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Abstract

In this paper, we prove the existence of weak solutions to equations of
complex Monge-Ampere type in the class D(£2) on an open subset  of C".

1 Introduction

Let © be an open subset in C™ and p a positive Borel measure on 2. Assume
that F' : R x Q@ — [0,4+00) is a dt x du-measurable function. The equation of
the form

(dd“u)" = F(u,.)dpu, (1.1)

where u is a plurisubharmonic function on €2 is called to be the equation of
complex Monge-Ampeére type. The proof of the existence of weak solutions of
this equation has been investigated by many authors; see for example [3], [5],
[12], [14], [15], [16], [17], [26], [28], [29], [30] and references therein for futher
results about complex Monge-Ampere equations. In the case, € is a bounded
hyperconvex domain in C™ and p vanishes on all pluripolar sets and () < oo,
F' is bounded by an integrable function for p which is independent of the first
variable then for all f € MPSH(2)NE(N), in [15] Cegrell and Kotodziej proved
that (1.1) has a solution v € F%(Q, f) where MPSH(Q2) denotes the set of
maximal plurisubharmonic functions and F*(£2, f) is the set of plurisubharmonic
functions introduced and investigated by Cegrell in [11] and [12]. Next, in [17]
Czyz investigated the equation (1.1) in the class N'(Q, f). He proved that if u
vanishes on pluripolar sets of €2, F' is a continuous function of the first variable
and above bounded by a function g € L*((—¢)u) which is independent of the first
variable then the equation (1.1) is solvable in the class N (€, f) (see [17] for more
details). Recently, under the same assumption that p vanishes on all pluripolar
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sets of © and there exists a subsolution vy € N%(Q), i.e there exists a function
vo € N%(Q) such that

(ddvp)"™ > F(vo,.)du, (1.2)

Benelkourchi in [5] proved that (1.1) has a solution u € N*(Q, f).

In this note we study weak solutions of the equation (1.1) on an arbitrary open
subset of C" in the class D(2) introduced and investigated by Blocki in [8]. The
main result is the following.

Theorem 1.1. Let Q be an open subset in C" and p be a nonnegative Borel
measure in 2 which vanishes on pluripolar sets of Q). Assume that F': R x  —
[0, +00) is a dt X du-measurable function such that:

(1) For all z € Q, the function t — F(t,z) is continuous and nondecreasing.

(2) For all t € R, the function z — F(t,z) belongs to L'(dp).

(8) 3 weDQ)NPSH™(Q) such that

F(u,.)dp < (ddu)™.
Then there exists 1 € D(Q),u < < 0 such that
(dd*p)" = F(,.)dp.

The organization of the paper is as follows. In Section 2 we recall some notions of
pluripotential theory which is necessary for the next results of the paper. Section
3 is devoted to the proof of Theorem 1.1.

2 Preliminairies

In this section, we recall some elements of pluripotential theory that will be used
throughout the paper. All this can be found in [1]-[30]. Let n be a positive in-
teger and let © be an open set in C". We denote by PSH(2) the family of
plurisubharmonic functions defined on Q and PSH~ () denotes the set of nega-
tive plurisubharmonic functions on 2. We first recall the definition of the complex
Monge-Ampere measure on an open set in C™ (see [8]).

Definition 2.1. A plurisubharmonic function u defined on  belongs to D(12)
if there exists a nonnegative Radon measure p on € such that if ' C Q is an
open subset and {u;} C PSH(Y) NC>®(Y) is a sequence which decreases to u
in ' then (dd“u;)" tends weakly to p in €. The measure p we then denote by
(ddu)™.

Note that PSH(Q) N L

loc

(Q) € D(Q2). Moreover, if n =1 then SH(Q2) = D(Q2).

Definition 2.2. A bounded domain Q@ C C™ is said to be hyperconvex if there
exists o € PSH™ () such that {p < —e} € Q for every e > 0.

For a bounded hyperconvex domain, Cegrell [11] introduced the following
classes of plurisubharmonic functions.



Weak solutions to equations of complex Monge-Ampére type on open subsets 3

Definition 2.3. Let €2 be a bounded hyperconvex domain in C™. We say that a
bounded, negative plurisubharmonic function ¢ on Q belongs to £(12) if {p <
—e} @ Q for all e > 0 and [,(dd°p)" < +oc.

Let F(£2) be the family of plurisubharmonic functions ¢ defined on €2, such
that there exists a decreasing sequence {¢;} C & (£2) that converges pointwise to
pon Qasj— oo and

sup/(ddchj)” < 00.
J JQ
We denote by £(2) the family of plurisubharmonic functions ¢ defined on € such
that for every open set G € (2 there exists a plurisubharmonic function ¢ € F(£2)
satisfying ¥ = ¢ in G.

Definition 2.4. Let K € {F,&,D}. We denote by K%(2) the subclass of ()
such that the Monge-Ampére measure (dd®.)” vanishes on all pluripolar sets of
Q.

Proposition 2.5. If Q is a bounded hyperconver domain in C™ then E(Q) =
PSH=(Q) ND(9).

Proof. See Theorem 2.4 in [8]. O

Remark 2.6. If Q is an open subset of C" and u € D(Q2) then u|g—supgu € £(B)
for all open ball B € (.

Now we recall the definition of the important class of plurisubharmonic functions.

This is the class of maximal plurisubharmonic functions. Let €2 be an open subset
of C™.

Definition 2.7. A plurisubharmonic function w on € is said to be maximal
plurisubharmonic (briefly, w € MPSH(R)) if for every v € PSH(Q), v < u
outside a compact subset of ) implies v < u on Q.

It is well known ( see, e.g.,[25]), locally bounded plurisubharmonic functions are
maximal if and only if they satisfy the homogeneous Monge-Ampere equation
(ddu)™ = 0. In [9], Blocki extended the above result for the class £(2) in the
case () is a bounded hyperconvex domain in C".

Next, we recall the class N (Q) introduced and investigated in [12]. Let Q be a
hyperconvex domain in C" and {€2;};>1 a fundamental sequence of 2. This is an
increasing sequence of strictly pseudoconvex subsets 2; of €2 such that €1; € 9,41

o0
and J ©Q; = Q. Let v € PSH™(2). For each j > 1, put

7j=1

w =sup{p:p € PSH (Q), ¢ <u on Q\Q}

As in [11], the function uw = (lim uj>*€ PSH(S?) and w € MPSH(R). Set

N=NQ)={uef :u=0}

or equivalently,

N =N(Q)={uecPSH (Q):u 10}
By using the comparison principle in [12], we can prove that F(Q) C N ().
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3 Weak solutions to equations of complex Monge-
Ampere type.
In this section we prove Theorem 1.1. We need the following lemma.

Lemma 3.1. Let Q be an open set in C™ and p be a non-negative Radon measure
on Q which vanishes on pluripolar sets of Q). Assume that F : R x Q — [0, +00)
is a dt x dy-measurable function such that:

(i) For all z € 0, the function t — F(t, z) is continuous and nondecreasing.

(ii) For all t € R, the function z — F(t,z) belongs to L'(dpy).

(iii) 3 uw e D(Q)NPSH () such that

F(u,.)dp < 1{u>—oo} (ddu)".

Then, for every open ball B € €2, there exists 1 € D(§2) satisfying
(i) u< <0 onQ;
(ii) (ddG)" > (oo o) F (6, )dp i ;
(i) (ddP)" = 1ys o} F(¥, )dp in B.

Proof. Fix a ball B € 2. From the hypothesis we have
oo F (0 )it < 1oy (ddEu)" < (ddu)” (3.1)
on (). Set
w = sup{p € D(Q) NPSH™(Q) : (dd°p)" > 15—} Fp,.)dp on Q}.

By the hypothesis we infer that u < w < 0. Hence, by [8] it follows that w € D(Q).
By using Choquet’s Lemma in [6] and Proposition 2.3 in [?] we can choose an
increasing sequence {y;};>1 C D(Q)NPSH () such that ¢;  w a.e on Q and

(ddCQDj)n > 1{u>—oo}F((pjv ')dﬂ- (3'2)

The main result in [13] implies that (dd®p;)" is weakly convergent to (dd‘w)" as
J — 00. On the other hand, by the hypothesis we have F'(¢;,.)du is also weakly
convergent to F'(w,.)du as j — oco. Thus, from (3.2) we get that

(dd“w)"™ > 1> o) F(w, .)dp. (3.3)

Now, since the measure 1g,s o} F (w, .)dp vanishes on all pluripolar sets of Q,
by [11] we can find h € F*(B) such that

(dd°h)" = 1qy> ooy F'(w, .)dp in B.
Put g = max(h,w). Then g € F*(B). We have
(dd°h)" = 1ys o} F(w, )dp. (3.4)
(dd“w)"™ > 1gys o) F(w, .)dp. (3.5)
Coupling (3.4) and (3.5) and using Proposition 2.3 in [?] we infer that

(dd°9)" 2 1{us—oc} F(g, - )dp. (3.6)
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By [5] there exists g1 € N*(B), g1 > g on B with

(dd°g1)" = 1gu> oo} (g1, - )dpt. (3.7)

on B. However, by the hypothesis (ii) we have

[y = [ 1 Flordn < [P0, )dn < o0,
B B B

Proposition 2.2 in [18] implies that g1 € F*(B). Let ¢ be the smallest plurisub-
harmonic majorant of the function

_Jon inB,
= w  in Q\B.
Since w < g < g1 on B, then we have w < v on . By [8] it follows that
Y e D(Q)NPSH™(Q) and u < ¢ on Q. We prove that

(dd°)" > 1o o) F (0, ), (3.8)
on {2 and

(dd“)" = 1iys oo} (1), . )dp, (3.9)
on B.

Indeed, by the definition of 1) we note that ¢» = w in the interior of Q2 \ B and
g1 = ¢ in B. Hence, it follows that

(ddc¢)n = (ddcgl)n = 1{u>—oo}F(glv ')dﬂ - 1{u>—oo}F<wa ')du

on B and we have (3.9). It remains to prove (3.8) holds. By the definition of 1) it
is clear that 1) = w on the interior of Q\ B. Thus, (dd“®)" > 15 o} F(3,.)dp
on the interior of 2\ B. We will to prove (dd“y))" > 11,5} F(¥,.)dp on Q \ B.
It suffices to prove (dd“y)"™ > 1{y~ o} F'(1),.)dp on OB. By the definition of ¢ it
follows that w = 1 on 9B \ E, where E is a pluripolar subset of OB containing
{w = —o0}. Let K C OB\E be a compact set. Since K C {¢ +% > w}, by
Theorem 4.1 in [24] we have

1{w>—oo}F(w7 )d:u(K) = 1{w>—oo}F(w7 )d:u(K)
< /K (dd°w)" = Tim | (dd® max(v + j w))"

j=rtoo J i
< [ (@ max(v,w))" = [ (@avy
K K
Hence, it follows that
(dd“P)" = Tgys—oo)} F(1, . )dp on OB\ E.
Because p vanishes on pluripolar sets then
(dd“P)" > 1> 0} F'(¢, . )dp on IB.

Combining this with (3.8) and (3.9) we obtain

(ddY)" = 1> oo} F'(¥, )dp 2 1iys ooy F (4, - )dp,

on {2 because u < w on 2. The proof of lemma is finished. O
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Proof of Theorem 1.1. Similarly as in the proof of Lemma 3.1, we now set
w:=sup{p € D(Q) N PSH™(Q) : (dd°p)" > 1{y> oo} F (¢, .)dp on Q}.
Then u < w < 0 on €. Hence, as above, w € D(2). Moreover, we have
(dd°w)"™ > 1pys oo} F(w, . )dp

on €. On the other hand, from v < w on  then {u > —oo} C {w > —oo}.
Therefore,

1{w>—oo}(ddcw)n > 1{w>—oo}1{u>—oo}F(wv Jdp
= lius—oat F(w, . )dp = F(w, .)dpu,

because p vanishes on pluripolar sets of 2. Let B € () be an arbitrary ball of €.
By Lemma 3.1 there exists ¢ € D(Q2) N PSH~(£2) such that

(a) w <1 <0on Q.

(b) (dd“0)"™ > 15—y F (46, )ps on €.

(C> (ddc¢)n = 1{w>—oo}F(w7 )d/,L on B.
By (a) we get that v < <0 on 2. (b) implies that

(ddcw)n > 1{w>—oo}F(w7 )dM > 1{u>—oo}F(wa )d:u

on 2. By the definition of w it follows that ¢» = w on Q. Hence, (dd“w)™ = (ddy)"
on Q. By (c¢) we get that

(dd“P)" = 1> ooy (4, )dp = F(, ) dp,

on B. Because B is arbitrary then we obtain that (dd“i))"™ = F(v,.)dp on £ and
the proof of Theorem 1.1 is complete. O
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