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Abstract

In this paper, we prove the existence of weak solutions to equations of
complex Monge-Ampère type in the class D(Ω) on an open subset Ω of Cn.

1 Introduction

Let Ω be an open subset in Cn and µ a positive Borel measure on Ω. Assume
that F : R × Ω −→ [0,+∞) is a dt × dµ-measurable function. The equation of
the form

(ddcu)n = F (u, .)dµ, (1.1)

where u is a plurisubharmonic function on Ω is called to be the equation of
complex Monge-Ampère type. The proof of the existence of weak solutions of
this equation has been investigated by many authors; see for example [3], [5],
[12], [14], [15], [16], [17], [26], [28], [29], [30] and references therein for futher
results about complex Monge-Ampère equations. In the case, Ω is a bounded
hyperconvex domain in Cn and µ vanishes on all pluripolar sets and µ(Ω) <∞,
F is bounded by an integrable function for µ which is independent of the first
variable then for all f ∈MPSH(Ω)∩ E(Ω), in [15] Cegrell and Ko lodziej proved
that (1.1) has a solution u ∈ Fa(Ω, f) where MPSH(Ω) denotes the set of
maximal plurisubharmonic functions and Fa(Ω, f) is the set of plurisubharmonic
functions introduced and investigated by Cegrell in [11] and [12]. Next, in [17]
Czyż investigated the equation (1.1) in the class N (Ω, f). He proved that if µ
vanishes on pluripolar sets of Ω, F is a continuous function of the first variable
and above bounded by a function g ∈ L1((−ϕ)µ) which is independent of the first
variable then the equation (1.1) is solvable in the class N (Ω, f) (see [17] for more
details). Recently, under the same assumption that µ vanishes on all pluripolar
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sets of Ω and there exists a subsolution v0 ∈ N a(Ω), i.e there exists a function
v0 ∈ N a(Ω) such that

(ddcv0)n ≥ F (v0, .)dµ, (1.2)

Benelkourchi in [5] proved that (1.1) has a solution u ∈ N a(Ω, f).

In this note we study weak solutions of the equation (1.1) on an arbitrary open
subset of Cn in the class D(Ω) introduced and investigated by B locki in [8]. The
main result is the following.

Theorem 1.1. Let Ω be an open subset in Cn and µ be a nonnegative Borel
measure in Ω which vanishes on pluripolar sets of Ω. Assume that F : R×Ω −→
[0,+∞) is a dt× dµ-measurable function such that:

(1) For all z ∈ Ω, the function t 7−→ F (t, z) is continuous and nondecreasing.

(2) For all t ∈ R, the function z 7−→ F (t, z) belongs to L1(dµ).

(3) ∃ u ∈ D(Ω) ∩ PSH−(Ω) such that

F (u, .)dµ ≤ (ddcu)n.

Then there exists ψ ∈ D(Ω), u ≤ ψ ≤ 0 such that

(ddcψ)n = F (ψ, .)dµ.

The organization of the paper is as follows. In Section 2 we recall some notions of
pluripotential theory which is necessary for the next results of the paper. Section
3 is devoted to the proof of Theorem 1.1.

2 Preliminairies

In this section, we recall some elements of pluripotential theory that will be used
throughout the paper. All this can be found in [1]-[30]. Let n be a positive in-
teger and let Ω be an open set in Cn. We denote by PSH(Ω) the family of
plurisubharmonic functions defined on Ω and PSH−(Ω) denotes the set of nega-
tive plurisubharmonic functions on Ω. We first recall the definition of the complex
Monge-Ampère measure on an open set in Cn (see [8]).

Definition 2.1. A plurisubharmonic function u defined on Ω belongs to D(Ω)
if there exists a nonnegative Radon measure µ on Ω such that if Ω′ ⊂ Ω is an
open subset and {uj} ⊂ PSH(Ω′) ∩ C∞(Ω′) is a sequence which decreases to u
in Ω′ then (ddcuj)

n tends weakly to µ in Ω′. The measure µ we then denote by
(ddcu)n.

Note that PSH(Ω) ∩ L∞loc(Ω) ⊂ D(Ω). Moreover, if n = 1 then SH(Ω) = D(Ω).

Definition 2.2. A bounded domain Ω ⊂ Cn is said to be hyperconvex if there
exists ϕ ∈ PSH−(Ω) such that {ϕ < −ε} b Ω for every ε > 0.

For a bounded hyperconvex domain, Cegrell [11] introduced the following
classes of plurisubharmonic functions.
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Definition 2.3. Let Ω be a bounded hyperconvex domain in Cn. We say that a
bounded, negative plurisubharmonic function ϕ on Ω belongs to E0(Ω) if {ϕ <
−ε} b Ω for all ε > 0 and

∫
Ω(ddcϕ)n < +∞.

Let F(Ω) be the family of plurisubharmonic functions ϕ defined on Ω, such
that there exists a decreasing sequence {ϕj} ⊂ E0(Ω) that converges pointwise to
ϕ on Ω as j →∞ and

sup
j

∫
Ω

(ddcϕj)
n <∞.

We denote by E(Ω) the family of plurisubharmonic functions ϕ defined on Ω such
that for every open set G b Ω there exists a plurisubharmonic function ψ ∈ F(Ω)
satisfying ψ = ϕ in G.

Definition 2.4. Let K ∈ {F , E ,D}. We denote by Ka(Ω) the subclass of K(Ω)
such that the Monge-Ampère measure (ddc.)n vanishes on all pluripolar sets of
Ω.

Proposition 2.5. If Ω is a bounded hyperconvex domain in Cn then E(Ω) =
PSH−(Ω) ∩ D(Ω).

Proof. See Theorem 2.4 in [8].

Remark 2.6. If Ω is an open subset of Cn and u ∈ D(Ω) then u|B−supB u ∈ E(B)
for all open ball B b Ω.

Now we recall the definition of the important class of plurisubharmonic functions.
This is the class of maximal plurisubharmonic functions. Let Ω be an open subset
of Cn.

Definition 2.7. A plurisubharmonic function u on Ω is said to be maximal
plurisubharmonic (briefly, u ∈ MPSH(Ω)) if for every v ∈ PSH(Ω), v ≤ u
outside a compact subset of Ω implies v ≤ u on Ω.

It is well known ( see, e.g.,[25]), locally bounded plurisubharmonic functions are
maximal if and only if they satisfy the homogeneous Monge-Ampère equation
(ddcu)n = 0. In [9], B locki extended the above result for the class E(Ω) in the
case Ω is a bounded hyperconvex domain in Cn.
Next, we recall the class N (Ω) introduced and investigated in [12]. Let Ω be a
hyperconvex domain in Cn and {Ωj}j≥1 a fundamental sequence of Ω. This is an
increasing sequence of strictly pseudoconvex subsets Ωj of Ω such that Ωj b Ωj+1

and
∞⋃
j=1

Ωj = Ω. Let u ∈ PSH−(Ω). For each j ≥ 1, put

uj = sup{ϕ : ϕ ∈ PSH−(Ω), ϕ ≤ u on Ω \ Ωj}.

As in [11], the function ũ =
(

lim
j→∞

uj
)∗
∈ PSH(Ω) and ũ ∈MPSH(Ω). Set

N = N (Ω) = {u ∈ E : ũ = 0}

or equivalently,
N = N (Ω) = {u ∈ PSH−(Ω) : uj ↑ 0}.

By using the comparison principle in [12], we can prove that F(Ω) ⊂ N (Ω).
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3 Weak solutions to equations of complex Monge-
Ampère type.

In this section we prove Theorem 1.1. We need the following lemma.

Lemma 3.1. Let Ω be an open set in Cn and µ be a non-negative Radon measure
on Ω which vanishes on pluripolar sets of Ω. Assume that F : R×Ω −→ [0,+∞)
is a dt× dµ-measurable function such that:

(i) For all z ∈ Ω, the function t 7−→ F (t, z) is continuous and nondecreasing.
(ii) For all t ∈ R, the function z 7−→ F (t, z) belongs to L1(dµ).
(iii) ∃ u ∈ D(Ω) ∩ PSH−(Ω) such that

F (u, .)dµ ≤ 1{u>−∞}(dd
cu)n.

Then, for every open ball B b Ω, there exists ψ ∈ D(Ω) satisfying
(i) u ≤ ψ ≤ 0 on Ω;
(ii) (ddcψ)n ≥ 1{u>−∞}F (ψ, .)dµ in Ω;
(iii) (ddcψ)n = 1{u>−∞}F (ψ, .)dµ in B.

Proof. Fix a ball B b Ω. From the hypothesis we have

1{u>−∞}F (u, .)dµ ≤ 1{u>−∞}(dd
cu)n ≤ (ddcu)n (3.1)

on Ω. Set

w = sup{ϕ ∈ D(Ω) ∩ PSH−(Ω) : (ddcϕ)n ≥ 1{u>−∞}F (ϕ, .)dµ on Ω}.

By the hypothesis we infer that u ≤ w ≤ 0. Hence, by [8] it follows that w ∈ D(Ω).
By using Choquet’s Lemma in [6] and Proposition 2.3 in [?] we can choose an
increasing sequence {ϕj}j≥1 ⊂ D(Ω)∩PSH−(Ω) such that ϕj ↗ w a.e on Ω and

(ddcϕj)
n ≥ 1{u>−∞}F (ϕj , .)dµ. (3.2)

The main result in [13] implies that (ddcϕj)
n is weakly convergent to (ddcw)n as

j →∞. On the other hand, by the hypothesis we have F (ϕj , .)dµ is also weakly
convergent to F (w, .)dµ as j →∞. Thus, from (3.2) we get that

(ddcw)n ≥ 1{u>−∞}F (w, .)dµ. (3.3)

Now, since the measure 1{u>−∞}F (w, .)dµ vanishes on all pluripolar sets of Ω,
by [11] we can find h ∈ Fa(B) such that

(ddch)n = 1{u>−∞}F (w, .)dµ in B.

Put g = max(h,w). Then g ∈ Fa(B). We have

(ddch)n = 1{u>−∞}F (w, .)dµ. (3.4)

(ddcw)n ≥ 1{u>−∞}F (w, .)dµ. (3.5)

Coupling (3.4) and (3.5) and using Proposition 2.3 in [?] we infer that

(ddcg)n ≥ 1{u>−∞}F (g, .)dµ. (3.6)



Weak solutions to equations of complex Monge-Ampère type on open subsets 5

By [5] there exists g1 ∈ N a(B), g1 ≥ g on B with

(ddcg1)n = 1{u>−∞}F (g1, .)dµ. (3.7)

on B. However, by the hypothesis (ii) we have∫
B

(ddcg1)n =

∫
B

1{u>−∞}F (g1, .)dµ ≤
∫
B

F (0, .)dµ < +∞.

Proposition 2.2 in [18] implies that g1 ∈ Fa(B). Let ψ be the smallest plurisub-
harmonic majorant of the function

η =

{
g1 in B,
w in Ω\B.

Since w ≤ g ≤ g1 on B, then we have w ≤ ψ on Ω. By [8] it follows that
ψ ∈ D(Ω) ∩ PSH−(Ω) and u ≤ ψ on Ω. We prove that

(ddcψ)n ≥ 1{w>−∞}F (ψ, .)dµ, (3.8)

on Ω and
(ddcψ)n = 1{u>−∞}F (ψ, .)dµ, (3.9)

on B.
Indeed, by the definition of ψ we note that ψ = w in the interior of Ω \ B and
g1 = ψ in B. Hence, it follows that

(ddcψ)n = (ddcg1)n = 1{u>−∞}F (g1, .)dµ = 1{u>−∞}F (ψ, .)dµ

on B and we have (3.9). It remains to prove (3.8) holds. By the definition of ψ it
is clear that ψ = w on the interior of Ω \ B. Thus, (ddcψ)n ≥ 1{w>−∞}F (ψ, .)dµ
on the interior of Ω \B. We will to prove (ddcψ)n ≥ 1{w>−∞}F (ψ, .)dµ on Ω \B.
It suffices to prove (ddcψ)n ≥ 1{w>−∞}F (ψ, .)dµ on ∂B. By the definition of ψ it
follows that w = ψ on ∂B \ E, where E is a pluripolar subset of ∂B containing
{w = −∞}. Let K ⊂ ∂B\E be a compact set. Since K ⊂ {ψ + 1

j > w}, by
Theorem 4.1 in [24] we have

1{w>−∞}F (ψ, .)dµ(K) = 1{w>−∞}F (w, .)dµ(K)

≤
∫
K

(ddcw)n = lim
j→+∞

∫
K

(ddc max(ψ +
1

j
, w))n

≤
∫
K

(ddc max(ψ,w))n =

∫
K

(ddcψ)n.

Hence, it follows that

(ddcψ)n ≥ 1{w>−∞}F (ψ, .)dµ on ∂B\E.

Because µ vanishes on pluripolar sets then

(ddcψ)n ≥ 1{w>−∞}F (ψ, .)dµ on ∂B.

Combining this with (3.8) and (3.9) we obtain

(ddcψ)n ≥ 1{w>−∞}F (ψ, .)dµ ≥ 1{u>−∞}F (ψ, .)dµ,

on Ω because u ≤ w on Ω. The proof of lemma is finished.
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Proof of Theorem 1.1. Similarly as in the proof of Lemma 3.1, we now set

w := sup{ϕ ∈ D(Ω) ∩ PSH−(Ω) : (ddcϕ)n ≥ 1{u>−∞}F (ϕ, .)dµ on Ω}.

Then u ≤ w ≤ 0 on Ω. Hence, as above, w ∈ D(Ω). Moreover, we have

(ddcw)n ≥ 1{u>−∞}F (w, .)dµ

on Ω. On the other hand, from u ≤ w on Ω then {u > −∞} ⊂ {w > −∞}.
Therefore,

1{w>−∞}(dd
cw)n ≥ 1{w>−∞}1{u>−∞}F (w, .)dµ

= 1{u>−∞}F (w, .)dµ = F (w, .)dµ,

because µ vanishes on pluripolar sets of Ω. Let B b Ω be an arbitrary ball of Ω.
By Lemma 3.1 there exists ψ ∈ D(Ω) ∩ PSH−(Ω) such that

(a) w ≤ ψ ≤ 0 on Ω.

(b) (ddcψ)n ≥ 1{w>−∞}F (ψ, .)dµ on Ω.

(c) (ddcψ)n = 1{w>−∞}F (ψ, .)dµ on B.

By (a) we get that u ≤ ψ ≤ 0 on Ω. (b) implies that

(ddcψ)n ≥ 1{w>−∞}F (ψ, .)dµ ≥ 1{u>−∞}F (ψ, .)dµ

on Ω. By the definition of w it follows that ψ = w on Ω. Hence, (ddcw)n = (ddcψ)n

on Ω. By (c) we get that

(ddcψ)n = 1{w>−∞}F (ψ, .)dµ = F (ψ, .)dµ,

on B. Because B is arbitrary then we obtain that (ddcψ)n = F (ψ, .)dµ on Ω and
the proof of Theorem 1.1 is complete.
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