since $h_{1} h_{2}$ is an isomorphism, there exists $h: X_{1} \rightarrow X_{1}$ such that $h\left(h_{1} h_{2}\right)=\mathrm{id}_{X_{1}}$. It follows that h_{2} splits. This means that X_{1} is isomorphic to a direct summand of X. We may assume that X_{1} is a direct summand
of X and $u_{1}=u \iota$. Let $g_{1}=\iota_{0} g_{2} \pi_{0}: X \rightarrow X$ with $\pi_{0}: X \rightarrow X_{1}$ the canonical projection and $\iota_{0}: X_{1} \rightarrow X$ the inclusion. Then g_{1} is an idempotent of $\operatorname{End}(X)$. As M is an \mathcal{X}-idempotent-invariant module, there exists an idempotent $f_{1}: M \rightarrow M$ such that $g_{1}(X) \cap u(M)=u f_{1}(M)$. As N is invariant under all idempotent endomorphisms of M, we have $f_{1}(N) \leq N$. Define $f_{2}=\left.f_{1}\right|_{N}: N \rightarrow N$. Then f_{2} is an idempotent endomorphism of N. It is easy to see that $g_{2}\left(X_{1}\right) \cap u_{1}(N)=u_{1} f_{2}(N)$.

Thus, N is \mathcal{X}-extending-invariant.
TheOrem 2.7. Let $u: M \rightarrow X$ be a monomorphic \mathcal{X}-envelope. The following conditions are equivalent:
(1) M is \mathcal{X}-idempotent-invariant.
(2) If $X=\bigoplus_{i \in I} X_{i}$, then $M=\bigoplus_{i \in I}\left(u^{-1}\left(X_{i}\right) \cap M\right)$.
(3) If $X=X_{1} \oplus X_{2}$, then $M=\left(u^{-1}\left(X_{1}\right) \cap M\right) \oplus\left(u^{-1}\left(X_{2}\right) \cap M\right)$.

Proof. (1) $\Rightarrow(2)$. Assume that $X=\bigoplus_{i \in I} X_{i}$. For each $m \in M$, there is a finite subset $F \subseteq I$ such that $u(m) \in \bigoplus_{k \in F} X_{k}$. But there also exists a set $\left\{g_{k}: k \in F\right\}$ of orthogonal idempotents of $\operatorname{End}(X)$ such that $g_{k}(X)=X_{k}$. We know that M is \mathcal{X}-idempotent-invariant, and thus there exists a family $\left\{f_{k}: k \in F\right\} \subseteq \operatorname{End}(M)$ such that $u f_{k}=g_{k} u$ for all $k \in F$. On the other hand,

$$
u(m)=\sum_{F} g_{k} u(m)=\sum_{F} u f_{k}(m) \quad \text { or } \quad m=\sum_{F} f_{k}(m) .
$$

Note $f_{k}(m) \in M \cap u^{-1}\left(X_{k}\right)$ for every $k \in F$. Therefore, $m \in \sum_{F}\left(M \cap u^{-1}\left(X_{i}\right)\right)$, and thus $M=\bigoplus_{i \in I}\left(u^{-1}\left(X_{i}\right) \cap M\right)$.
$(2) \Rightarrow(3)$. This is obvious.
$(3) \Rightarrow(1)$. Let g be an idempotent endomorphism of X. Then $X=g(X) \oplus$ $(1-g)(X)$. By (3), we get $M=\left(M \cap u^{-1}(g(X)) \oplus u^{-1}((1-g)(X))\right.$. Let $f: M \rightarrow M \cap u^{-1}(g(X))$ be the projection. Then, for every $m=x+y \in M$, where $x \in M \cap u^{-1}(g(X))$ and $y \in M \cap u^{-1}((1-g)(X))$, we obtain $u f(m)=$ $u(x)$. But $x \in M \cap u^{-1}(g(X))$, and so $u(x)=g\left(m_{0}\right)$ for some $m_{0} \in M$. On the other hand,

$$
g u(m)=g u(x+y)=g u(x)+g u(y)=g\left(g\left(m_{0}\right)\right)+g u(y)=g\left(m_{0}\right)+g u(y) .
$$

We have $y \in M \cap u^{-1}((1-g)(X))$, and thus $g u(y)=0$. It follows that $u f(m)=g u(m)$. Therefore, $u f=g u$.

Recall that if M is a module and $N \leq M$, then a submodule C of M is a complement of N if it is maximal with respect to $C \cap N=0$.

Proposition 2.8. Let $u: M \rightarrow X$ be a monomorphic \mathcal{X}-envelope with $u(M)$ essential in X. Consider the following conditions:
(1) $M=U \oplus V$ for any U, V which are complements of each other.
(2) M is \mathcal{X}-idempotent-invariant.

Then (1) always implies (2). Moreover, if X is a quasi-continuous module, then M is also quasi-continuous and so $(2) \Rightarrow(1)$.

Proof. (1) $\Rightarrow(2)$. Let g be an idempotent endomorphism of X and let $A_{1}=M \cap u^{-1}(g(X))$ and $A_{2}=M \cap u^{-1}((1-g)(X))$. Let B_{1} be a complement of A_{2} in M containing A_{1}, and B_{2} a complement of B_{1} in M containing A_{2}. It follows that B_{1} and B_{2} are complements of each other in M. Therefore, $M=B_{1} \oplus B_{2}$. Let $\pi: B_{1} \oplus B_{2} \rightarrow B_{1}$ be the projection.

Let us now show that $u \pi=g u$. Assume that $u \pi \neq g u$. As $u(M) \leq^{e} X$, there exist $m=b_{1}+b_{2} \in M$ with $b_{1} \in B_{1}, b_{2} \in B_{2}$, and $m_{0} \in M$ such that $u\left(m_{0}\right)=(u \pi-g u)(m) \neq 0$. It follows that $u\left(m_{0}+\pi(m)\right)=g u(m)$ or $m_{0}+\pi(m) \in A_{1}$. Furthermore, $g u\left(m_{0}+\pi(m)\right)=g u(m)$ or $m_{0}+\pi(m)-m$ $\in A_{2}$. Then $m_{0}+\pi(m)-b_{1}-b_{2} \in A_{2}$ and $m_{0}+\pi(m)-b_{1} \in B_{1} \cap B_{2}=0$. Note that $\pi(m)-b_{1}=0$, and thus $m_{0}=0$, a contradiction.
$(2) \Rightarrow(1)$. Assume that X is quasi-continuous. Let $A \leq M$. There exists $H \leq X$ such that $X=H \oplus K$ and $u(A) \leq^{e} H$. We have $A \leq^{e} u^{-1}(H) \cap M$ (since u is a monomorphism). By (3), we get

$$
M=\left(u^{-1}(H) \cap M\right) \oplus\left(u^{-1}(K) \cap M\right)
$$

Thus M satisfies (C1).
Next, we show that M also satisfies (C3). Assume that U, V are direct summands of M such that $U \cap V=0$. There exist decompositions $X=$ $X_{1} \oplus Y_{1}=X_{2} \oplus Y_{2}$ such that $u(U) \leq^{e} X_{1}$ and $u(V) \leq^{e} X_{2}$. We have $U \cap V=0$, and so $X_{1} \cap X_{2}=0$. On the other hand, since X satisfies (C3), we have $X=\left(X_{1} \oplus X_{2}\right) \oplus X_{3}$. Thus

$$
M=\left(u^{-1}\left(X_{1}\right) \cap M\right) \oplus\left(u^{-1}\left(X_{2}\right) \cap M\right) \oplus\left(u^{-1}\left(X_{3}\right) \cap M\right)
$$

Since U, V are direct summands of $M, U \leq^{e} u^{-1}\left(X_{1}\right) \cap M$ and $V \leq^{e}$ $u^{-1}\left(X_{2}\right) \cap M$, we deduce that $U=u^{-1}\left(X_{1}\right) \cap M$ and $V=u^{-1}\left(X_{2}\right) \cap M$. Therefore, $M=(U \oplus V) \oplus\left(u^{-1}\left(X_{3}\right) \cap M\right)$.

Recall that if M is a module, then $E(M)$ denotes the injective hull of M, that is, the minimal injective extension of M.

Corollary 2.9 ([2, Proposition 2.1.25]). Let M be a module. The following conditions are equivalent:
(1) M is quasi-continuous.
(2) $M=X \oplus Y$ for any pair of submodules X and Y which are complements of each other.
(3) $f(M) \leq M$ for every idempotent $f \in \operatorname{End}(E(M))$.
(4) For every decomposition $E(M)=\bigoplus_{i \in \Lambda} E_{i}$, we have

$$
M=\bigoplus_{i \in \Lambda}\left(M \cap E_{i}\right)
$$

Proof. Apply Theorem 2.7 and Proposition 2.8 in the special case where \mathcal{C} is the class \mathcal{I} of all injective modules.

Let us recall that a closed submodule of M has the form $X \cap M$ for some direct summand X of $E(M)$.

Definition 2.10. Let $u: M \rightarrow X$ be an \mathcal{X}-envelope, and A a submodule of M. Then A is said to be \mathcal{X}-closed in M if there exists an idempotent endomorphism g of X such that $A=u^{-1}(g(X)) \cap M$.

Theorem 2.11. Assume that $u: M \rightarrow X$ is a monomorphic \mathcal{X}-envelope. The following conditions are equivalent:
(1) M is an \mathcal{X}-extending-invariant module.
(2) Every \mathcal{X}-closed submodule is a direct summand of M.

Proof. (1) $\Rightarrow(2)$. Let $U=g(X)$ with $g \in I(X)$. There exists $f \in I(M)$ such that $g(X) \cap u(M)=u f(M)$. It follows that $u^{-1}(U) \cap M=f(M)$ is a direct summand of M.
$(2) \Rightarrow(1)$. Let g be an idempotent of $\operatorname{End}(X)$. By hypothesis, $u^{-1}(g(X))$ $\cap M$ is a direct summand of M. If $\pi: M \rightarrow u^{-1}(g(X)) \cap M$ is the canonical projection, then $\pi \in I(M)$ and $g(X) \cap u(M)=u \pi(M)$. Thus, M is an \mathcal{X}-extending-invariant module.

Specializing the above theorem to the case $\mathcal{C}=\mathcal{I}$, we get:
Corollary 2.12 ([2, Proposition 2.1.15]). Let M be a module. Then the following conditions are equivalent:
(1) M is an extending module.
(2) Every closed submodule of M is a direct summand of M.

Recall that M is \mathcal{X}-endomorphism-invariant (resp. \mathcal{X}-automorphisminvariant) if there exists an \mathcal{X}-envelope $u: M \rightarrow X$ such that for any endomorphism (resp. automorphism) g of X there is an endomorphism f : $M \rightarrow M$ such that $u f=g u$.

Definition 2.13. Let M_{1} and M_{2} be modules. We will say that M_{2} is \mathcal{X} - M_{1}-injective if there exist \mathcal{X}-envelopes $u_{1}: M_{1} \rightarrow X_{1}, u_{2}: M_{2} \rightarrow X_{2}$ such that for any homomorphism $g: X_{1} \rightarrow X_{2}$ there is a homomorphism $f: M_{1} \rightarrow M_{2}$ such that $g u_{1}=u_{2} f$.

It is easy to see that M is \mathcal{X}-endomorphism-invariant if and only if it is \mathcal{X} - M-injective.

Two modules M_{1} and M_{2} are called relatively \mathcal{X}-injective if M_{1} is $\mathcal{X}-M_{2}$-injective and M_{2} is \mathcal{X} - M_{1}-injective.

Lemma 2.14. Let M_{1} and M_{2} be relatively \mathcal{X}-injective and let $u_{i}: M_{i} \rightarrow X_{i}$ be the relevant \mathcal{X}-envelopes. If $X_{1} \simeq X_{2}$ then $M_{1} \simeq M_{2}$.

Proof. Assume that $g: X_{1} \rightarrow X_{2}$ is an isomorphism. There exist homomorphisms $f_{1}: M_{1} \rightarrow M_{2}$ and $f_{2}: M_{2} \rightarrow M_{1}$ such that $u_{2} f_{1}=g u_{1}$ and $u_{1} f_{2}=g^{-1} u_{2}$. Then $u_{1} f_{2} f_{1}=u_{1}$ and $u_{2} f_{1} f_{2}=u_{2}$. It follows that $f_{1} f_{2}=\operatorname{id}_{M_{2}}$ and $f_{2} f_{1}=\operatorname{id}_{M_{1}}$.

Lemma 2.15. Let $M=\bigoplus_{i=1}^{n} M_{i}$ be a module and $u_{i}: M_{i} \rightarrow X_{i}$ be \mathcal{X}-envelopes. The following are equivalent:
(1) M is \mathcal{X}-endomorphism-invariant.
(2) M_{i} is \mathcal{X} - M_{j}-injective for all $i, j \in\{1, \ldots, n\}$.

Proof. We will prove this for $n=2$.
(1) $\Rightarrow(2)$. Let $g: X_{i} \rightarrow X_{j}$ be a homomorphism. Denote by $\pi_{i}: X_{1} \oplus X_{2}$ $\rightarrow X_{i}$ and $\iota_{i}: X_{i} \rightarrow X_{1} \oplus X_{2}$ the canonical projections and injections, for $i=1,2$. By (1), there exists $f: M_{1} \oplus M_{2} \rightarrow M_{1} \oplus M_{2}$ such that $\left(u_{1} \oplus u_{2}\right) f=\iota_{j} g \pi_{i}\left(u_{1} \oplus u_{2}\right)$. Let $k=q_{j} f v_{i}$, where $q_{j}: M_{1} \oplus M_{2} \rightarrow M_{j}$ is the canonical projection and $v_{i}: M_{i} \rightarrow M_{1} \oplus M_{2}$ the canonical injection. Then $u_{j} k=g u_{i}$.
(2) \Rightarrow (1). Assume that M_{i} is \mathcal{X} - M_{j}-injective for every $i, j \in\{1,2\}$ and $u_{1} \oplus u_{2}: M_{1} \oplus M_{2} \rightarrow X_{1} \oplus X_{2}$ is an \mathcal{X}-envelope. Let $g \in \operatorname{End}\left(X_{1} \oplus X_{2}\right), \iota_{1}$: $X_{1} \rightarrow X_{1} \oplus X_{2}, \iota_{2}: X_{2} \rightarrow X_{1} \oplus X_{2}$ and $\pi_{1}: X_{1} \oplus X_{2} \rightarrow X_{1}, \pi_{2}: X_{1} \oplus X_{2} \rightarrow X_{2}$ be the canonical maps. For $i, j \in\{1,2\}$, there exist $f_{i j}: M_{i} \rightarrow M_{j}$ such that $\pi_{j} g \iota_{i} u_{i}=u_{j} f_{i j}$. Let $f: M_{1} \oplus M_{2} \rightarrow M_{1} \oplus M_{2}$ be defined via $f\left(m_{1}+m_{2}\right)=$ $f_{11}\left(m_{1}\right)+f_{21}\left(m_{1}\right)+f_{12}\left(m_{2}\right)+f_{22}\left(m_{2}\right)$. Then $g\left(u_{1} \oplus u_{2}\right)=\left(u_{1} \oplus u_{2}\right) f$. Thus, $M=M_{1} \oplus M_{2}$ is \mathcal{X}-endomorphism-invariant.

Corollary 2.16. A module M is \mathcal{X}-endomorphism-invariant if and only if M^{n} is.

In particular, when $\mathcal{X}=\mathcal{I}$, we obtain the following two corollaries.
Corollary 2.17 ([2, Proposition 2.2.2]). Let M_{1}, \ldots, M_{n} be modules. Then the following conditions are equivalent:
(1) $M_{1} \oplus \cdots \oplus M_{n}$ is quasi-injective.
(2) M_{i} and M_{j} are relatively injective for $i, j=1, \ldots, n$.

Corollary 2.18 ([2, Proposition 2.2.3]). Let M be a module and n a positive integer. Then M is quasi-injective if and only if M^{n} is quasiinjective.

Lemma 2.19. Assume that $M=M_{1} \oplus M_{2}$, and $u_{i}: M_{i} \rightarrow X_{i}$ and $u_{1} \oplus u_{2}: M \rightarrow X_{1} \oplus X_{2}$ are \mathcal{X}-envelopes. If M is \mathcal{X}-idempotent-invariant, then M_{i} is \mathcal{X} - M_{j}-injective for all $i \neq j$.

Proof. Let $g: X_{1} \rightarrow X_{2}$ be a homomorphism. Define $g^{\prime}: X_{1} \oplus X_{2} \rightarrow$ $X_{1} \oplus X_{2}$ by $g^{\prime}\left(x_{1}+x_{2}\right)=x_{1}+g\left(x_{1}\right)$. Then g^{\prime} is an idempotent endomorphism. Since M is \mathcal{X}-idempotent-invariant, there exists $f^{\prime}: M \rightarrow M$ such that $u f^{\prime}=g^{\prime} u$. For any $m_{1} \in M_{1}$, there exist $m_{1}^{\prime} \in M_{1}$ and $m_{2} \in M_{2}$ such that $f^{\prime}\left(m_{1}\right)=m_{1}^{\prime}+m_{2}$. Define $f: M_{1} \rightarrow M_{2}$ by $f\left(m_{1}\right)=m_{2}$; note that f is well-defined. Furthermore, for every $m_{1} \in M_{1}$, we have

$$
g^{\prime} u\left(m_{1}\right)=g^{\prime}\left(u_{1}\left(m_{1}\right)\right)=u_{1}\left(m_{1}\right)+g u_{1}\left(m_{1}\right)
$$

and

$$
u f^{\prime}\left(m_{1}\right)=u\left(m_{1}^{\prime}+m_{2}\right)=u_{1}\left(m_{1}^{\prime}\right)+u_{2}\left(m_{2}\right)=u_{1}\left(m_{1}^{\prime}\right)+u_{2} f\left(m_{1}\right) .
$$

It follows that $g u_{1}\left(m_{1}\right)=u_{2} f\left(m_{1}\right)$. Thus, $g u_{1}=u_{2} f$.
Corollary 2.20. M is \mathcal{X}-endomorphism-invariant if and only if $M \oplus M$ is \mathcal{X}-idempotent-invariant.

Proof. One implication follows from Lemma 2.19, and the other from Corollary 2.16.

Corollary 2.21. Let M be a module. Then M is quasi-injective if and only if $M \oplus M$ is quasi-continuous.

Proof. Apply Lemma 2.19 and Corollary 2.16 to the case $\mathcal{X}=\mathcal{I}$.
A module M is called purely infinite if $M \cong M \oplus M$, and directly finite if M is is not isomorphic to a proper summand of itself.

Proposition 2.22. Assume that M is an \mathcal{X}-idempotent-invariant module and every direct summand of M has an \mathcal{X}-envelope. Let $u: M \rightarrow X$ be a monomorphic \mathcal{X}-envelope with X a direct sum of a directly finite module and a purely infinite module. Then
(1) M is purely infinite if and only if X is.
(2) M is directly finite if and only if X is.

Proof. (1) (\Rightarrow) Assume that M is purely infinite. Then $M=M_{1} \oplus M_{2}$ with $M_{1} \simeq M_{2} \simeq M$. Let $u_{1}: M_{1} \rightarrow X_{1}$ and $u_{2}: M_{2} \rightarrow X_{2}$ be \mathcal{X}-envelopes. We deduce that $X \simeq X_{1} \oplus X_{2}$ and $X \simeq X_{1} \simeq X_{2}$. Thus, X is purely infinite.
(\Leftarrow) Assume that $X=X_{1} \oplus X_{2}$ with $X_{1} \simeq X_{2} \simeq X$. By Theorem 2.7,

$$
M=\left[M \cap u^{-1}\left(X_{1}\right)\right] \oplus\left[M \cap u^{-1}\left(X_{2}\right)\right] .
$$

Furthermore, $M \cap u^{-1}\left(X_{1}\right)$ and $M \cap u^{-1}\left(X_{2}\right)$ are relatively injective. Let $M_{1}=M \cap u^{-1}\left(X_{1}\right)$ and $M_{2}=M \cap u^{-1}\left(X_{2}\right)$. Then $M=M_{1} \oplus M_{2}$ and $u_{1}=\left.u\right|_{M_{1}}: M \cap u^{-1}\left(X_{1}\right) \rightarrow X_{1}, u_{2}=\left.u\right|_{X_{2}}: M \cap X_{2} \rightarrow u^{-1}\left(X_{2}\right)$ are \mathcal{X}-envelopes. Indeed, $X_{1}, X_{2} \in \mathcal{X}$. Let $f: M_{1} \rightarrow U$ be a homomorphism with
$U \in \mathcal{X}$. There exists $h: X \rightarrow U$ such that $h u=f \pi_{1}$, where $\pi_{1}: M \rightarrow M_{1}$ is the canonical projection. Note that $u\left(M_{1}\right) \leq X_{1}$. Let $k=h \pi_{X_{1}}: X \rightarrow X_{1}$ be the canonical projection. Then $k u_{1}=f$. On the other hand, assume that $\alpha u_{1}=u_{1}$ with $\alpha: X_{1} \rightarrow X_{1}$. Let $\beta=\alpha \oplus \operatorname{id}_{X_{2}}: X \rightarrow X$. Then $\beta u=u$. So β is an isomorphism. Therefore so is α. This shows that $u_{1}: M_{1} \rightarrow X_{1}$ is an \mathcal{X}-envelope. Similarly, $u_{2}: M_{2} \rightarrow X_{2}$ is an \mathcal{X}-envelope. It is easy to check that M_{i} is \mathcal{X} - M-injective. It follows now from Lemma 2.14 that $M_{1} \simeq M_{2} \simeq M$. Thus, M is purely infinite.
$(2)(\Leftarrow)$ Assume that M is not directly finite. Then $M=M_{1} \oplus M_{2}$ with $M_{1} \simeq M$. It is easy to see that $X \simeq X_{1} \oplus X_{2}$ and $X_{1} \simeq X$. Thus X is not directly finite either.
(\Rightarrow) Now assume that X is not directly finite. There exist submodules X_{1} and X_{2} of X such that $X=X_{1} \oplus X_{2}$ and $X_{1} \simeq X_{1}^{2}$. It follows that $M=\left(M \cap u^{-1}\left(X_{1}\right)\right) \oplus\left(M \cap u^{-1}\left(X_{2}\right)\right)$. Set $M_{1}=M \cap u^{-1}\left(X_{1}\right)$. It is easy to check that $u_{1}=\left.u\right|_{M_{1}}: M \cap u^{-1}\left(X_{1}\right) \rightarrow X_{1}$ is an \mathcal{X}-envelope, and thus $M_{1} \simeq M_{1}^{2}$ by (1). Thus M is not directly finite.

Corollary 2.23. Assume that M is \mathcal{X}-idempotent-invariant and every direct summand of M has an \mathcal{X}-envelope. If $u: M \rightarrow X$ is an \mathcal{X}-envelope and X is a direct sum of a directly finite module and a purely infinite module, then M has a decomposition $M=M_{1} \oplus M_{2}$ such that M_{1} is directly finite, M_{2} is purely infinite and M_{1}, M_{2} are relatively \mathcal{X}-injective.

3. Relationships between \mathcal{X}-idempotent-invariant modules and \mathcal{X}-extending-invariant modules for some special classes \mathcal{X}

Lemma 3.1. Let $A \leq M$, and let $u_{A}: A \rightarrow X_{A}$ and $u: M \rightarrow X$ be monomorphic \mathcal{X}-envelopes with $u_{A}(A) \leq^{e} X_{A}$. Then there exists a monomorphic \mathcal{X}-envelope $v: A \rightarrow Y$ such that $\left.u\right|_{A}=v$.

Proof. As u_{A} is an \mathcal{X}-envelope, $\left.u\right|_{A}$ factors through u_{A}. So there exists $h: X_{A} \rightarrow X$ such that $h u_{A}=\left.u\right|_{A}$. Let us factor $h=w \circ p$ with p : $X_{A} \rightarrow Y$ an epimorphism and $w: Y \rightarrow X$ the inclusion. As u_{A} is an essential monomorphism, $p: X_{A} \rightarrow Y$ must be a monomorphism, and thus an isomorphism. Thus, $v=p u_{A}: A \rightarrow Y$ is an \mathcal{X}-envelope.

Next we are going to consider the situation where M has a \mathcal{C}-envelope u : $M \rightarrow X$, for a certain class of modules \mathcal{C}, satisfying the following conditions:
(1) \mathcal{C} is closed under isomorphisms and finite direct sums.
(2) Every submodule A of M has a \mathcal{C}-envelope $u_{A}: A \rightarrow X_{A}$ with u_{A} an essential monomorphism.
(3) If $A \leq B \leq M$ and $u_{1}: A \rightarrow X_{1}$ and $u_{2}: B \rightarrow X_{2}$ are \mathcal{C}-envelopes, then X_{1} is a direct summand of X_{2}.

Note that, in particular, the class \mathcal{I} of all injective modules satisfies the above conditions.

Then by Lemma 3.1, for every submodule A of M with envelope u : $M \rightarrow X$, we can choose a $v: A \rightarrow X_{A}$ such that $\left.u\right|_{A}=v$ and X_{A} is a direct summand of X. We can prove the following result.

Theorem 3.2. Under the above assumptions, the following conditions are equivalent:
(1) M is a \mathcal{C}-idempotent-invariant module.
(2) M is a \mathcal{C}-extending-invariant module such that whenever $M=$ $M_{1} \oplus M_{2}$ is a direct sum of submodules, then M_{1} and M_{2} are relatively \mathcal{C}-injective.
Proof. (1) $\Rightarrow(2)$ by Lemmas 2.5, 2.6(1) and 2.19 .
$(2) \Rightarrow(1)$. Let $u: M \rightarrow X$ be a \mathcal{C}-envelope. Assume $g \in I(X)$. Since M is \mathcal{C}-extending-invariant, $u^{-1}((1-g)(X)) \cap M$ is a direct summands of M by Theorem 2.11. Let $A_{1}=u^{-1}(g(X)) \cap M$ and $B_{1}=u^{-1}((1-g)(X)) \cap M$. Then $A_{1} \cap B_{1}=0$ and $M=B_{1} \oplus B_{2}$ for some $B_{2} \leq M$.

We claim that there exists $M^{\prime} \leq M$ such that $M=B_{1} \oplus M^{\prime}$ and $A_{1} \leq M^{\prime}$.

Let $\pi_{i}: M \rightarrow B_{i}$ be the projections. Then $A_{1}^{\prime}:=\pi_{2}\left(A_{1}\right) \simeq A_{1}$ and $\pi_{1}^{\prime}:$ $\pi_{2}\left(A_{1}\right) \rightarrow B_{1}$ via $\pi_{1}^{\prime}\left(\pi_{2}\left(a_{1}\right)\right)=\pi_{1}\left(a_{1}\right)$ for all $a_{1} \in A_{1}$ is a monomorphism. Assume that $\left.u\right|_{A_{1}^{\prime}}: A_{1}^{\prime} \rightarrow X_{1}^{\prime}$ is a \mathcal{C}-envelope and $X=X_{1}^{\prime} \oplus X_{2}^{\prime}$ with $\pi_{X_{1}^{\prime}}: X \rightarrow X_{1}^{\prime}$ is the projection. We have the diagram

where $\left.u\right|_{B_{i}}: B_{i} \rightarrow X_{i}$ are \mathcal{C}-envelopes and X_{i} are the direct summands of X.
By definition of envelope, there exists $h: X_{1}^{\prime} \rightarrow X_{1}$ such that $h \circ\left(\left.u\right|_{A_{1}^{\prime}}\right)=$ $\left(\left.u\right|_{B_{1}}\right) \circ \pi_{1}^{\prime}$. Let $k=\left(h \pi_{X_{1}^{\prime}}\right) \mid X_{X_{2}}$.

Since B_{2} is \mathcal{C} - B_{1}-injective, there exists $v: B_{2} \rightarrow B_{1}$ such that

$$
\left(\left.u\right|_{B_{1}}\right) \circ v=\left.k \circ u\right|_{B_{2}} .
$$

Let $M^{\prime}=\left\{b_{2}+v\left(b_{2}\right) \mid b_{2} \in B_{2}\right\}$. For every $a_{1} \in A_{1}$, we have $a_{1}=$ $\pi_{1}\left(a_{1}\right)+\pi_{2}\left(a_{1}\right)$. Hence

$$
\begin{aligned}
u v\left(\pi_{2}\left(a_{1}\right)\right) & =k u\left(\pi_{2}\left(a_{1}\right)\right)=h \pi_{X_{1}^{\prime}} u\left(\pi_{2}\left(a_{1}\right)\right)=h u\left(\pi_{2}\left(a_{1}\right)\right) \\
& =u \pi_{1}^{\prime}\left(\pi_{2}\left(a_{1}\right)\right)=u\left(\pi_{1}\left(a_{1}\right)\right) .
\end{aligned}
$$

It follows that $v\left(\pi_{2}\left(a_{1}\right)\right)=\pi_{1}\left(a_{1}\right)$, and so $a_{1} \in M^{\prime}$. Then $A_{1} \leq M^{\prime}$. It is easy to see that $M=B_{1} \oplus M^{\prime}$.

Now we will show that there exists $f^{2}=f \in \operatorname{End}(M)$ such that $u f=$ gu. Thus M is \mathcal{C}-idempotent-invariant. In fact, let $\pi: M \rightarrow M^{\prime}$ be the projection. Then $\pi=\pi^{2}$. For any $u\left(m_{1}\right)=u \pi\left(m_{2}\right)-g u\left(m_{2}\right) \in u(M) \cap$ $(u \pi-g u)(M)$ with $m_{1}, m_{2} \in M$, we have

$$
\begin{equation*}
\pi\left(m_{2}\right)-m_{1} \in A_{1} \leq M^{\prime} \tag{*}
\end{equation*}
$$

and

$$
u\left(m_{1}-\pi\left(m_{2}\right)+m_{2}\right)=(1-g) u\left(m_{2}\right) .
$$

It follows that

$$
m_{1}-\pi\left(m_{2}\right)+m_{2} \in B_{1} .
$$

We obtain $\pi\left(m_{1}-\pi\left(m_{2}\right)+m_{2}\right)=0$ or $\pi\left(m_{1}\right)-\pi\left(m_{2}\right)+\pi\left(m_{2}\right)=0$. It follows that

$$
\begin{equation*}
m_{1} \in B_{1} . \tag{**}
\end{equation*}
$$

From $(*)$ and $(* *)$, we have $m_{1}=0$, which implies $u(M) \cap(u \pi-g u)(M)$ $=0$. It follows that $u \pi=g u$ (since $u(M) \leq^{e} X$).

Corollary 3.3. The following conditions are equivalent:
(1) M is a quasi-continuous module.
(2) M is an extending module such that whenever $M=M_{1} \oplus M_{2}$, then M_{1} and M_{2} are relatively injective.
Proof. Apply Theorem 3.2 for $\mathcal{C}=\mathcal{I}$.
Acknowledgments. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.04-2014.22. Parts of this paper were written during a stay of the authors at the Vietnam Institute for Advanced Study in Mathematics (VIASM). The authors would like to thank the members of VIASM for their hospitality, as well as to gratefully acknowledge the support received. We would like to thank the referee for carefully reading the paper. The suggestions of the referee have improved the presentation.

References

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer, New York, 1992.
[2] G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Extensions of Rings and Modules, Birkhäuser, 2013.
[3] S. E. Dickson and K. R. Fuller, Algebras for which every indecomposable right module is invariant in its injective envelope, Pacific J. Math. 31 (1969), 655-658.
[4] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Pitman Res. Notes in Math. 313, Longman, Harlow, 1994.
[5] E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, 2nd revised and extended ed., Vol. 1, de Gruyter Exp. Math. 30, de Gruyter, Berlin, 2011.
[6] N. Er, S. Singh and A. Srivastava, Rings and modules which are stable under automorphisms of their injective hulls, J. Algebra 379 (2013), 223-229.
[7] V. K. Goel and S. K. Jain, π-injective modules and rings whose cyclics are π-injective, Comm. Algebra 6 (1978), 59-72.
[8] P. A. Guil Asensio and H. Ivo, Indecomposable flat cotorsion modules, J. London Math. Soc. 76 (2007), 797-811.
[9] P. A. Guil Asensio, D. Keskin Tütüncü and A. Srivastava, Modules invariant under automorphisms of their covers and envelopes, Israel J. Math. 206 (2015), 457-482.
[10] R. E. Johnson and E. T. Wong, Quasi-injective modules and irreducible rings, J. London Math. Soc. 36 (1961), 260-268.
[11] T. K. Lee and Y. Zhou, Modules which are invariant under automorphisms of their injective hulls, J. Algebra Appl. 12 (2013), 1250159, 9 pp.
[12] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Ser. 147, Cambridge Univ. Press, Cambridge, 1990.
[13] T. Onodera, On a theorem of W. Zimmermann, Hokkaido Math. J. 10 (1981), 564-567.
[14] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, PA, 1991.
[15] Y. Zhou, Decomposing modules into direct sums of submodules with types, J. Pure Appl. Algebra 138 (1999), 83-97.

Le Van Thuyet
Department of Mathematics
Hue University
3 Le Loi
Hue, Vietnam
E-mail: lvthuyet@hueuni.edu.vn
Truong Cong Quynh
Department of Mathematics
Danang University
459 Ton Duc Thang
DaNang, Vietnam
E-mail: tcquynh@live.com, tcquynh@dce.udn.vn

[^0]: 2010 Mathematics Subject Classification: Primary 16D50; Secondary 16D80, 16W20.
 Key words and phrases: idempotent-invariant module, extending-invariant module, quasicontinuous.
 Received 4 January 2015; revised 11 August 2015.
 Published online 14 January 2016.

