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Abstract. This paper is a continuation of the recent studies of L. Jin - M. Ru [13] and

D. D. Thai - P. D. Thoan [5], [6]. The first aim of this paper is to show the second main

theorem for linearly non-degenerate holomorphic maps from a compact Riemann surface

into a projective algebraic variety which are ramified over hypersurfaces located in sub-

general position. We then use it to study the ramification over hypersurfaces located in

subgeneral position of the linearly non-degenerate generalized Gauss maps of complete

regular minimal surfaces in Rm with finite total curvature into projective algebraic va-

rieties in Pm−1. Finally, we study the unicity problem of the generalized Gauss maps

of complete regular minimal surfaces in Rm with finite total curvature sharing hyper-

surfaces located in subgeneral position without the linear non-degeneracy (or algebraic

non-degeneracy) assumption of these maps. Our results complete the previous results in

[13], [5], [6].

1. Introduction

The second main theorem for holomorphic curves from a compact Riemann surface into

the n-dimensional complex projective space Pn(C) is studied intensively in recent years.

For instance, in 2007, L. Jin-M. Ru [13] established the second main theorem for linearly

non-degenerate holomorphic curves from a compact Riemann surface into Pn(C) sharing

hyperplanes in general position. Namely, they showed the following.

Theorem A [13, Theorem 2.4] Let S be a compact Riemann surface of genus g. Let

f : S → Pn(C) be non-constant algebraic curve. Assume that f(S) is contained in some

k-dimensional projective subspace of Pn(C), but not in any subspace of dimension lower

than k, where 1 ≤ k ≤ n. Let H1, · · · , Hq be the hyperplanes in Pn(C), located in general

position and let L1, · · · , Lq be the corresponding linear forms. Let E be a finite subset of
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S. Then

(q − 2n+ k − 1) deg(f) ≤
q∑
j=1

∑
P 6∈E

min{k, νP (Lj(f))}+
1

2
k(2n− k + 1){2(g − 1) + |E|},

where |E| is the number of elements of E and νP (Lj(f)) is the vanishing order of Lj(f)

at the point P .

Recently, D. D. Thai - P. D. Thoan [6] showed a second main theorem for algebraically

non-degenerate holomorphic curves from a compact Riemann surface into Pn(C) which

are ramified over hypersurfaces located in subgeneral position.

Theorem B [6, Theorem 1] Let S be a compact complex Riemann surface of genus g.

Let f : S → Pn(C) be a holomorphic curve such that f(S) ⊂ Pk(C) and f(S) is not

contained in any hypersurface in Pk(C) for some 1 ≤ k ≤ n. Let Q1, · · · , Qq be the

hypersurfaces in Pn(C), located in N−subgeneral position with di := degQi (1 ≤ i ≤ q).

Put d = lcm (d1, · · · , dq) and M =

(
k + d

k

)
− 1. Let E be a finite subset of S. Then

(
q − (2N − k + 1)(M + 1)

k + 1

)
deg(f) ≤

q∑
j=1

∑
P 6∈E

1

dj
min{M, νQj(f)(P )}

+
(2N − k + 1)M(M + 1)

2(k + 1)
· 2(g − 1) + |E|

d
,

where νQj(f) = f ∗Qj (1 ≤ j ≤ q) is the vanishing order of Q(f).

The first question is arised naturally at this moment.

Let S be a compact complex Riemann surface of genus g. Let V be a complex projective

subvariety of Pn(C) of dimension k (1 ≤ k ≤ n). Let f be a holomorphic curve of S

into V such that f is linearly non-degenerate, i.e. f(S) is not contained in any complex

projective subspace of Pn(C) of dimension lower than k. How to state the second main

theorem for f sharing hypersurfaces in Pn(C), located in subgeneral position with respect

to V ?

Using the second main theorem, L. Jin-M. Ru [13] also showed the following theorem

on the ramification over hyperplanes located in general position of the generalized Gauss

map of complete regular minimal surfaces immersed in Rm with finite total curvature.

Theorem C [13, Theorem 3.1] Let x : S → Rm be a non-flat complete regular minimal

surface with finite total curvature. Let G : S → Pm−1(C) be its generalized Gauss map.

Let H1, · · · , Hq be hyperplanes in Pm−1(C), located in general position in Pm−1(C), (1 ≤
i ≤ q). If G is ramified over Hj with multiplicity at least mj for each j (note that if G(S)
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omits Hj, then we take mj =∞), we obtain that

q∑
j=1

(
1− m− 1

mj

)
<

1

2
m(m+ 1).

In particular, G(S) can fail to intersect at most m(m+ 1)/2 hyperplanes in general

position in Pm−1(C).

Also in [6], they showed the following theorem on the ramification over hypersurfaces

located in subgeneral position of the generalized Gauss map of complete regular minimal

surfaces immersed in Rm with finite total curvature with the additional assumption on

the algebraic non-degeneracy of the generalized Gauss map.

Theorem D [6, Theorem 2] Let x : S → Rm be a non-flat complete regular minimal

surface with finite total curvature. Let G : S → Pm−1(C) be its generalized Gauss map.

Assume that G(S) ⊂ Pk(C) and G(S) is not contained in any hypersurface in Pk(C) for

some 1 ≤ k ≤ m−1. Let Q1, · · · , Qq be hypersurfaces in Pm−1(C), located in N-subgeneral

position in Pm−1(C) with degQi = di (1 ≤ i ≤ q). Let d = lcm (d1, · · · , dq). Assume

that G is ramified over hypersurfaces Qj with multiplicity at least mj for each j and

Mk =

(
k + d

k

)
− 1. Then

q∑
j=1

(
1− Mk

mj

)
<

(2N − k + 1)(Mk + 1)(Mk + 2d)

2(k + 1)d
.

In particular, for each 1 ≤ k ≤ m − 1, then

q∑
j=1

(
1− m− 1

mj

)
<

(2N −m+ 2)(m+ 1)

2

if d = 1 and

q∑
j=1

(
1− M

mj

)
<

(2N −m+ 2)(M + 1)(M + 2d)

2dm
if d > 1, where M =(

m− 1 + d

m− 1

)
− 1.

The second question is arised naturally at this moment.

Let V be a complex projective subvariety of Pm−1(C) of dimension k (1 ≤ k ≤ m− 1).

Let x : S → Rm be a non-flat complete regular minimal surface with finite total curvature.

Assume that G : S → Pm−1(C) is its generalized Gauss map such that G(S) ⊂ V. How to

state the theorem on the ramification over hypersurfaces in Pm−1(C), located in subgeneral

position with respect to V for the map G without the algebraic non-degeneracy assumption

of this map?

Using Theorem A and Theorem C, L. Jin-M. Ru [13] also obtained the following unicity

theorem for the generalized Gauss maps of complete regular minimal surfaces immersed
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in Rm with finite total curvature sharing hyperplanes located in general position with the

additional assumption on the linear non-degeneracy of these maps.

Theorem E [13, Theorem 4.1] Consider two algebraic minimal surfaces M1,M2 immersed

in Rm with the same basic domain M = M \ {P1, · · · , P r}. Let G1, G2 be the generalized

Gauss map of M1,M2 respectively. Assume that G1, G2 are linearly non-degenerate and

assume that G1 6≡ G2. Let H1, · · · , Hq be the hyperplanes in Pm−1(C) in general position,

and let L1, · · · , Lq be the corresponding linear forms. Assume that

(i) min{νP (Lj(G1)), 1} = min{νP (Lj(G2)), 1}, for P ∈M and j = 1, · · · , q;
(ii) For every i 6= j, G−1

1 (Hi)
⋂
G−1

1 (Hj) = ∅;
(iii) G1 = G2 on

⋃q
j=1G

−1
1 (Hj).

Then q <
1

2
(m2 + 5m− 4).

Using Theorem B and Theorem D, in [5] they also obtained the following unicity the-

orem for the generalized Gauss maps of complete regular minimal surfaces immersed in

Rm with finite total curvature sharing hypersurfaces located in subgeneral position with

the additional assumption on the algebraic non-degeneracy of these maps.

Theorem F [5, Theorem 3] Consider two algebraic minimal surfaces S1, S2 immersed

in Rm with the same basic domain S = S̄ \ {P1, · · · , Pr}. Let G1, G2 be the generalized

Gauss map of S1, S2 respectively. Assume that G1(S1), G2(S2) are not contained in any

hypersurface in Pm−1(C). Let {Qi}qi=1 be the hypersurfaces in Pm−1(C), located in N-

subgeneral position with degQi = di (1 ≤ i ≤ q). Assume that

(i) min{ν(Qj(G1)), 1} = min{ν(Qj(G2)), 1}, for all P ∈ S and 1 ≤ j ≤ q

(ii) G1 ≡ G2 on
⋃q
i=1G

−1
1 (Qj).

Then G1 ≡ G2 if

q ≥ (2N −m+ 2)(M + 1)[(2d+ 1)M + 2d]

2dm
,

where d = lcm (d1, · · · , dq) and M =

(
m− 1 + d

m− 1

)
− 1.

The third question is arised naturally at this moment.

How to state the unicity theorem for the generalized Gauss maps of complete regular

minimal surfaces immersed in Rm with finite total curvature sharing hypersurfaces located

in subgeneral position without the additional assumption on the linear non-degeneracy or

the algebraic non-degeneracy of these maps?

The main aim of this paper is to give compete answers for the above-mentioned prob-

lems. To state our results, we now recall some notations.

Let M be a complete immersed minimal surface in Rm. Take an immersion x =

(x0, ..., xm−1) : M → Rm. Then M has the structure of a Riemann surface and any local
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isothermal coordinate (x, y) of M gives a local holomorphic coordinate z = x +
√
−1y.

The generalized Gauss map of x is defined to be

G : M → Pm−1(C), G = P
(∂x
∂z

)
=
(∂x0

∂z
: · · · : ∂xm−1

∂z

)
.

Since x : M → Rm is immersed, it implies that

g = gz := (g0, . . . , gm−1) = ((g0)z, . . . , (gm−1)z) =
(∂x0

∂z
, . . . ,

∂xm−1

∂z

)
is a (local) reduced representation of G. Moreover, for another local holomorphic coordi-

nate ξ on M, we have gξ = gz ·
(dz
dξ

)
and hence, g is well defined (independently of the

local holomorphic coordinate). Since M is minimal, G is a holomorphic map.

We now consider the hypersurface Q given by∑
I∈Id

aIz
I = 0,

where Id = {(i0, . . . , in) ∈ Nn+1 : i0 + · · · + in = d}, I = (i0, . . . , in) ∈ Id, zI = zi00 · · · zinn

and aI ∈ C (I ∈ Id). Put M =

(
n+ d

n

)
− 1 and denote by

H = {(z0, . . . , zM) ∈ CM+1 :
∑
Ij∈Id

aIjzIj = 0}

the hyperplane in CM+1 associated with Qi.

Let f : S → Pn(C) be an holomorphic map with a reduced (local) representation

f(z) = (f0(z), . . . , fn(z)). For each d, define F : S → PM(C) by

F (z) = (f I0(z), . . . , f IM (z)),

where {I0, . . . , IM} = Id and f I(z) = f i00 (z) · · · f inn (z) for I = (i0, . . . , in) ∈ Id. Such

definition is independent of the choice of the representation of f and of the parameter z.

We call F the associated map with f of degree d. Put Q(f) = H(F ) =
∑

I∈Id aIf
I . We

will consider f ∗Q = νQ(f) as a divisor.

Definition 1. The map f is said to be ramified over a hypersurface Q in Pm−1(C) with

multiplicity at least e if all the zeros of the function Q(f) have orders at least e.

If the image of f omits Q, one will say that f is ramified over Q with multiplicity ∞.

Now, let V be a complex projective subvariety of Pn(C) of dimension k (k ≤ n). Let

d be a positive integer. We denote by I(V ) the ideal of homogeneous polynomials in
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C[x0, ..., xn] defining V and by C[x0, ..., xn]d the vector space of all homogeneous polyno-

mials in C[x0, ..., xn] of degree d including the zero polynomial. Define

Cd(V ) :=
C[x0, ..., xn]d

I(V ) ∩ C[x0, ..., xn]d
and HV (d) := dimCd(V ).

Then HV (d) is called the Hilbert function of V . Each element of Cd(V ) which is an

equivalent class of an element Q ∈ C[x0, ..., xn]d, will be denoted by [Q].

Definition 2. Let Q1, . . . , Qq (q ≥ k + 1) be q hypersurfaces in Pn(C). The family of

hypersurfaces {Qi}qi=1 is said to be in N−subgeneral position with respect to V if for any

1 ≤ i1 < . . . < iN+1,

(
N+1⋂
j=1

Qij) ∩ V = ∅.

If {Qi}qi=1 is in n−subgeneral position with respect to V , then we say that it is in general

position with respect to V.

We now state the first result.

Theorem 1. Let V be a complex projective subvariety of Pn(C) of dimension k (k ≤ n).

Let Q1, · · · , Qq be the hypersurfaces in Pn(C), located in N-subgeneral position with respect

to V and di := degQi (1 ≤ i ≤ q). Put d = lcm (d1, · · · , dq). Let S be a compact

Riemann surface of genus g and let E be a finite subset of S. Let f be a holomorphic curve

of S into Pn(C) such that f(S) is contained in V. Assum that the map f is linearly non-

degenerate in V, i.e. its image f(S) is not contained in any complex projective subspace

of dimension lower than k of Pn(C). Then(
q − (2N − k + 1)HV (d)

k + 1

)
deg(f) ≤

q∑
j=1

∑
P 6∈E

1

dj
min{νQj(f)(P ), HV (d)− 1}

+
(2N − k + 1)(HV (d)− 1)HV (d)

2(k + 1)
· 2(g − 1) + |E|

d
,

where νQj(f) = f ∗Qj (1 ≤ j ≤ q) is the vanishing order of Q(f) and HV (d) is the Hilbert

function of V.

It is easy to see that Theorem A is deduced immediately from Theorem 1 by considering

V = Pk(C) ⊂ Pn(C) and Qj are hyperplanes, because d = 1 and HV (d) = k + 1 in this

case. Moreover, Theorem B is deduced immediately from Theorem 1 by considering

V = Pk(C) ⊂ Pn(C).

We now state the second result.
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Theorem 2. Let V be a complex projective subvariety of Pm−1(C) of dimension k (1 ≤
k ≤ m−1). Let Q1, · · · , Qq be hypersurfaces in Pm−1(C), located in N-subgeneral position

with respect to V and di := degQi (1 ≤ i ≤ q). Put d = lcm (d1, · · · , dq). Let x : S → Rm

be a non-flat complete regular minimal surface with finite total curvature. Let G : S →
Pm−1(C) be its generalized Gauss map. Assume that G(S) is contained in V and the map

G is linearly non-degenerate in V, i.e. its image f(S) is not contained in any complex

projective subspace of dimension lower than k of Pm−1(C). Assume that G is ramified

over hypersurfaces Qj with multiplicity at least mj for each j. Then

q∑
j=1

(
1− HV (d)− 1

mj

)
<

(2N − k + 1)HV (d)(HV (d)− 1 + 2d)

2(k + 1)d
.

We now consider V = Pk(C) ⊂ Pn(C). It is easy to see that HV (d) =

(
k + d

k

)
.

For each 1 ≤ k ≤ m− 1, put

ak =

(
k + d

k

)
,

Mk = ak − 1,

M = Mm−1 =

(
m− 1 + d

m− 1

)
− 1,

Ak = (2N − k + 1)
HV (d)

k + 1
,

Bk =
Ak(Mk + 2d)

2d
=

(2N − k + 1)HV (d)(HV (d)− 1 + 2d)

2(k + 1)d
.

Then Bk ≤ Bm−1 =
(2N −m+ 2)(M + 1)(M + 2d)

2md
for all 1 ≤ k ≤ m− 1.

Indeed, we consider two cases.

Case 1: Assume that d > 1.

Then

Ak = (2N − k + 1)
ak

k + 1

=
2N − k + 1

k + 1
· k + d

k
ak−1

= (2N − k + 1)
(ak−1

k
+
d− 1

k + 1
· ak−1

k

)
= (2N − k + 2)

ak−1

k
+
ak−1

k

[d− 1

k + 1
(2N − k + 1)− 1

]
≥ Ak−1.
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Hence, for each 1 ≤ k ≤ m− 1, we have

Bk =
Ak(Mk + 2d)

2d
≥ Ak−1(Mk−1 + 2d)

2d
= Bk−1.

It yields that Bk ≤ Bm−1 for all 1 ≤ k ≤ m− 1.

Case 2: Assume that d = 1.

Then di = 1 (1 ≤ i ≤ q) and hence, Mk = k. Since

(2N − k + 1)(k + 2) ≤ (2N −m+ 1)(m+ 1)

for 1 ≤ k ≤ m− 1, we also have Bk ≤ Bm−1 for all 1 ≤ k ≤ m− 1.

From Theorem 2, we now have the following theorem on the ramification over hyper-

surfaces located in subgeneral position in Pm−1(C) for the map G without any additional

assumption of this map.

Corollary 3. Let x : S → Rm be a non-flat complete regular minimal surface with finite

total curvature. Let G : S → Pm−1(C) be its generalized Gauss map. Let Q1, · · · , Qq be

hypersurfaces located in N-subgeneral position in Pm−1(C) and di := degQi (1 ≤ i ≤ q).

Let d = lcm (d1, . . . , dq) and M =

(
m− 1 + d

m− 1

)
− 1. Assume that G is ramified over

hypersurfaces Qj with multiplicity at least mj for each j. Then

q∑
j=1

(
1− M

mj

)
<

(2N −m+ 2)(M + 1)(M + 2d)

2md
.

It is easy to see that Theorem C is deduced immediately from Corollary 3 by considering

V = Pm−1(C) and Qj are hyperplanes located in general position in Pm−1(C), because

d = 1 and M = m − 1 in this case. Moreover, Theorem D is deduced immediately from

Theorem 2 by considering V = Pk(C) ⊂ Pm−1(C) and remarking that if Q1, · · · , Qq are

located in N -subgeneral position in Pm−1(C) then they are also located in N -subgeneral

position in Pk(C).

Let x : S → Rm be a complete regular minimal surface with finite total curvature.

Let G : S → Pm−1(C) be its generalized Gauss map. By the result of S.S. Chern and

R. Osserman (see [3]), S is conformally equivalent to a compact surfaces S̄ punctured

at a finite number of points P1, · · · , Pr. Hence, G : S = S̄ \ {P1, . . . , Pr} → Pm−1(C) is

algebraic. We call S the basic domain of the minimal surface.

By using the arguments in [4, 5, 8, 12, 13], we have the following.

Theorem 4. Consider two complete regular minimal surfaces with finite total curvature

S1 and S2 immersed in Rm with the same basic domain S = S̄ \{P1, · · · , Pr}. Let G1 and

G2 be the generalized Gauss maps of S1 and S2 respectively. Let {Qi}qi=1 be the hypersur-

faces in Pm−1(C) located in N-subgeneral position with common degree of d. Assume that
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(i) min{νQj(G1)(P ), 1} = min{νQj(G2)(P ), 1} for all P ∈ S and 1 ≤ j ≤ q,

(ii) there exist a positive integer mumber k such that
⋂k+1
j=1 G

−1
1 (Qij) = ∅ for any

{i1, . . . , ik+1} ⊂ {1, . . . , q},
(iii) G1 ≡ G2 on

⋃q
i=1G

−1
1 (Qj).

Then G1 ≡ G2 if

q ≥ (2N −m+ 2)(M + 1)(M + 2d)

2md
+

2kMq

q − 2k + 2Mk
,

where M =

(
m− 1 + d

m− 1

)
− 1.

In the case k = 1, since
2kMq

q − 2k + 2Mk
< 2M , we obtain the following corollary.

Corollary 5. Consider two complete regular minimal surfaces with finite total curvature

S1 and S2 immersed in Rm with the same basic domain S = S̄ \ {P1, · · · , Pr}. Let

G1 and G2 be the generalized Gauss maps of S1 and S2 respectively. Let {Qi}qi=1 be

the hypersurfaces in Pm−1(C) located in N-subgeneral position with common degree of d.

Assume that

(i) min{ν(Qj(G1)), 1} = min{ν(Qj(G2)), 1} for all P ∈ S and 1 ≤ j ≤ q,

(ii) for every i 6= j, G−1
1 (Qj)

⋂
G−1

1 (Qi) = ∅,
(iii) G1 ≡ G2 on

⋃q
i=1G

−1
1 (Qj).

Then G1 ≡ G2 if

q ≥ (2N −m+ 2)(M + 1)(M + 2d)

2md
+ 2M,

where M =

(
m− 1 + d

m− 1

)
− 1.

In Corollary 5, if {Qi}qi=1 are the hyperplanes in general position in Pm−1(C), then

d = 1,M = N = m− 1,
(2N −m+ 2)(M + 1)(M + 2d)

2md
+ 2M =

1

2
(m2 + 5m− 4)

and hence, Corollary 5 gave a nice improvement of Theorem E by omitting the linear

non-degeneracy assumption of the maps G1 and G2 in this theorem.

In Theorem 4, if we choose k = N then condition (ii) automatically holds when the

hypersurfaces are in N -subgeneral position. Since
2kMq

q − 2k + 2Mk
< 2MN , it implies that

the following corollary holds.

Corollary 6. Consider two complete regular minimal surfaces with finite total curvature

S1 and S2 immersed in Rm with the same basic domain S = S̄ \ {P1, · · · , Pr}. Let

G1 and G2 be the generalized Gauss maps of S1 and S2 respectively. Let {Qi}qi=1 be
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the hypersurfaces located in N-subgeneral position in Pm−1(C) with common degree of d.

Assume that

(i) min{νQj(G1)(P ), 1} = min{νQj(G2)(P ), 1} for all P ∈ S and 1 ≤ j ≤ q,

(ii) G1 ≡ G2 on
⋃q
i=1G

−1
1 (Qj).

Then G1 ≡ G2 if

q ≥ (2N −m+ 2)(M + 1)(M + 2d)

2md
+ 2MN,

where M =

(
m− 1 + d

m− 1

)
− 1.

Finally, we would like to emphasize that, by the another approach, D. D. Thai and V.

D. Viet in [7] showed the second main theorem and a unicity theorem for holomorphic

curves of a compact Riemann surface into a compact complex manifold sharing divisors

in subgeneral position in this manifold.

2. Auxiliary lemmas

Assume that f : S → Pn(C) is a linearly non-degenerate holomorphic curve (that

is, f(S) is not contained in any hyperplane in Pn(C)). For every point P ∈ S, in a

neighborhood of P , let f(z) = (f0(z), · · · , fn(z)) be a reduced representation of f at P

with z(P ) = 0, where z is a local parameter for S at P and f0, · · · , fn are holomorphic

functions without common zeros. Take a hyperplane H : a0z0 + · · · + anzn = 0 in Pn(C)

and put

H(f) = a0f0 + · · ·+ anfn.

Then
∑

z∈S νH(f)(z) does not depend on the choice of H, where νH(f)(z) is the intersection

multiplicity of the images of f and H at f(z). We define the degree of f by

deg(f) =
∑
P∈S

νH(f)(P ).

It is easy to see that if f−1(H) = {P1, · · · , Pr}, then

deg(f) =
r∑
j=1

νH(f)(Pj) ≥ r. (2.1)

Now we may assume that f(0) = (1, 0, · · · , 0) by making a linear change of coordinates in

Cn+1. We have f1(0) = · · · = fn(0) = 0. Write (f1(z), · · · , fn(z)) = zδ1(f 1
1 (z), · · · , f 1

n(z))

with (f 1
1 (0), · · · , f 1

n(0)) 6= 0. Make a linear change of the last n coordinate Cn+1 so that

(f 1
1 (0), · · · , f 1

n(0)) = (1, 0, · · · , 0). Write (f 1
2 (z), · · · , f 1

n(z)) = zδ2−δ1(f 2
2 (z), · · · , f 2

n(z))
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with (f 2
2 (0), · · · , f 2

n(0)) 6= 0. Continuing in this way we end up with a system of co-

ordinate for Cn+1 in terms of which

f(z) = (zδ0 + · · · , zδ1 + · · · , · · · , zδn + · · · ), (2.2)

where 0 = δ0 < δ1 < · · · < δn. Put νi = δi+1 − δi − 1, 0 ≤ i ≤ n − 1 and note that, for

P ∈ S, we have

n∑
i=0

(n− i)νi(P ) +
1

2
n(n+ 1) = δ0(P ) + δ1(P ) + · · ·+ δn(P ). (2.3)

Let

σi =
∑
P∈S

νi(P ). (2.4)

By Plücker formula which is a generalization of the Riemann-Hurwitz’s theorem (see [11]),

we have
n∑
i=0

(n− i)σi = (n+ 1) deg(f) + n(n+ 1)(g − 1). (2.5)

Here g stands for the genus of S.

Let V be a complex projective subvariety of Pn(C) of dimension k (k ≤ n). Let

{Qi}qi=1 be a family hypersurfaces in Pn(C) of the common degree d. Each Qi is defined

by some homogeneous polynomial Q∗i ∈ C[x0, x1, . . . , xn]. Consider the set Cd(V ) :=
C[x0, ..., xn]d

I(V ) ∩ C[x0, ..., xn]d
as a vector space and define

rank{Qi}i∈R = rank{[Q∗i ]}i∈R

for every subset R ⊂ {1, . . . , q}. It is easy to see that

rank{Qi}i∈R = rank{[Q∗i ]}i∈R ≥ dimV − dim(
⋂
i∈R

Qi ∩ V ),

with dim ∅ := −1. Hence, if {Qi}qi=1 is N -subgeneral position, then

rank{Qi}i∈R = rank{[Q∗i ]}i∈R ≥ dimV − dim(
⋂
i∈R

Qi ∩ V ) = k + 1

for any subset R ⊂ {1, . . . , q} with |R| = N + 1.

Similar to [2, Lemma 4.2], we have the following.

Lemma 7. Let {Qi}qi=1 be hypersurfaces of the common degree d in Pn(C). Then, there

exist (HV (d)−k−1) hypersurfaces {Ti}HV (d)−k−1
i=1 such that for any subset R ⊂ {1, · · · , q}

with |R| = rank{Hi}i∈R = k + 1, we get rank{{Qi}i∈R ∪ {Ti}HV (d)−k−1
i=1 } = HV (d).

By [2, Lemma 3.3], we have the following.
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Lemma 8. ([2, Lemma 3.3]) Let V be a complex projective subvariety of dimension k of

Pn(C) (k ≤ n). Let Q1, · · · , Qq (q > 2N −n+1) be hypersurfaces of the common degree d

in Pn(C), located in N-subgeneral position with respect to V . Then there exists a function

ω : {1, · · · , q} → (0, 1] called a Nochka weight and a real number θ ≥ 1 called a Nochka

constant satisfying the following conditions:

(i) If j ∈ {1, · · · , q}, then 0 < ω(j)θ ≤ 1.

(ii) q − 2N + n− 1 = θ(
∑q

j=1 ω(j)− n− 1).

(iii) For R ⊂ {1, · · · , q} with |R| = N + 1, then
∑

i∈R ω(i) ≤ n+ 1.

(iv) N+1
n+1
≤ θ ≤ 2N−n+1

n+1
.

(v) Given real numbers λ1, · · · , λq with λj ≥ 1 for 1 ≤ j ≤ q and given any R ⊂
{1, · · · , q} and |R| = N+1, there exists a subset R0 ⊂ R such that |R0| = rank{Qi}i∈R0 =

n+ 1 and ∏
i∈R

λ
ω(i)
i ≤

∏
i∈R0

λi.

Taking a C-basis {[Φi]}HV (d)−1
i=0 of Cd(V ) with Φi ∈ Hd, we may consider Cd(V ) as a

C-vector space CHV (d).

We consider [Q] ∈ Cd(V ), where Q ∈ C[x0, ..., xn]d is a hypersurface of degree d. Then

[Q] =

HV (d)−1∑
i=0

ai[Φi] =

HV (d)−1∑
i=0

[aiΦi]

with ai ∈ C (1 ≤ i ≤ HV (d)). Denote by

H = (a0 : · · · : aHV (d)−1) ∈ PHV (d)−1(C)

the hyperplane in PHV (d)−1(C) which is called the associated hyperplane of Q with respect

to the basis {[Φi]}HV (d)−1
i=0 .

We now consider a holomorphic curve f : S → V. Also consider the holomorphic map

F = (Φ0(f) : · · · : ΦHV (d)−1(f)) of S to PHV (d)−1. Take a reduced representation of

f̃ = (f0 : · · · : fn) of f on a neighborhood of P ∈ S, then F̃ = (Φ0(f̃) : · · · : ΦHV (d)−1(f̃))

is a reduced representation of F. The map F said to be the associated map of f with

respect to the basis {[Φi]}HV (d)−1
i=0 .

It is easy to see that Q(f) = F (H) = a0Φ0(f) + · · · + aHV (d)−1ΦHV (d)−1(f). We need

the following.

Lemma 9. Let V be a complex projective subvariety of Pn(C). Let f : S → V be a

holomorphic curve and F : S → PHV (d)−1(C) be the associated map of f with respect to

a some basis of Cd(V ). Let Q be a hypersurface in Pn(C) of degree d. If f is linearly
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non-degenerate with respect to V , then

deg(F ) =
∑
P∈S

νQ(f)(P ) = d deg(f). (2.6)

Proof. Taking a basis {[Φi]}HV (d)−1
i=0 of Cd(V ). Let H0 = {ω0 = 0} be a hyperplane in

PHV (d)−1(C). Then F (H0) = Φ0(f), where Φ0 ∈ C[x0, ..., xn]d. Hence

deg(F ) =
∑
P∈S

νΦ0(f)(P ). (2.7)

Now, assume that each Q is given by∑
I∈Id

aIz
I = 0,

where Id = {(i0, · · · , in) ∈ Nn+1 : i0 + · · · + in = d}, I = (i0, · · · , in) ∈ Id, zI =

zi00 · · · zinn , aI ∈ C (1 ≤ I ≤M + 1, I ∈ Id) and M =

(
n+ d

n

)
− 1.

Denote by H =
{

(z0, · · · , zM) ∈ CM+1 :
∑

Ij∈Id aIjzIj = 0
}

the hyperplane in CM+1

associated to Q.

Put G : S → PM(C) by

G(z) = (f I0(z), · · · , f IM (z)),

where {I0, · · · , IM} = Id and f I(z) = f i00 (z) · · · f inn (z) for I = (i0, · · · , in) ∈ Id. Such

definition is independent of the choice of the representation f̃(z) = (f0(z), · · · , fn(z)) of

f and of the parameter z. Put Q(f) = H(G) =
∑

I∈Id aIf
I . We will consider f ∗Q = νQ(f)

as a divisor.

Consider the hyperplane Ĥ = {ω0 = 0} in PM(C). Assume thatG−1(Ĥ) = {P1, · · · , Pr}.
For each 1 ≤ j ≤ r, take a holomorphic local parameter zj with zj(Pj) = 0 in a neigh-

borhood of Pj in S. Consider a sufficiently small positive number ε such that Ūj(ε) := {zj :

|zj| ≤ ε} are mutually disjoint. Now take a reduced representation f̃(z) = (f0(z), · · · , fn(z))

of f on
⋃
j Uj(ε). We obtain Ĥ(G)(z) = f I0(z) = (f0(z))d, where I0 = (1, 0, · · · , 0) ∈ Id.

This implies that

deg(G) =
r∑
j=1

νĤ(G)(Pj) =
r∑
j=1

νfd0 (Pj) =
r∑
j=1

d · νf0(Pj)

=
r∑
j=1

d · νH̃(f)(Pj) = d deg(f),

(2.8)
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where H̃ : ω0 = 0 is a hyperplane in Pn(C). By taking the associated hyperplane H of Q

and K of Φ0 in PM(C), we have

deg(G) =
∑
P∈S

νH(G)(P ) =
∑
P∈S

νK(G)(P ) =
∑
P∈S

νQ(f)(P ) =
∑
P∈S

νΦ0(f)(P ). (2.9)

Combining (2.7) with (2.8) and (2.9), we complete the proof of Lemma 9. �

3. The proof of Theorem 1

Step 1. First of all, we prove the theorem in the case where all hypersurfaces Qi (1 ≤ i ≤ q)

have the same degree d.

Fix a C−basis {[Φi]}HV (d)−1
i=0 of Cd(V ), where Φi ∈ C[x0, ..., xn]d. Assume that the image

F (S) is contained in the l-dimensional projective subspace Pl(C) of PHV (d)−1(C), but not

in any subspace of dimension lower than l, where 1 ≤ l ≤ HV (d) − 1. Consider a linear

equation system determining Pl(C) :
a10ω0 + · · ·+ a1,Hd(V )−1ωHd(V )−1 = 0

...

aHd(V )−1−l,0ω0 + · · ·+ aHd(V )−1−l,Hd(V )−1ωHd(V )−1 = 0

(3.10)

Without loss of generality, assume that

rank (aij)1≤i≤Hd(V )−1,l+1≤j≤Hd(V )−1 = Hd(V )− 1− l.

By solving the above linear equation system (3.10), it implies that Pl(C) is determined

by 
ωl+1 = bl+1,0ω0 + · · ·+ bl+1,lωl

...

ωHd(V )−1 = bHd(V )−1,0ω0 + · · ·+ bHd(V )−1,lωl

Since F (S) ⊂ Pl(C), it follows that
Φl+1(f) = bl+1,0Φ0(f) + · · ·+ bl+1,lΦl(f)

...

ΦHd(V )−1(f) = bHd(V )−1,0Φ0(f) + · · ·+ bHd(V )−1,lΦl(f)

.

Put B = (bij)0≤i≤l,l+1≤j≤Hd(V )−1. Then, the above linear equation system can be re-written

as follows  Φl+1(f)

...

ΦHd(V )−1(f)

 = B

Φ0(f)

...

Φl(f)

 .
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Consider the meromorphic map F ∗ = (Φ0(f) : · · · : Φl(f)) : S → Pl(C). Then, the map

F ∗ is linearly non-degenerate.

For each hypersurface Q of degree d in C[x0, ..., xn]d, take the associated hyperplane

H : a0ω0 + · · · + aHV (d)−1ωHd(V )−1 = 0 in PHV (d)−1(C) of Q with respect to the basis

{[Φi]}HV (d)−1
i=0 . We have

Q(f) = F (H) = a0Φ0(f) + · · ·+ aHV (d)−1ΦHV (d)−1(f)

= (a0 · · · al)

Φ0(f)

...

Φl(f)

+ (al+1 · · · aHd(V )−1)

 Φl+1(f)

...

ΦHd(V )−1(f)



= ((a0 · · · al) + (al+1 · · · aHd(V )−1)B)

Φ0(f)

...

Φl(f)

 .

(3.11)

Put Q∗ = H∩Pl(C). By a simple calculation, we can see that the equation of Q∗ in Pl(C)

is

((a0 · · · al) + (al+1 · · · aHd(V )−1)B)

ω0

...

ωl

 = 0.

It follows that Q∗(F ∗) = H(F ) = Q(f) and Q ∩ V = H ∩ Pl(C) = Q∗.

Repeating the above way for each hypersurface Qj, we get the family hyperplanes

{Q∗j}
q
j=1. By the assumption, it is easy to see that

∅ =

(⋂
j∈R

Qj

)
∩ V =

(⋂
j∈R

Qj ∩ V

)
=

(⋂
j∈R

Q∗j

)

for any subset R ∈ {1, . . . , q} with |R| = N+1. Note that rank{Qj}j∈R = rank{[Qj]}j∈R ≥
dimV + 1 = k + 1. We consider two cases as follows.

Case 1: l ≤ k.

Then rank{Q∗j}j∈R = l+1. This yields that the hyperplanes {Q∗j}
q
j=1 are inN -subgeneral

position in Pl(C). Applying Theorem A of L. Jin-M. Ru [13], we have

(q − 2N + l − 1) deg(F ∗) ≤
q∑
j=1

∑
P 6∈E

min{l, νQ∗
j (F ∗)(P )}+

l(2N − l + 1)

2
(2(g − 1) + |E|).

(3.12)

By Lemma 9, deg(F ∗) = d deg(f).
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We now consider d > 1. Since Hd(V ) ≥

(
k + d

d

)
≥ 2k + 1 and 2N ≤ 2N − k + 1

k + 1
· 2k,

we get 2N − l + 1 ≤ 2N − k + 1

k + 1
·Hd(V ) for l ≤ k. Combining these to (3.12), we obtain

(
q − (2N − k + 1)Hd(V )

k + 1

)
deg(f) ≤ 1

d

q∑
j=1

∑
P 6∈E

min{Hd(V )− 1, νQj(f)(P )}

+
(2N − k + 1)(Hd(V )− 1)Hd(V )

2(k + 1)
· 2(g − 1) + |E|

d
.

(3.13)

We now consider d = 1. Since f(S) is not contained in any complex projective subspace

of dimension lower than k, it implies that Hd(V ) ≥ l + 1 ≥ k + 1. And hence, Hd(V ) ≥
l + 1 = k + 1. From (3.12), we also obtain (3.13).

Case 2: l > k.

We have rank{Q∗j}j∈R = k + 1. By Lemma 7, we can choose a family of hypersurfaces

{Ui}l−ki=1 in Pn(C) such that for any subset R ⊂ {1, . . . , q} with |R| = rank{Qi}i∈R =

k + 1, we get rank{{Qi}i∈R ∪ {Ui}l−ki=1} = l + 1. By the assumption, it is easy to see that

rank{{Q∗j}j∈R∪{U∗i }l−ki=1} = l+1 for any subset R ⊂ {1, · · · , q} with |R| = rank{Hj}j∈R =

k + 1.

Consider a point P ∈ E. Since {Qj}qj=1 are in N -subgeneral position, there exist at

most N hypersurfaces which can intersect F ∗(S) at P . Without loss of generality, we may

assume that f(S) intersects Qj (1 ≤ j ≤ N) and f(S) does not intersect Qj with j > N .

Put R = {1, · · · , N + 1} and choose R0 ⊂ R with |R0| = rank{Qj}j∈R0 = k+ 1 such that

R0 satisfies Lemma 8 (v) with respect to the numbers λj = e
νQj(f)

(P )
. Then, we have

∏
j∈R

e
ω(j)νQj(f)

(P ) ≤
∏
j∈R0

e
νQj(f)

(P )
,

where ω(j) are the Nochka weights associated to the hypersurfaces Qj (1 ≤ j ≤ q). This

deduces that

q∑
j=1

ω(j)νQj(f)(P ) =
∑
j∈R

ω(j)νQj(f)(P ) ≤
∑
j∈R0

νQj(f)(P ). (3.14)

For the linearly independent family of hyperplanes {{Q∗j}j∈R0 , {U∗i }l−ki=1} in Pl(C), take a

local parameter z for S at P such that z(P ) = 0 and write F ∗ in the form in (2.2). At P the

maximum possible value of νQj(f)(P ) = νQ∗
j (F ∗)(P ) (j ∈ R0) or νU∗

i (F ∗)(P ) (1 ≤ i ≤ l− k)

is δl(P ), and for the unique hyperplane zl = 0. A second hyperplane can intersect f(S)
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at P with multiplicities at most δl−1(P ), . . .. It follows that

l−k∑
i=1

νU∗
i (F ∗)(P ) +

∑
j∈R0

νQ∗
j (F ∗)(P ) ≤ δ0(P ) + δ1(P ) + · · ·+ δl(P ).

By (2.3), we have

l−k∑
i=1

νUi(f))(P ) +
∑
j∈R0

νQj(f)(P ) ≤
l∑

i=0

(l − i)νi(P ) +
1

2
l(l + 1). (3.15)

Combining (3.15) with (3.14), we get

q∑
j=1

ω(j)νQj(f)(P ) +
l−k∑
i=1

νUi(f)(P ) ≤
l∑

i=0

(l − i)νi(P ) +
1

2
l(l + 1).

Hence, we have

l∑
i=0

∑
P∈E

(l − i)νi(P ) ≥
q∑
j=1

∑
P∈E

ω(j)νQj(f)(P )− 1

2
l(l + 1)|E|. (3.16)

Consider a point P 6∈ E. Then, there exist at most N hypersurfaces which can intersect

F (S) at P . We may assume that F (S) intersects Qj, j ∈ A ⊂ {1, · · · , q} with |A| = N

and F (S) does not intersect Qj with j 6∈ A. Take R1 ⊂ {1, · · · , q} such that R1 ⊃ A

and |R1| = N + 1. We choose R0
1 ⊂ R1 with |R0

1| = rank{Qj}j∈R0
1

= k + 1 such that R0
1

satisfies Lemma 8 (v) with respect to the numbers λj = e
max{νQj(f)

(P )−l,0}
(1 ≤ j ≤ q).

Then, we have ∏
j∈R1

e
ω(j) max{νQj(f)

(P )−l,0} ≤
∏
j∈R0

1

e
max{νQj(f)

(P )−l,0}
.

This yields that

q∑
j=1

ω(j) max{νQj(f)(P )− l, 0} =
∑
j∈R1

ω(j) max{νQj(f)(P )− l, 0}

≤
∑
j∈R0

1

max{νQj(f)(P )− l, 0}.
(3.17)

Denoting k+ 1 hypersurfaces Qj (j ∈ R0
1) by QP,l+1−k, · · · , QP,l+1, we have the linearly

independent family of hyperplanes {{Q∗P,j}l+1
j=l+1−k, {U∗i }

l−k
i=1}. Without loss of generality,

we may assume that

νU1(f)(P ) ≤ · · · ≤ νUl−k(f)(P ) ≤ νQP,l+1−k(f)(P ) ≤ · · · ≤ νQP,l+1(f)(P ).

Then for each 1 ≤ i ≤ l− k, we have νUi(f)(P ) ≤ δi−1(P ) and for each 0 ≤ j ≤ k, we have

νQP,l+1−k+j(f)(P ) ≤ δl−k+j(P ). Since δi ≥ i for 0 ≤ i ≤ l and νQP,l+1−k+j(f)(P ) ≤ δl−k+j(P )
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for 0 ≤ j ≤ k, it is easy to see that

k∑
j=0

[δl−k+j(P )− (l − k + j)] ≥
k∑
j=0

max{δl−k+j(P )− l, 0}

≥
k∑
j=0

max{νQl−1−k+j
(P )− l, 0}.

(3.18)

Combining (2.3) with (3.17) and (3.18), we get

l∑
i=0

(l − i)νi(P ) =
l∑

i=0

(δi(P )− i)

≥
k∑
j=0

[δl−k+j(P )− (l − k + j)]

≥
q∑
j=1

ω(j) max{νQj(f)(P )− l, 0}]

=

q∑
j=1

ω(j)[νQj(f)(P )−min{νQj(f)(P ), l}].

Therefore, we get

l∑
i=0

∑
P 6∈E

(l − i)νi(P ) ≥
q∑
j=1

∑
P 6∈E

ω(j)νQj(f)(P ) −
q∑
j=1

∑
P 6∈E

ω(j) min{νQj(f)(P ), l}.

From (3.16) and by above inequality, we get

l∑
i=0

∑
P∈S

(l − i)νi(P ) ≥
q∑
j=1

∑
P∈S

ω(j)νQj(f)(P ) −
q∑
j=1

∑
P 6∈E

ω(j) min{νQj(f)(P ), l}

− 1

2
l(l + 1)|E|.

(3.19)

Combining this inequality with (2.4) and (2.5), we get

(l + 1) deg(F ∗) + l(l + 1)(g − 1) ≥
q∑
j=1

∑
P∈S

ω(j)νQj(f)(P ) −
q∑
j=1

∑
P 6∈E

ω(j) min{νQj(f)(P ), l}

− 1

2
l(l + 1)|E|.

Hence,
q∑
j=1

∑
P∈S

ω(j)νQj(f)(P )− (l + 1) deg(F ∗) ≤
q∑
j=1

∑
P 6∈E

ω(j) min{νQj(f)(P ), l}

+
1

2
l(l + 1) · {2(g − 1) + |E|}.
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By Lemma 9, this inequality implies that

q∑
j=1

(ω(j)− (l + 1))d deg(f) ≤
q∑
j=1

∑
P 6∈E

ω(j) min{νQj(f)(P ), l}

+
1

2
l(l + 1) · {2(g − 1) + |E|}.

(3.20)

Using (ii) and (iv) in Lemma 8, we get

θ
( q∑
j=1

ω(j)− (l + 1)
)

= θ
( q∑
j=1

ω(j)− k − 1
)
− θ(l − k)

= (q − 2N + k − 1)− θ(l − k)

≥ q − (2N − k + 1)(l + 1)

k + 1
.

Combining this inequality with (3.20), we have

(
q − (2N − k + 1)(l + 1)

k + 1

)
d deg(f) ≤

q∑
j=1

∑
P 6∈E

θω(j) min{νQj(f)(P ), l}

+
1

2
θl(l + 1) · {2(g − 1) + |E|}.

It follows from (i) and (iv) in Lemma 8 that

(
q − (2N − k + 1)(l + 1)

k + 1

)
deg(f) ≤ 1

d

q∑
j=1

∑
P 6∈E

min{νQj(f)(P ), l}

+
(2N − k + 1)l(l + 1)

2(k + 1)
· 2(g − 1) + |E|

d
.

Since l ≤ Hd(V ) − 1, we obtain again the inequality (3.13) from the above inequality.

Hence, the theorem is proved in the case where all Qi have the same degree.

Step 2. We now prove the theorem in the general case where degQi = di (1 ≤ i ≤ q).

We put Ti = Q
d
di
i (1 ≤ i ≤ q). It is easy to see that the hypersurfaces T1, · · · , Tq have the

same degree d and they are still in N -subgeneral position with respect to V . By (3.13) in
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Step 1, we have(
q − (2N − k + 1)HV (d)

k + 1

)
deg(f) ≤

q∑
j=1

∑
P 6∈E

1

d
min{ν

Q

d
dj
j (f)

(P ), HV (d)− 1}

+
(2N − k + 1)(HV (d)− 1)HV (d)

2(k + 1)
· 2(g − 1) + |E|

d

≤
q∑
j=1

∑
P 6∈E

1

dj
min{νQj(f)(P ), HV (d)− 1}

+
(2N − k + 1)(HV (d)− 1)HV (d)

2(k + 1)
· 2(g − 1) + |E|

d
.

The proof of the Theorem 1 is completed.

4. The proof of Theorem 2

Since S is a complete regular minimal surfaces with finite total curvature, S is confor-

mally equivalent to a compact surface S̄ punctured at a finite mumber of points P1, . . . , Pr

and the generalized Gauss map G extends holomorphically to Ḡ : S̄ → Pm−1(C) (see [3]).

Let {Q1, . . . , Qr0 , Qr0+1, . . . , Qq} be the set of totally ramified hypersurfaces of Ḡ, located

in N -subgeneral position, where Qr0+1, . . . , Qq are exceptional hypersurfaces. Put

E = {P1, . . . , Pr}.

By the results of S.S. Chern and R. Osserman (see [3]), we have

C(S) = −2π deg(Ḡ) ≤ 2π(X − r) = 2π(2− 2g − r − r),

where X is the Euler characteristic of S̄ and g is genus of S̄. Hence,

2(g − 1) ≤ deg(Ḡ)− 2r.

This implies that

2(g − 1) + |E| ≤ deg(Ḡ)− r < deg(Ḡ). (4.21)

Applying the second main theorem for the holomorphic curve G with E = {P1, . . . , Pr}
and by (4.21), we have(

q − (2N − k + 1)HV (d)

k + 1

)
deg(Ḡ) <

r0∑
j=1

∑
P 6∈E

1

dj
min{νQj(Ḡ)(P ), HV (d)− 1}

+

q∑
j=r0+1

∑
P 6∈E

1

dj
min{νQj(Ḡ)(P ), HV (d)− 1}

+
(2N − k + 1)(HV (d)− 1)HV (d)

2(k + 1)
· deg Ḡ

d

(4.22)
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Since Qr0+1, . . . , Qq are exceptional hypersurfaces, for P 6∈ E, νQj(Ḡ)(P ) = 0 for r0 + 1 ≤
j ≤ q. On the other hand, for every P ∈ S and 1 ≤ j ≤ r0, we have

min{νQj(Ḡ)(P ), HV (d)− 1} ≤ (HV (d)− 1) ·min{νQj(Ḡ)(P ), 1} ≤ HV (d)− 1

mj

νQj(Ḡ)(P ).

(4.23)

By Lemma 9, we get

r0∑
j=1

∑
P 6∈E

HV (d)− 1

mjdj
νQj(Ḡ)(P ) ≤

r0∑
j=1

∑
P∈S̄

HV (d)− 1

mjdj
νQj(Ḡ)(P )

=

r0∑
j=1

(HV (d)− 1)dj deg(Ḡ)

mjdj

=

r0∑
j=1

(HV (d)− 1) deg(Ḡ)

mj

.

(4.24)

Combining this with (4.22) and (4.23), we have(
q − (2N − k + 1)HV (d)

k + 1

)
deg(Ḡ) <

r0∑
j=1

(HV (d)− 1) deg(Ḡ)

mj

+
(2N − k + 1)(HV (d)− 1)HV (d)

2(k + 1)
· deg(Ḡ)

d
.

For all 1 ≤ k ≤ m− 1, the above inequality implies that

q∑
j=1

(
1− HV (d)− 1

mj

)
≤ q −

r0∑
j=1

HV (d)− 1

mj

<
(2N − k + 1)HV (d)(HV (d) + 2d− 1)

2(k + 1)d
.

The proof of Theorem 2 is completed.

5. The proof of Theorem 4

Replacing Qj by Q
d/dj
j if necessary, without loss of generallity, we may assume that

dj = d for 1 ≤ j ≤ q.

Assume that G1 6≡ G2 on S. Consider the equivalence relation on Q = {1, . . . , q} given

by

i ∼ j if and only if
Qi(G1)

Qi(G2)
− Qj(G1)

Qj(G2)
≡ 0.

Therefore, the set of indexes Q may be split up disjoint equivalence classes S1, . . . , St.

Since Q1, Q2 . . . , Qq are in N -subgeneral position, we have |Sk| ≤ N for all 1 ≤ k ≤ t.

Without loss of generality, we can assume that Sk = {ik−1 + 1, ik−1 + 2, · · · , ik, } for



22 DO DUC THAI AND PHAM DUC THOAN AND NOULORVANG VANGTY

1 ≤ k ≤ t, where 1 = i1 < i2 < · · · < it = q. It mean that

Q1(G1)

Q1(G2)
≡ Q2(G1)

Q2(G2)
≡ · · · ≡ Qi1(G1)

Qi1(G2)︸ ︷︷ ︸
S1 group

6≡ Qi1+1(G1)

Qi1+1(G2)
≡ Qi1+2(G1)

Qi1+2(G2)
≡ · · · ≡ Qi2(G1)

Qi2(G2)︸ ︷︷ ︸
S2 group

Qi2+1(G1)

Qi2+1(G2)
≡ Qi2+2(G1)

Qi2+2(G2)
≡ · · · ≡ Qi3(G1)

Qi3(G2)︸ ︷︷ ︸
S3 group

6≡ · · · 6≡
Qit−1+1(G1)

Qit−1+1 + 1
(G2) ≡ · · · ≡ Qit(G1)

Qit(G2)︸ ︷︷ ︸
St group

.

Define the map σ : {1, . . . , q} → {1, . . . , q} by

σ(i) =

i+M if i+M ≤ q,

i+M − q if i+M > q.

Then obviously σ is bijective and |σ(i)− i| ≥M . This implies that i and σ(i) belong two

distinct elements of {S1, . . . , Sk}. So we have

Qi(G1)

Qi(G2)
−
Qσ(i)(G1)

Qσ(i)(G2)
6≡ 0.

Put χi := Qi(G1)Qσ(i)(G2)−Qσ(i)(G1)Qi(G2). Then χ 6≡ 0. Define

χ :=

q∏
j=1

χi =

q∏
j=1

(Qi(G1)Qσ(i)(G2)−Qσ(i)(G1)Qi(G2)) 6≡ 0.

It is easy to see that ∑
P∈S

νχ(P ) ≤ dq(deg(G1) + deg(G2)). (5.25)

By the same arguments as in Lemma [4, 8] or [12], we have the following lemma.

Lemma 10. Under the conditions of Theorem 4, we get

νχ(P ) ≥
(
q − 2k + 2kM

2kM

) q∑
j=1

(
min{νG1

(P ),M}+ min{νG2
(P ),M}

)
for all P 6∈ E.

Then from this Lemma and (5.25), we get

q∑
j=1

∑
P 6∈E

1

d

(
min{νG1

(P ),M}+ min{νG2
(P ),M}

)
≤ 2kMq

q − 2k + 2kM
(deg(G1) + deg(G2)).

(5.26)

Let EG1 =
⋃q
i=1G

−1
1 (Qj). By assumption (i), EG2 =

⋃q
i=1G

−1
2 (Qj).

We can assume that G1(S) is contained in a complex projective subspace V of dimension

k, but not in any complex projective subspace of lower dimension k.

Case d > 1.
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By Theorem 1, we immediately obtain(
q − (2N − n+ 1)(M + 1)

n+ 1

)
deg(G1) ≤

q∑
j=1

∑
P 6∈E

1

d
min{νQj(f)(P ),M}

+
(2N − n+ 1)M(M + 1)

2(n+ 1)
· 2(g − 1) + |E|

d
,

where M =

(
n+ d

n

)
− 1 and E = {P1, . . . , Pr}. By using (4.21), we have

(
q − (2N −m+ 2)(M + 1)

m

)
deg(G1) ≤

q∑
j=1

∑
P 6∈E

1

d
min{νQj(G1)(P ),M}

+
(2N −m+ 2)M(M + 1)

2m
· 2(g − 1) + |E|

d

<

q∑
j=1

∑
P∈S

1

d
min{M, νQj(G1)(P )}

+
(2N −m+ 2)M(M + 1)

2m
· deg (G1)

d
.

So (
q − (2N −m+ 2)(M + 1)(M + 2d)

2dm

)
deg(G1) ≤

q∑
j=1

∑
P 6∈E

1

d
min{νQj(G1)(P ),M}.

Similarly, we have(
q − (2N −m+ 2)(M + 1)(M + 2d)

2dm

)
deg(G2) ≤

q∑
j=1

∑
P 6∈E

1

d
min{νQj(G2)(P ),M}.

Combining two above equalities with Lemma 10 and (5.26), we get

q − (2N −m+ 2)(M + 1)(M + 2d)

2dm
<

2kMq

q − 2k + 2kM
. (5.27)

This is a contradiction.

Case d = 1.

We have HV (d) = k + 1. Applying Theorem 1 for the holomorphic curve G1 and using

the above argument, we get(
q − (2N − k + 1)(k + 2)

2

)
deg(G1) ≤

q∑
j=1

∑
P 6∈E

1

d
min{νQj(G1)(P ), k}.

It follows from (2N − k + 1)(k + 2) ≤ (2N −m+ 2)(m+ 1) for all 0 < k ≤ m− 1 that(
q − (2N −m+ 2)(m+ 1)

2

)
deg(G1) ≤

q∑
j=1

∑
P 6∈E

min{νQj(G1)(P ),m− 1}
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and also(
q − (2N −m+ 2)(m+ 1)

2

)
deg(G2) ≤

q∑
j=1

∑
P 6∈E

min{νQj(G2)(P ),m− 1}

These inequalities will lead us to the inequality (5.27) for the case d = 1. So the proof of

Theorem 4 is completed.
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