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Abstract

In this paper, a new class of differential inclusions involving proximal normal cone mappings and pos-

itive semi-definite linear mappings will be introduced and studied for the existence of solutions. The

considered differential inclusions arise from the reformulation of finite-dimensional differential varia-

tional inequalities and it also can be seen as a new variant of sweeping processes. Our contributions

are establishing the existence of absolutely continuous solutions to the systems.
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1. Introduction

Differential inclusions in the form of convex sweeping processes were introduced by Moreau [1]

in the seventies. These are constrained differential inclusions involving normal cone mappings which

appears naturally in several applications such as electrical circuits, hysteresis, crowd motion, etc.

Among major subjects for convex sweeping processes, the well-posedness, in the sense of the exis-

tence and uniqueness of solutions, has been studied in numerous papers. Ever since conceived by

Moreau [1], the well-posedness of variants of sweeping processes has been extensively studied and

developed in various contexts including sweeping processes with perturbations and with prox-regular

state dependent sets, second-order sweeping processes [2, 3, 4], sweeping processes associated with

maximal monotone operators and with perturbations [5, 6], higher order Moreau’s sweeping process in

the finite-dimensional spaces [7], etc. In recent developments, differential inclusions involving normal

cones has been known as an effective tool to study differential variational inequalities in [8, 9, 10] as

well as evolution variational inequalities in [11, 12]. Regarding to evolution variational inequalities,

a new variant of Moreau’s convex sweeping process with velocity constraint has been studied in the

papers [13, 14].

In this paper, we consider a new class of differential inclusions involving proximal normal cone

mappings with positive semi-definite linear mappings and study for the existence and uniqueness
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of solutions. Such kind of differential inclusions arises from the reformulation of finite-dimensional

differential variational inequalities studied in [8, 11, 12] and it also can be seen as a new variant of

non-convex sweeping processes with perturbations. In such differential inclusions, since a proximal

normal cone mapping to prox-regular non-convex closed sets is not maximal monotone, the existence

and uniqueness of solutions can not be derived from the theory of differential inclusions governed

by the maximal monotone operators studied in [15] or recently developed in [16]. Also, the existing

results on existence and uniqueness of solutions of the classes of sweeping processes [5, 13, 14, 17, 18]

do not apply to the class of differential inclusions in the generality as treated in this paper.

In the present paper, our contributions are deriving results on the existence of solutions. To

do so, the approach we take in this paper includes rewritting the differential inclusions as sweeping

processes with state-velocity constraints and employing the matrix analysis technique of the involved

positive semi-definite linear mappings. For the positive definite case, the result sweeping process is

reformulated as a coupled system of ordinary differential equations and a sweeping process whose

evolution interconnects each other. We employ the catching-up like method to establish the existence

of solutions to the coupled system. Note that the general results on the existence and uniqueness of

solutions of implicit sweeping processes with velocity constraints is studied in [13] in Hilbert spaces.

However, it works only for convex closed sets and it can not be applied to the case of this paper. For

the case positive seni-definite of linear mappings, we employ the singular value decomposition and

state coordinate tranformation to decompose the system into two subsystems: The first one is of the

considered differential inclusion forms and the second one is a standard non-convex sweeping process.

The existence of solutions is then followed.

The rest of this paper is organized as follows. In Section 2, we will recall notations and prelim-

inaries used later in the paper. The class of differential inclusions involving proximal normal cones

mappings that the paper studies will be introduced in Section 3 with the motivations of the study.

The main results of this paper will be presented in Section 4. Finally, the paper closes with the

conclusions in Section 5.

2. Notations and preliminaries

Throughout the paper, we will denote the set of all real numbers by R, non-negative real numbers

by R+, n-tuple real numbers by Rn, n×m real-valued matrices by Rn×m, n-tuple real numbers with

non-negative components by Rn+. For A ∈ Rn×n, its transpose and inverse will be denoted by AT and

A−1, respectively. A matrix J ∈ Rn×n is called positive definite if xTJx > 0 for all x ∈ Rn, x 6= 0. If

xTJx > 0 for all x ∈ Rn, J is called positive semi-definite. It is well-known that for every symmetric

positive definite matrix J ∈ Rn×n, there exists a unique symmetric positive definite matrix J
1
2 such

that J = J
1
2 J

1
2 . Such J

1
2 is called the square root of the matrix J .

For a subset X of Rn, we denote by d(x,X) := inf {‖x− a‖ | a ∈ X} the distance from x to X.

Also, we denote by projX(x) the set of all z ∈ X such that ‖z−x‖ = d(x,X). The Hausdorff distance
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between two sets X and Y of Rn is defined as

dH(X,Y ) := max

{
sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)

}
. (1)

For T > 0, we denote by C([0, T ],Rn), AC([0, T ],Rn) the linear space of continuous functions and

absolutely continuous functions from [0, T ] to Rn, respectively, and endow them with the norms

‖x‖C([0,T ],Rn) = max
t∈[0,T ]

‖x(t)‖, ‖z‖AC([0,T ],Rn) = ‖z(0)‖+

∫ T

0

‖ż(s)‖ds (2)

for x ∈ C([0, T ],Rn), z ∈ AC([0, T ],Rn). Also, we denote by Lp([0, T ],Rn), p > 1, the linear space of

Lebesgue p-integrable functions from [0, T ] to Rn and endow it with the norm

‖x‖Lp([0,T ],Rn) :=

(∫ T

0

‖x(s)‖pds

) 1
p

, x ∈ Lp([0, T ],Rn). (3)

Let L∞([0, T ],Rn) be the space of essentially bounded measurable functions form [0, T ] to Rn with

the norm

‖x‖L∞([0,T ],Rn) = inf{λ > 0 | ‖x(t)‖ 6 λ for almost all t ∈ [0, T ]}.

Definition 2.1. Let {xν | ν ∈ N} be a sequence of Lebesgue integrable functions in L1([0, T ],Rn)

and let x ∈ L1([0, T ],Rn). The sequence {xν | ν ∈ N} is said to be

(a) strongly convergent to x if lim
ν→∞

‖xν − x‖L1([0,T ],Rn) = 0;

(b) weakly convergent to x if

lim
ν→∞

∫ T

0

〈xν(s), w(s)〉ds =

∫ T

0

〈x(s), w(s)〉ds,∀w ∈ L∞([0, T ],Rn).

Every strongly convergent sequence is weakly convergent with the same limit, but the inverse does

not hold. However, it has been known as Mazur’s lemma that the following statement holds; see for

instance [19].

Lemma 2.2 ([19]). Let X be a Banach space and let {xn} be convergent weakly to x in X . Then,

{zn} converges strongly to x for some sequence {zn} of the form

zn =

τ(n)∑
k=n

ankxk where ank > 0 and

τ(n)∑
k=1

ank = 1. (4)

For a set-valued mapping F : Rn ⇒ Rm, we denote by dom(F ), im(F ) or rge(F ) and gr(F ) its

domain, image and graph, i.e. dom(F ) := {x ∈ Rn | F (x) 6= ∅}, gr(F ) := {(x, y) ∈ Rn × Rm | y ∈

F (x)}, rge(F ) = im(F ) := {y ∈ Rm | there exists x ∈ Rn such that y ∈ F (x)}. For F : Rn ⇒ Rm, we

say that F has closed (convex) values if F (x) is a closed (convex) subset of Rm for every x ∈ dom(F ).

The mapping F is called closed if gr(F ) is closed in Rn × Rm. The inverse mapping of F is the set-

valued mapping F−1 : Rm ⇒ Rn defined by its graph gr(F−1) = {(y, x) ∈ Rm×Rn | (x, y) ∈ gr(F )}.

Definition 2.3. Let C ⊂ Rn be a non-empty closed set and x ∈ C. A vector v ∈ Rn is called proximal

normal vector to C at x if either of them is 0 or there exists r > 0 such that x ∈ projC(x+ rv/‖v‖).
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It is not difficult to see that v is a proximal normal vector to C at x if and only if there exists

M > 0 such that 〈v, y − x〉 6M‖y − x‖2,∀y ∈ C. The set of all proximal normal vectors to C at x is

a convex cone, which is denoted by NP
C (x),

NP
C (x) = {v ∈ Rn | ∃M > 0 such that 〈v, y − x〉 6M‖y − x‖2,∀y ∈ C}. (5)

For x 6∈ C, we define NP
C (x) = ∅. If C is a closed convex set then the proximal normal cone mapping

NP
C (·) coincides the normal cone mapping NC(·) in the convex analysis literature

NC(x) =

{ζ ∈ Rn | 〈ζ, z − x〉 6 0,∀z ∈ C} if x ∈ C,

∅ if x 6∈ C.

Definition 2.4. Let C be a non-empty closed subset of Rn and ρ > 0. The set C is said to be

ρ-prox-regular if each z in the ρ-enlargement of C, i.e. z ∈ Eρ(C) := {z ∈ Rn | d(z, C) < ρ}, has a

unique nearest point projC(z) and the projected mapping projC(•) is continuous on Eρ(C).

Example 2.5. In R2, the set

C =


x
y

 0 6 y 6 1

−1 +
√

1− y2 6 x 6 1−
√

1− y2

 is
1

2
− prox-regular.

Lemma 2.6 ([5]). Let C be an ρ-prox-regular closed subset of Rn. Then, the following statements

hold.

(a) For all x ∈ C and ζ ∈ NP
C (x) such that ‖ζ‖ < ρ, one has x = projC(x+ ζ).

(b) For all x ∈ C and ζ ∈ NP
C (x), one has

〈ζ, y − x〉 6 ‖ζ‖
2ρ
‖y − x‖2,∀y ∈ C.

(c) For all x, x̃ ∈ C, ζ ∈ NP
C (x), ζ̃ ∈ NP

C (x̃) and ‖ζ‖ 6 ρ, ‖ζ̃‖ 6 ρ, one has

〈ζ − ζ̃, x− x̃〉 > −1

ρ
‖x− x̃‖2.

(d) The square distance function d2(•, C) is continuously differentiable on Eρ(C) and

∇
(

1

2
d2(•, C)

)
(x) = x− projC(x),∀x ∈ Eρ(C).

Moreover, for any positive number δ < ρ and x, x̃ ∈ Eδ(C), the following inequality holds

‖projC(x)− projC(x̃)‖ 6 ρ

ρ− δ
‖x− x̃‖.

Finally, we recall some versions of Gronwall’s inequality that will be used later in this paper.
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Lemma 2.7 ([20], Lemma 4.1). Let T > 0 be given and a, b ∈ L1([0, T ],R) with b(t) > 0 for almost

all t ∈ [0, T ]. Let w : [0, T ]→ R+ be an absolutely continuous function satisfying

(1− α)ẇ(t) 6 a(t)w(t) + b(t)wα(t) for almost all t ∈ [0, T ], (6)

where 0 6 α < 1. Then, one has

w1−α(t) 6 w1−α(0) exp

(∫ t

0

a(s)ds

)
+

∫ t

0

exp

(∫ t

s

a(τ)dτ

)
b(s)ds (7)

for almost all t ∈ [0, T ].

Lemma 2.8 ([20], Lemma 4.2’). Let T > 0 be given and let a ∈ L1([0, T ],R) and v ∈ L∞([0, T ],R).

Assume that the bounded measurable function u satisfies almost everywhere the inequality

u(t) 6
∫ t

0

a(s)u(s)ds+ v(t), t ∈ [0, T ]. (8)

Then, we have

u(t) 6 v(t) +

∫ t

0

exp

(∫ t

s

a(τ)dτ

)
v(s)ds,∀t ∈ [0, T ]. (9)

Lemma 2.9. Let {xν}∞ν=1 be a sequence of absolutely continuous functions from [0, T ] to Rn. Suppose

that lim
ν→∞

xν(0) = 0, lim
ν→∞

∫ T
0
αν(t)dt = 0 and

d

dt
(‖xν(t))‖2) 6 βν(t)‖xν(t)‖2 + αν(t)‖xν(t)‖+ γ‖xν(t)‖

∫ T

0

‖xν(s)‖ds,∀ν ∈ N, (10)

for almost all t ∈ [0, T ], where αν , βν ∈ L1([0, T ],R+) and γ ∈ R+. Suppose that the sequence {βν}∞ν=1

is bounded in L1([0, T ],R) and ∫ T

0

exp

(∫ T

s

βν(τ)dτ

)
ds <

1

γT
. (11)

Then, one has

lim
ν→∞

‖xν‖C([0,T ],Rn) = 0. (12)

Proof. It follows from (10) that

d

dt
(‖xν(t))‖2) 6 βν(t)‖xν(t)‖2 + (αν(t) + γT‖xν‖C([0,T ],Rn))‖xν(t)‖, (13)

for all ν ∈ N and for almost all t ∈ [0, T ]. By Lemma 2.7, one has

‖xν(t)‖ 6 ‖xν(0)‖ exp

(∫ t

0

βν(τ)dτ

)
+

∫ t

0

exp

(∫ t

s

βν(τ)dτ

)
(αν(s) + γT‖xν‖C([0,T ],Rn))ds

6 ‖xν(0)‖ exp

(∫ t

0

βν(τ)dτ

)
+

∫ t

0

exp

(∫ t

s

βν(τ)dτ

)
αν(s)ds

+ γT‖xν‖C([0,T ],Rn))

∫ t

0

exp

(∫ t

s

βν(τ)dτ

)
ds,∀t ∈ [0, T ].

It follows that

p‖xν‖C([0,T ],Rn)) 6 ‖xν(0)‖ exp

(∫ T

0

βν(τ)dτ

)
+

∫ T

0

exp

(∫ T

s

βν(τ)dτ

)
αν(s)ds
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where p := 1− γT
∫ T
0

exp
(∫ T

s
βν(τ)dτ

)
ds > 0. Thus, one has

‖xν‖C([0,T ],Rn)) 6
1

p
‖xν(0)‖ exp

(∫ T

0

βν(τ)dτ

)
+

1

p

∫ T

0

exp

(∫ T

s

βν(τ)dτ

)
αν(s)ds

ν→∞−→ 0

due to boundedness of the sequence {βν}∞ν=1, lim
ν→∞

xν(0) = 0, and lim
ν→∞

∫ T
0
αν(t)dt = 0. The equality

(12) is proved.

3. Differential inclusions involving proximal normal cone mappings

In this paper, we are interested in studying a class of finite-dimensional differential inclusions

involving proximal normal cone mappings of the form
ẋ(t) ∈ f(x(t))−

(
J +

(
NP
C(t)

)−1)−1
(x(t))

x(0) = x0

(14)

where x ∈ Rn, J ∈ Rn×n and NP
C is the proximal normal cone mapping to the ρ-prox-regular closed

set C ⊆ Rn and f : Rn → Rn is a given function.

Definition 3.1. An absolutely continuous function x : [0, T ] → Rn is said to be a solution of the

differential inclusion (14) for the initial state x0 if x(0) = x0 and x(·) satifies (14) for almost all

t ∈ [0, T ].

For each J , we denote by DJ the domain of the set-valued mapping
(
J + (NP

C )−1
)−1

. It is not

hard to verify the following lemma that presents the characterizations of Df .

Lemma 3.2. For any ρ-prox-regular closed set C, one has

DJ = {x ∈ Rn | ∃y ∈ Rn, y ∈ NP
C (x− Jy)} (15)

= {x ∈ Rn | ∃z ∈ C, x ∈ z + J(NP
C (z))}. (16)

Proof. For the claim (15), it is obvious that x ∈ DJ iff there exists y ∈ Rn such that y ∈
(
J + (NP

C )−1
)−1

(x)

or equivalently x ∈ Jy+ (NP
C )−1(y). The latter is equivalent to y ∈ NP

C (x− Jy). Thus, the equality

(15) is proved.

In order to prove the second claim (16), let x ∈ DJ . Due to (15), there exists y ∈ Rn such that

y ∈ NP
C (x− Jy). Defining z := x− Jy ∈ C, we have y ∈ NP

C (z) and hence

x = x− Jy + Jy = z + Jy ∈ z + J(NP
C (z)).

Conversely, let x ∈ Rn such that x ∈ z + J(NP
C (z)) for some z ∈ C. Then, x = z + Jy for some

y ∈ NP
C (z). Moreover, y ∈ NP

C (z) is equivalent to z ∈ (NP
C )−1(y). Therefore, x ∈ Jy + (NP

C )−1(y)

and hence y ∈ NP
C (x− Jy). By (15), the latter yields x ∈ DJ .
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The study of differential inclusions of the form (14) is motivated from the recent study of differ-

ential variational inequalities in the papers [8, 21, 22, 23] setting as follows. Let C : [0,∞) ⇒ Rn be

a set-valued mapping with non-empty closed convex values and let f : Rn → Rn be a given function.

We consider the finite-dimensional differential variational inequalities (DVI) of the form

ẋ(t) = f(x(t)) +Gz(t) (17a)

C(t) 3 w(t) = Hx(t) + Jz(t) (17b)

0 6 〈ζ − w(t), z(t)〉,∀ζ ∈ C(t) (17c)

where x(t) ∈ Rn is the state, z(t), w(t) ∈ Rn, the matrices H ∈ Rn×n, J ∈ Rn×n, G ∈ Rn×n are given

matrices, and the notation 〈·, ·〉 stands for the inner product of Rn.

In order to study the DVI (17), one often reformulations it in term of the differential inclusions.

Indeed, the conditions (17b) and (17c) can be rewritten in the form of the generalized equations

− z(t) ∈ NC(t)(Hx(t) + Jz(t)) (18)

where NC(·) is the set-valued normal cone mapping in the convex analysis literature. In views of

(18), the DVI (17) can be rewritten asẋ(t) = f(x(t)) +Gz(t)

−z(t) ∈ NC(t)(Hx(t) + Jz(t)).

(19)

Moreover, one can see that

−z(t) ∈ NC(t)(Hx(t) + Jz(t))⇐⇒ −z(t) ∈
(
J +N−1C(t)

)−1
(Hx(t)).

Therefore, the system (19) can be further written in the form of differential inclusions as

ẋ(t) ∈ f(x(t))−G
(
J +N−1C(t)

)−1
(Hx(t)). (20)

Now, a question arises is how to deal with the system in the case that C(t) is not convex. In that

case, the normal cone mapping NC(t) would be replaced by the proximal normal cone mapping NP
C(t)

defined as (5). For such case, the differential inclusion (20) must read as

ẋ(t) ∈ f(x(t))−G
(
J + (NP

C(t))
−1
)−1

(Hx(t)). (21)

Note that the differential inclusion (14) is a particular class of the system (21) as taking H = In = G.

It is also interesting that the differential inclusions of the forms (21) and (14) have not been studied

elsewhere in the literature, except the case J = 0 and H = In = G, i.e. the system

ẋ(t) ∈ f(x(t))−NP
C(t)(x(t)). (22)

The differential inclusions of the form (22) are well-known as sweeping processes with perturbations

which have been extensively studied in the series of papers [1, 6, 5] and the references therein on

Hilbert spaces and even more general moving sets C(t) of uniformly prox-regular properties.
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4. Main results

In this section, we consider the existence and uniqueness of absolutely continuous solutions of the

differential inclusions involving proximal normal cone mappings of the form (14). In our point of

view, uniqueness of solutions of the differential inclusion (14) is hard to guarantee even in very simple

form. The following is an example.

Example 4.1. In R2, we consider the 1/4-prox-regular set

C = B (col(1/2, 0), 1/2) ∪ B (col(2, 0), 1/2)

and consider the differential inclusion−ẋ(t) ∈
(
I2 + (NP

C )−1
)−1

(x(t)), t ∈ [0, 2]

x(0) = col(1, 0) ∈ C.
(23)

It can be verified that x1(t) = col(1, 0),∀t ∈ [0, 1] and

x2(t) = e−tcol(1, 0) + (1− e−t) col(3/2, 0), t ∈ [0, 2]

are two absolutely continuous solutions of the differential inclusion (23).

In the sequel, we only study the existence of absolutely continuous solutions of the differential

inclusion (14). We will make the following assumption on the set-valued function C(·):

Assumption 1. For each t ∈ [0, T ], suppose that C(t) is a ρ-prox-regular closed subset of Rn and

there exists an absolutely continuous function v such that

|d(x, C(t))− d(x, C(s))| 6 |v(t)− v(s)| (24)

for all t, s ∈ [0, T ] and for all x ∈ Rn.

The first main result is the following theorem that establishes the existence of absolutely contin-

uous soluttions in the case that the matrix J is positive definite and with zero perturbation.

Theorem 4.2. Suppose that the set-valued mapping C(·) satisfies Assumption 1 and J ∈ Rn×n is a

positive definite matrix. Then, the absolutely continuous solutions of the differential inclusion
−ẋ(t) ∈

(
J +

(
NP
C(t)

)−1)−1
(x(t)), t ∈ [0, T ],

x(0) = x0

(25)

locally exist for any initial state x0 ∈ DJ(0) := dom

(
J +

(
NP
C(0)

)−1)−1
.

Proof. First, observe that the differential inclusion (25) can be rewritten in the following form−ẋ(t) ∈ NP
C(t)(x(t) + Jẋ(t)), t ∈ [0, T ],

x(0) = x0.

(26)
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Associated to (26), we consider the dynamical system involving an ordinary differential equation and

a sweeping process with perturbation of the form
ẏ(t) = −J−1y(t) + J−1ż(t), y(0) = y0

ż(t) ∈ y(t)

2
−NP

C(t)(z(t)), z(0) = z0,
(27)

where x0+Jy0 = z0. Regarding to this system, we claim that if (y, z) ∈ AC([0, T ],Rn)×AC([0, T ],Rn)

satisfies the system (27) on [0, T ], then x(t) := z(t) − Jy(t), t ∈ [0, T ], is an absolutely continuous

solution of the differential inclusion (26) or equivalently (25). Indeed, one has that ẋ(t) = ż(t)−Jẏ(t)

and

x(t) + Jẋ(t) = z(t)− Jy(t) + Jż(t)− J2ẏ(t) = z(t)

for almost all t ∈ [0, T ]. Moreover, we have

ż(t) ∈ y(t)

2
−NP

C(t)(z(t))⇐⇒ −2ż(t) + y(t) ∈ 2NP
C(t)(z(t)) = NP

C(t)(z(t))

⇐⇒ − [2ż(t)− y(t)] ∈ NP
C(t)(z(t))

⇐⇒ − [2ż(t)− (ż(t)− Jẏ(t))] ∈ NP
C(t)(z(t))

⇐⇒ −ẋ(t) ∈ NP
C(t)(z(t)) = NP

C(t)(x(t) + Jẋ(t)).

Thus, the claim is proved. Due to the claim, in order to prove Theorem 4.2, it suffices to show that

for each z0 ∈ C(0) and y0 ∈ Rn, the system (27) has at least one solution (y, z) ∈ AC([0, T ],Rn) ×

AC([0, T ],Rn). The proof of the latter would be done in three steps as follows.

Step 1. Construct a sequence of approximation solutions. For each κ ∈ N∗, we partition the interval

[0, T ] into κ sub-intervals by the points tκi =
iT

κ
, 0 6 i 6 κ. On the interval [tκ0 , t

κ
1 ], observe that the

sweeping process with constant perturbation
ż(t) ∈ y0

2
−NP

C(t)(z(t)), t ∈ [tκ0 , t
κ
1 ],

z(0) = z0,

(28)

has a unique absolutely continuous solution due to [5, Lem. 3.1] and [16, Prop. 1], which is denoted

by z0(t), and moreover, the following estimation holds∥∥∥ż0(t)− y0
2

∥∥∥ 6 1

2
‖y0‖+ |v̇(t)| (29)

for almost all t ∈ [tκ0 , t
κ
1 ]. By employing z0(t), we consider the ordinary differential equationẏ(t) = −J−1y(t) + J−1ż0(t), t ∈ [0, tκ1 ],

y(0) = y0.

(30)

This linear differential equation admits a unique absolutely continuous solution, denoted by y0(t).

By the similar arguments for the interval [tκ1 , t
κ
2 ], the sweeping process with constant perturbation

ż(t) ∈ y0(tκ1 )

2
−NP

C(t)(z(t)), t ∈ [tκ1 , t
κ
2 ]

z(tκ1 ) = z0(tκ1 )

(31)

9



has a unique absolutely continuous solution, which is denoted by z1(t). Moreover, the following

estimation holds ∥∥∥∥ż1(t)− y0(tκ1 )

2

∥∥∥∥ 6 1

2
‖y0(tκ1 )‖+ |v̇(t)| (32)

for almost all t ∈ [tκ1 , t
κ
2 ]. Then, by employing z1(t), we consider the ordinary differential equationẏ(t) = −J−1y(t) + J−1ż1(t), t ∈ [tκ1 , t

κ
2 ],

y(tκ1 ) = y0(tκ1 ).

(33)

This differential equation has one and only one absolutely continuous solution, denoted by y1(t).

Continuing on [tκ2 , t
κ
3 ] and so on, one finally comes up with a finite sequence of functions zi(t) and

yi(t), i ∈ {0, 1, . . . , κ− 1}, such that
żi(t) ∈ yi−1(tκi )

2
−NP

C(t)(zi(t)) for almost all t ∈ [tκi , t
κ
i+1]

zi(t
κ
i ) = zi−1(tκi )

and ẏi(t) = −J−1yi(t) + J−1żi(t) for almost all t ∈ [tκi , t
κ
i+1]

yi(t
κ
i ) = yi−1(tκi )

where y−1(tκ0 ) = y0 and z−1(tκ0 ) = z0. Moreover, one has∥∥∥∥żi(t)− yi(t
κ
i )

2

∥∥∥∥ 6 1

2
‖yi(tκi )‖+ |v̇(t)| for almost all t ∈ [tκi , t

κ
i+1].

Now, define θκ(tκ0 ) = 0 and θκ(t) = tκi if t ∈ (tκi , t
κ
i+1],∀i ∈ {0, 1, . . . , κ− 1}, and define the functions

zκ : [0, T ]→ Rn, yκ : [0, T ]→ Rn as the concatenations of the functions zi and yi, respectively, i.e.

zκ(t) := zi(t) and yκ(t) := yi(t) if t ∈ [tκi , t
κ
i+1], i ∈ {0, 1, . . . , κ− 1}.

By the construction, one then has
żκ(t) ∈ yκ(θκ(t))

2
−NP

C(t)(z
κ(t)) for almost all t ∈ [0, T ]

zκ(0) = z0

(34)

and ẏ
κ(t) = −J−1yκ(t) + J−1żκ(t) for almost all t ∈ [0, T ]

yκ(0) = y0.

(35)

Moreover, one has the estimation∥∥∥∥żκ(t)− yκ(θκ(t))

2

∥∥∥∥ 6 1

2
‖yκ(θκ(t))‖+ |v̇(t)| for almost all t ∈ [0, T ]. (36)

It follows from (35) and (36) that

‖ẏκ(t)‖ 6 δ‖yκ(t)‖+ δ‖yκ(θκ(t))‖+ δ|v̇(t)|

10



for almost all t ∈ [0, T ], where δ := ‖J−1‖. Thus, one has

‖yκ(t)‖ 6 ‖yκ(tκi )‖+ δ

∫ t

tκi

‖yκ(s)‖ds+ δ

∫ t

tκi

‖yκ(tκi )‖ds+ δ

∫ t

tκi

|v̇(s)|ds

6 (1 + δ(t− tκi ))‖yκ(tκi )‖+ δ

∫ t

tκi

‖yκ(s)‖ds+ δ

∫ t

tκi

|v̇(s)|ds

6 {1 + δ(tκi+1 − tκi )}‖yκ(tκi )‖+ δ

∫ t

tκi

‖yκ(s)‖ds+ δ

∫ tκi+1

tκi

|v̇(s)|ds

for all t ∈ [tκi , t
κ
i+1]. By Gronwall’s inequality, the latter inequality yields

‖yκ(t)‖ 6

((
1 + δ(tκi+1 − tκi )

)
‖yκ(tκi )‖+ δ

∫ tκi+1

tκi

|v̇(s)|ds

)
eδ(t−t

κ
i ) (37)

for all t ∈ [tκi , t
κ
i+1] and in particular

‖yκ(tκi+1)‖ 6
(
1 + δ(tκi+1 − tκi )

)
‖yκ(tκi )‖eδ(t

κ
i+1−t

κ
i ) + δ

(∫ tκi+1

tκi

|v̇(s)|ds

)
eδ(t

κ
i+1−t

κ
i )

6 ‖yκ(tκi )‖eδ(t
κ
i+1−t

κ
i ) + δ(tκi+1 − tκi )‖yκ(tκi )‖eδ(t

κ
i+1−t

κ
i ) + δ

(∫ tκi+1

tκi

|v̇(s)|ds

)
eδ(t

κ
i+1−t

κ
i ).

Since the above argument is valid for any i ∈ {0, 1, . . . , κ− 1}, one gets

‖yκ(tκi+1)‖ 6 ‖yκ(tκi )‖eδ(t
κ
i+1−t

κ
i ) + δ(tκi+1 − tκi )‖yκ(tκi )‖eδ(t

κ
i+1−t

κ
i ) + δ

(∫ tκi+1

tκi

|v̇(s)|ds

)
eδ(t

κ
i+1−t

κ
i )

6 ‖yκ(tκi−1)‖eδ(t
κ
i+1−t

κ
i−1) + δ(tκi − tκi−1)‖yκ(tκi−1)‖eδ(t

κ
i+1−t

κ
i−1) + δ(tκi+1 − tκi )‖yκ(tκi )‖eδ(t

κ
i+1−t

κ
i )

+ δ

(∫ tκi

tκi−1

|v̇(s)|ds

)
eδ(t

κ
i+1−t

κ
i−1) + δ

(∫ tκi+1

tκi

|v̇(s)|ds

)
eδ(t

κ
i+1−t

κ
i ) 6

...

6 ‖y0‖eδ(t
κ
i+1−t

κ
0 ) + δ

1∑
`=i+1

(tκ` − tκ`−1)‖yκ(tκ`−1)‖eδ(t
κ
i+1−t

κ
`−1) + δ

1∑
`=i+1

∫ tκ`

tκ`−1

|v̇(s)|dseδ(t
κ
i+1−t

κ
`−1)

6 eδT ‖y0‖+ δTeδT max{‖yκ(tκi )‖}+ δeδT
∫ T

0

|v̇(s)|ds,

for all i ∈ {0, 1, . . . , κ− 1} by backward induction. Therefore, one has that

max{‖yκ(tκi )‖} 6 eδT ‖y0‖+ δTeδT max{‖yκ(tκi )‖}+ δeδT
∫ T

0

|v̇(s)|ds

or equivalently

(1− δTeδT ) max{‖yκ(tκi )‖} 6 eδT ‖y0‖+ δeδT
∫ T

0

|v̇(s)|ds.

In view of this, if 1 − δTeδT > 0, the quantity max
06i6κ

‖yκ(tκi )‖ is upper bounded by a constant that

does not depend on the partition of the interval [0, T ],

max
06i6κ

‖yκ(tκi )‖ 6
eδT ‖y0‖+ δeδT

∫ T
0
|v̇(s)|ds

1− δTeδT
=: γ. (38)
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Due to (37), (38) and Bernoulli’s inequality, one gets

‖yκ(t)‖ 6

((
1 + δ(tκi+1 − tκi )

)
‖yκ(tκi )‖+ δ

∫ tκi+1

tκi

|v̇(s)|ds

)
eδ(t−t

κ
i )

6

(
(1 + δT )γ + δ

∫ T

0

|v̇(s)|ds

)
eδT =: Γ1,∀t ∈ [0, T ].

(39)

It follows from (36) and (38) that

‖żκ(t)‖ 6 ‖yκ(θκ(t))‖+ |v̇(t)| 6 max
06i6κ

‖yκ(tκi )‖+ |v̇(t)| 6 γ + |v̇(t)| (40)

and ∥∥∥∥żκ(t)− yκ(θκ(t))

2

∥∥∥∥ 6 1

2
‖yκ(θκ(t))‖+ |v̇(t)| 6 γ

2
+ |v̇(t)| =: ∆(t) (41)

for all t ∈ [0, T ].

Step 2. Prove that the sequences {zκ(·) | κ ∈ N} and {yκ(·) | κ ∈ N} are Cauchy in C([0, T ],Rn).

For any κ, ` ∈ N, it first follows from (35) that

‖yκ(t)− y`(t)‖ 6 δ
∫ t

0

‖yκ(s)− y`(s)‖ds+ δ‖zκ(t)− z`(t)‖

for all t ∈ [0, T ] with recalling that δ := ‖J−1‖. By Lemma 2.8, this implies

‖yκ(t)− y`(t)‖ 6 δ‖zκ(t)− z`(t)‖+ δ

∫ t

0

eδ(t−s)‖zκ(s)− z`(s)‖ds,∀t ∈ [0, T ]. (42)

Also, by the construction and (41), one has on the one hand that

ρ

∆(t)

(
−żκ(t) +

1

2
yκ(θκ(t))

)
∈ NP

C(t)(z
κ(t)),

ρ

∆(t)

(
−ż`(t) +

1

2
y`(θ`(t))

)
∈ NP

C(t)(z
`(t))

and on the other hand∥∥∥∥ ρ

∆(t)

(
−żκ(t) +

1

2
yκ(θκ(t))

)∥∥∥∥ 6 ρ, ∥∥∥∥ ρ

∆(t)

(
−ż`(t) +

1

2
y`(θ`(t))

)∥∥∥∥ 6 ρ.
Thus, by Lemma 2.6, we have〈

żκ(t)− 1

2
yκ(θκ(t))− ż`(t) +

1

2
y`(θ`(t)), z

κ(t)− z`(t)
〉
6

∆(t)

ρ2
‖zκ(t)− z`(t)‖2

for almost all t ∈ [0, T ]. It follows that〈
żκ(t)− ż`(t), zκ(t)− z`(t)

〉
6

∆(t)

ρ2
‖zκ(t)− z`(t)‖2 +

1

2

〈
yκ(θκ(t))− y`(θ`(t)), zκ(t)− z`(t)

〉
6

∆(t)

ρ2
‖zκ(t)− z`(t)‖2 +

1

2
‖yκ(t)− y`(t)‖‖zκ(t)− z`(t)‖

+
1

2

(
‖yκ(t)− yκ(θκ(t))‖+ ‖y`(t)− y`(θ`(t))

)
‖zκ(t)− z`(t)‖.

Due to (42), one further gets

〈żκ(t)−ż`(t), zκ(t)−z`(t)〉 6
(

∆(t)

ρ2
+
δ

2

)
‖zκ(t)−z`(t)‖2+

δ

2
‖zκ(t)−z`(t)‖

∫ t

0

eδ(t−s)‖zκ(s)−z`(s)‖ds

+
1

2

(
‖yκ(t)− yκ(θκ(t))‖+ ‖y`(t)− y`(θ`(t))

)
‖zκ(t)− z`(t)‖

12



and hence

d

dt
‖zκ(t)− z`(t)‖2 6 2

(
∆(t)

ρ2
+
δ

2

)
‖zκ(t)− z`(t)‖2 + δeδT ‖zκ(t)− z`(t)‖

∫ t

0

‖zκ(s)− z`(s)‖ds

+
(
‖yκ(t)− yκ(θκ(t))‖+ ‖y`(t)− y`(θ`(t))

)
‖zκ(t)− z`(t)‖.

Note that ∆(·) ∈ L1([0, T ],R+) and one has

‖yκ(t)− yκ(θκ(t))‖ 6
∫ t

θκ(t)

‖ẏκ(s)‖ds 6 δ
∫ t

θκ(t)

(‖yκ(s)‖+ ‖żκ(s)‖)ds

6 δ
∫ t

θκ(t)

(Γ1 + γ + |v̇(s)|)ds κ→∞−→ 0,

‖y`(t)− y`(θ`(t))‖ 6
∫ t

θ`(t)

‖ẏ`(s)‖ds 6 δ
∫ t

θ`(t)

(‖y`(s)‖+ ‖ż`(s)‖)ds

6 δ
∫ t

θ`(t)

(Γ1 + γ + |v̇(s)|)ds `→∞−→ 0.

By denoting Gκ,`(t) = ‖yκ(t) − yκ(θκ(t))‖ + ‖y`(t) − y`(θ`(t))‖, one has on the one hand that

lim
κ,`→∞

Gκ,`(t) = 0 for all t ∈ [0, T ], and onther other hand

Gκ,`(t) = ‖yκ(t)− yκ(θκ(t))‖+ ‖y`(t)− y`(θ`(t))‖ 6 4Γ1,∀t ∈ [0, T ].

Therefore, by Lebesgue’s dominated convergence theorem, one has

lim
κ,`→∞

∫ T

0

(
‖yκ(t)− yκ(θκ(t))‖+ ‖y`(t)− y`(θ`(t))

)
dt = lim

κ,`→∞

∫ T

0

Gκ,`(t)dt = 0.

Moreover, zκ(0) = z`(0) = z0 for all κ, ` ∈ N. In view of these achivements and if

∫ T

0

exp

∫ T

s

2

 γ

2
+ |v̇(τ)|

ρ2
+
δ

2

 dτ

 ds <
1

δeδTT
, (43)

Lemma 2.9 yields

lim
κ,`→∞

‖zκ − z`‖C([0,T ],Rn) = 0 and hence lim
κ,`→∞

‖yκ − y`‖C([0,T ],Rn) = 0.

Therefore, the sequence {zκ | κ ∈ N} and {yκ | κ ∈ N} are Cauchy in C([0, T ],Rn) and hence they

converge to the functions z, y ∈ C([0, T ],Rn), respectively.

Step 3. Prove that the pair z(·), y(·) is an absolutely continuous solution of the system (27). Due to

(40), one can assume that the sequence {żκ} converges weakly to a function w ∈ L1([0, T ],Rn) and

one then has

lim
κ→∞

zκi (t)− zi,0 = lim
κ→∞

∫ t

0

żκi (s)ds = lim
κ→∞

∫ t

0

〈żκ(s), ei〉ds =

∫ t

0

〈w(s), ei〉ds =

∫ t

0

wi(s)ds (44)

for any t ∈ [0, T ] where ei stands for the i-th unit vector of Rn. Moreover, since zκ(t) is pointwisely

convergent to z(t) in Rn, it implies from (44) that

z(t) = z0 +

∫ t

0

w(s)ds, for any t ∈ [0, T ].

13



This means that z is absolutely continuous, z(0) = z0 and ż(t) = w(t) for almost all t ∈ [0, T ]. Next,

note that the ordinary differential equation

ẏκ(t) = −J−1yκ(t) + J−1żκ(t), yκ(0) = y0, z
κ(0) = z0 (45)

can be rewritten in the equivalent integral equation form

yκ(t) = y0 − J−1
∫ t

0

yκ(s)ds+ J−1[zκ(t)− z0], zκ(0) = z0. (46)

Since lim
κ→∞

zκ(t) = z(t), lim
κ→∞

yκ(t) = y(t) and ‖yκ(t)‖ 6 Γ1,∀t ∈ [0, T ], letting κ → ∞ in (46) we

obtain

y(t) = y0 − J−1
∫ t

0

y(s)ds+ J−1(z(t)− z0).

By taking derivative both sides, the latter yields

ẏ(t) = −J−1y(t) + J−1ż(t), y(0) = y0, z(0) = z0 (47)

for almost all t ∈ [0, T ]. The remain is proving that

ż(t) ∈ y(t)

2
−NP

C(t)(z(t)) for almost all t ∈ [0, T ]. (48)

Since θκ(t) → t and yκ(t) → y(t) as κ → ∞ for any t ∈ [0, T ], one has yκ(θκ(t)) → y(t) as κ → ∞.

Also, note that żκ converges weakly to ż in L1([0, T ],Rn), Mazur’s lemma yields the existence of a

sequence {ζ`} that converges strongly to the function ż − 1
2y in L1([0, T ],Rn), where

ζ`(t) =

τ(`)∑
k=`

δ`k

(
żk(t)− 1

2
yk(θk(t))

)
, for almost all t ∈ [0, T ],

for some δ`k > 0,
∑τ(`)
k=` δ

`
k = 1. By extracting a subsequence if it is necessary, without loss of generality,

we can assume that ζ`(t) −→ ż(t)− 1
2y(t) as `→∞ for almost all t ∈ [0, T ]. By the construction, we

have

żκ(t) ∈ yκ(θκ(t))

2
−NP

C(t)(z
κ(t)) for almost all t ∈ [0, T ] and for all κ ∈ N∗. (49)

By Lemma 2.6, this implies that

〈
−żκ(t) +

yκ(θκ(t))

2
, ξ − zκ(t)

〉
6

∥∥∥∥żκ(t)− yκ(θκ(t))

2

∥∥∥∥
2ρ

‖ξ − zκ(t)‖2

6
∆(t)

2ρ
‖ξ − zκ(t)‖2,∀ξ ∈ C(t)

(50)

for almost all t ∈ [0, T ] and for all κ ∈ N∗. Thus, one has

τ(`)∑
k=`

δ`k

〈
−żk(t) +

1

2
yk(θk(t)), ξ − zk(t)

〉
6

∆(t)

2ρ

τ(`)∑
k=`

δ`k‖ξ − zκ(t)‖2,∀ξ ∈ C(t) (51)
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for almost all t ∈ [0, T ]. On the other hand, we have

τ(`)∑
k=`

δ`k

〈
−żk(t) +

1

2
yk(θk(t)), ξ − zk(t)

〉

=

τ(`)∑
k=`

δ`k

〈
−żk(t) +

1

2
yk(θk(t)), ξ − z(t)

〉
+

τ(`)∑
k=`

δ`k

〈
−żk(t) +

1

2
yk(θk(t)), z(t)− zk(t)

〉

=
〈
−ζ`(t), ξ − z(t)

〉
+

τ(`)∑
k=`

δ`k

〈
−żk(t) +

1

2
yk(θk(t)), z(t)− zk(t)

〉
. (52)

Moreover,∣∣∣∣∣∣
τ(`)∑
k=`

δ`k

〈
−żk(t) +

1

2
yk(θk(t)), z(t)− zk(t)

〉∣∣∣∣∣∣
6

τ(`)∑
k=`

δ`k‖żk(t)− 1

2
yk(θk(t))‖‖z(t)− zk(t)‖ 6 ∆(t)

τ(`)∑
k=`

δ`k‖z(t)− zk(t)‖ `→∞−→ 0. (53)

For each t ∈ [0, T ], due to (51), (52) and (53), by letting `→∞, we obtain〈
−ż(t) +

1

2
y(t), ξ − z(t)

〉
6

∆(t)

2ρ
‖ξ − z(t)‖2,∀ξ ∈ C(t).

Due to (5), this turns out that

− ż(t) +
1

2
y(t) ∈ NP

C(t)(z(t)) or ż(t) ∈ 1

2
y(t)−NP

C(t)(z(t)) for almost all t ∈ [0, T ]. (54)

The proof is done.

In the remain of this paper, we aim at providing a generalization of Theorem 4.2 to the case that

J is a symmetric positive semi-definite matrix. Of course, we only need to deal without the positive

definite property of J . In this case, rank(J) = r for some r < n. Moreover, there exists an orthogonal

matrix U ∈ Rn×n such that J has the singular valued decomposition as

J = UΛUT = U

Λ 0

0 0

UT (55)

where UT = U−1 and Λ ∈ Rr×r is a diagonal matrix with positive entries on the principal diagonal.

To proceed, we need to introduce some nomenclatures and auxiliary results. Let r ∈ {1, 2, . . . , n}

and let C be a closed subset of Rn. We define

Cr1 :=
{
ζ1 ∈ Rr | ∃ζ2 ∈ Rn−r, col(ζ1, ζ2) ∈ C

}
, Cr2 :=

{
ζ2 ∈ Rn−r | ∃ζ1 ∈ Rr, col(ζ1, ζ2) ∈ C

}
.

Note that these sets can not be closed if C is not compact. In the remain, we suppose that these sets

are closed under the suitable choices of the set C.

Lemma 4.3. Let 1 6 r 6 n and let Λ ∈ Rr×r be a symmetric positive definite matrix. Let C be a

closed subset of Rn such that Cr1 and Cr2 are closed. Then, if

(x1 − Λy1, y1) ∈ gr
(
NP
Cr1

)
and (x2, y2) ∈ gr

(
NP
Cr2

)
(56)
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then x1 − Λy1

x2

 ,

y1
y2

 ∈ gr
(
NP
C
)
. (57)

As a result, one has y1
y2

 ∈
Λ 0

0 0

+
(
NP
C
)−1−1x1

x2

 . (58)

Proof. Due to (56) and the property (5) of proximal normal cones, there exist M1 > 0 and M2 > 0

such that

〈y1, cr1 − (x1 − Λy1)〉 6M1‖cr1 − (x1 − Λy1)‖2 and 〈y2, cr2 − x2〉 6M2‖cr2 − x2‖2

for all cr1 ∈ Cr1 and all cr2 ∈ Cr2 . In view of these inequalities, one then has〈y1
y2

 ,

c1
c2

−
x1 − Λy1

x2

〉 = 〈y1, c1 − (x1 − Λy1)〉+ 〈y2, c2 − x2〉

6M1‖c1 − (x1 − Λy1)‖2 +M2‖c2 − x2‖2 6 max{M1,M2}

∥∥∥∥∥∥
c1
c2

−
x1 − Λy1

x2

∥∥∥∥∥∥
2

for all c = col(c1, c2) ∈ C where c1 ∈ Rr and c2 ∈ Rn−r. Due to (5), the latter inequality yields thaty1
y2

 ∈ NP
C

x1 − Λy1

x2


and the claim (57) is proved. Finally, one can easily verify (58) once (57) is valid.

Lemma 4.4. Suppose that C(·) satisfies Assumption 1 such that Cr1(t) and Cr2(t) are closed for all

t ∈ [0, T ]. Let Λ be a symmetric positive definite matrix of Rr×r, r < n. Then, the absolutely

continuous solutions of the differential inclusion
−ẋ(t) ∈


Λ 0

0 0

+
(
NP
C(t)

)−1
−1

(x(t)), t ∈ [0, T ],

x(0) = x0

(59)

locally exist for each x0 ∈ D, where

D = dom

Λ 0

0 0

+
(
NP
C(0)

)−1−1 .
Proof. For x0 ∈ D, we partition it as x0 = col(x01, x

0
2) with x01 ∈ Rr and x02 ∈ Rn−r. One can verify

that x02 ∈ Cr2(0) and x01 ∈ dom(Λ + (NP
Cr1 (0)

)−1)−1. Due to Lemma 4.3, we observe that if x1(t) is an

absolutely continuous solution of the differential inclusion
−ẋ1(t) ∈

(
Λ +

(
NP
Cr1 (t)

)−1)−1
(x1(t)), t ∈ [0, T ]

x1(0) = x01

(60)
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and x2(t) is an absolutely continuous solution of the sweeping process−ẋ2(t) ∈ NP
Cr2 (t)

(x2(t)), t ∈ [0, T ]

x2(0) = x02

(61)

then

x(t) :=

x1(t)

x2(t)

 , t ∈ [0, T ]

is an absolutely continuous solution of the differential inclusion (59). Therefore, to prove the solutions

existence of (59), it suffices to show the existence of solutions of the differential inclusions (60) and

(61). However, the existence of solutions of the system (60) is followed from Theorem 4.2, while

the existence of solutions of (61) is a well-known result in sweeping process literature, refered to the

papers [5, 16].

Theorem 4.5. Let C(·) satisfy Assumption 1 and be such that Cr1(t) and Cr2(t) are closed for all

t ∈ [0, T ]. Let J ∈ Rn×n be a symmetric positive semi-definite matrix. Then, the absolutely continuous

solutions of the differential inclusion
−ẋ(t) ∈

(
J +

(
NP
C(t)

)−1)−1
(x(t)), t ∈ [0, T ],

x(0) = x0

(62)

locally exist for every x0 ∈ DJ(0) := dom

(
J +

(
NP
C(0)

)−1)−1
.

Proof. Let x0 ∈ DJ(0) := dom
(
J + (NP

C(0))
−1
)−1

. Suppose that J has the singular value decompo-

sition in the form of (55). Then, the system (62) can be written in the form
−UT ẋ(t) ∈


Λ 0

0 0

+ UT
(
NP
C(t)

)−1
U


−1

(UTx(t)), t ∈ [0, T ],

x(0) = x0.

(63)

On the other hand, we claim that

UT (NP
C(t))

−1U = (NP
UT C(t))

−1. (64)

Indeed, on the one hand, one has

v ∈ UT (NP
C(t))

−1U(x)⇐⇒ Uv ∈ (NP
C(t))

−1Ux⇐⇒ Ux ∈ NP
C(t)(Uv).

On the other hand, the fact Ux ∈ NP
C(t)(Uv) is equivalent to the existence of a nonnegative number

M such that

〈x, UT c− v〉 = 〈Ux, c− Uv〉 6M‖c− Uv‖2 = M〈c− Uv, c− Uv〉

= M〈UT c− v, UT c− v〉 = M‖UT c− v‖2
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for all c ∈ UTC(t). Therefore, we have

〈x, UT c− v〉 6M‖UT c− v‖2 for all c ∈ UTC(t). (65)

This is equivalent to the fact x ∈ NP
UT C(t)(v) or v ∈ (NP

UT C(t))
−1(x). The claim (64) is proved.

In views of the equality (64) and by letting z(t) := UTx(t), the system (63) transforms into the

following one 
−ż(t) ∈


Λ 0

0 0

+
(
NP
UT C(t)

)−1
−1

(z(t)), t ∈ [0, T ],

z(0) = UTx0.

(66)

For all t ∈ [0, T ], note that UTC(t) is ρ̃-prox-regular with ρ̃ = ‖U‖ρ. Thus, Lemma 4.4 ensures the

existence of absolutely continuous solutions of the differential inclusion (66). Therefore, we conclude

that the system (62) has at least one absolutely continuous solution.

5. Conclusions

In this paper, we studied the existence of absolutely continuous solutions of a class of differential

inclusions involving proximal normal cone mappings in Rn. The motivation of the study of this

class of dynamical systems stems from the investigation of finite-dimensional differential variational

inequalities in the recent years. Our contributions are that we derived serveral sufficient conditions

for existence of absolutely continuous solutions.
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