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Abstract
In this paper, the robust finite-time passivity for a class of fractional-order neural networks
with uncertainties is considered. Firstly, the definition of finite-time passivity of fractional-
order neural networks is introduced. Then, by using finite-time stability theory and linear
matrix inequality approach, new sufficient conditions that ensure the finite-time passivity of
the fractional-order neural network systems are derived via linear matrix inequalities which
can be effectively solved by various computational tools. Finally, three numerical examples
with simulation results are given to illustrate the effectiveness of the proposed method.
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1 Introduction

Fractional order calculus is a natural generalization of classical integer order calculus. In
recent years, this field of science has gained many interests due to the fact that the mathe-
matical methods for fractional calculus have great development and fractional order models
have come to play an important role inmany applications and real-world physical phenomena
[1–4]. In particularly, fractional-order neural networks is one of an important applications
of fractional calculus. Compared with integer order neural networks, fractional order neural
networks can describe the real dynamic characteristics of actual network systems accurately.

B Mai Viet Thuan
thuanmv@tnus.edu.vn

Dinh Cong Huong
dinhconghuong@tdtu.edu.vn

Duong Thi Hong
duonghong42@gmail.com

1 Department of Mathematics and Informatics, Thainguyen University of Science, Thai Nguyen,
Vietnam

2 Department for Management of Science and Technology Development, Ton Duc Thang University,
Ho Chi Minh City, Vietnam

3 Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-018-9902-9&domain=pdf
http://orcid.org/0000-0002-9931-5015


M. V. Thuan et al.

Therefore, fractional-order neural networks has received considerable attention [5]. The prob-
lem of stability analysis of fractional-order neural network systemswas considered in [6–11].
Finite-time stability for fractional-order neural network systems was studied in [12–14]. The
authors in [15] investigated the problem of mixed H∞/passive projective synchronization
for fractional-order neural networks with uncertain parameters by using the adaptive slid-
ing mode control approach. The problem of adaptive synchronization of fractional-order
memristor-based neural networks with time delay was considered in [16] by combining the
adaptive control, linear delay feedback control, and a fractional-order inequality. As an exten-
sion, synchronization problem of Caputo fractional-order complex-valued neural networks
with time delay was investigated in [17].

The passivity theory originated from circuit theory plays an important role in the stability
analysis of dynamical systems [18–20]. The main idea of passivity theory is that the passive
properties of the systemcan keep the system internally stable.Based onLyapunov–Krasovskii
functional method, a lot of results have been obtained for the problem of passivity analysis
of integer order neural networks (see [21–26] and the references therein). Recently, the prob-
lem of mixed H∞ and passivity based synchronization criteria for memristor-based recurrent
neural networks with time-varying delays was considered in [27] based on the master-slave
concept, differential inclusions theory and Lyapunov–Krasovskii stability theory. It should be
noticed that all the results mentioned abovewere developed in the context of Lyapunov stabil-
ity. However, in some practical process, the main attention may be related to the behavior of
the dynamical systems over a fixed finite-time interval. To discuss this transient performance
of control dynamics, literatures on finite-time stability (FTS) and finite-time boundedness
(FTB) have attracted particular interests of researchers. Comparing with Lyapunov asymp-
totic stability (LAS), which deals with the asymptotic behavior of a system over a sufficiently
long-time interval, FTS and FTB concern the domain of the state trajectory over a specified
finite time interval. FTS and FTBmeans that once we fix a time interval, the state of a system
does not exceed a certain bound during this specified time interval. It should be pointed
out that FTS and LAS are independent concepts; indeed a system can be FTS but not LAS,
and vice versa. From the view of engineering, it is interesting and worthy to investigate the
problem of finite-time passivity of dynamical systems. The dynamical systems is said to be
finite-time passive if the systems is not only finite-time stable but can also satisfies the given
passive index. Based on this idea, the problem of optimal finite-time passive control problem
for a class of uncertain nonlinear Markovian jumping systems was considered in [28] by
using a fuzzy Lyapunov–Krasovskii functional approach. Recently, by employing an appro-
priate mode-dependent Lyapunov function and some appropriate free-weighting matrices,
the problem of finite-time passivity and passification for stochastic time-delayed Markovian
switching systems were studied in [29]. Based on passive control theory, some sufficients
for the existence of finite-time robust passive controller for a class of uncertain Lipschitz
nonlinear systems with time-delays was proposed in [30]. For neural network systems, some
novel results have been derived [31,32]. Particularly, in [31], the authors investigated the
problem of finite-time boundedness and finite-time passivity of discrete-time delayed neu-
ral network systems with time-varying delays by using the Lyapunov theory together with
the zero inequalities, convex combination and reciprocally convex combination approaches.
Recently, the problem of finite-time non-fragile passivity control for neural network systems
with time-varying delay was considered in [32] by using Lyapunov–Krasovskii functional
method. However, all the above results are limited to integer order systems. To the best of
authors knowledge, so far, no result on the finite-time passivity for fractional-order neural
network systems with uncertainties has been reported. This motivates our present research.
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Motivated by the above discussions, the problem of finite-time passivity of fractional-
order neural network systems is considered. Firstly, definition of finite-time passivity for
the fractional-order neural network systems is given. The definition can be regarded as an
extension of definition for integer order neural network systems to fractional-order ones.
Then, by using finite-time stable theory and linear matrix inequality approach, sufficient
conditions are derived to guarantee that the fractional-order neural network systems is not
only finite-time stable but can also satisfies the given passive index. Finally, the feasibility
and the effectiveness of our obtained result is illustrated by some numerical examples.

Notation The following notations will be used in this paper: Rn denotes the n−dimensional
linear vector space over the reals with the Euclidean norm ‖.‖ given by ‖x‖ =√
x21 + . . . + x2n , x = (x1, . . . , xn)T ∈ R

n; R
n×m denotes the space of n × m matrices.

For a real matrix A, λmax(A) and λmin(A) denote the maximal and the minimal eigenvalue
of A, respectively. A matrix P is positive definite (P > 0) if xT Px > 0,∀x �= 0; P > Q
means P − Q > 0. The symmetric term in a matrix is denoted by ∗.

2 Problem Statement and Preliminaries

In order to describe the model, we firstly give some useful definitions and lemmas on
Riemann–Liouville fractional integral and Caputo fractional derivative of order α > 0.

Definition 1 [1] The Riemann–Liouville fractional integral operator of order α > 0 of a
function f (t) is defined by

0 I
α
t f (t) = 1

Γ (α)

∫ t

0
(t − s)α−1 f (s) ds,

where Γ (.) is the gamma function, Γ (s) =
∞∫
0
e−t t s−1dt, s > 0.

Definition 2 [1] The Caputo fractional-order derivative of order α > 0 for a function f (t)
is defined as

C
0 D

α
t f (t) = 1

Γ (n − α)

∫ t

0

f (n)(s)

(t − s)α+1−n
ds, t ≥ 0, n − 1 < α ≤ n,

where n is a positive integer. In particular, when 0 < α < 1, we have

C
0 D

α
t f (t) = 1

Γ (1 − α)

∫ t

0

ḟ (s)

(t − s)α
ds, t ≥ 0.

Lemma 1 ([33]) If x(t) ∈ Cn([0,+∞),R) and n − 1 < α < n, (n ≥ 1, n ∈ Z
+), then

0 I
α
t

(
C
0 D

α
t x(t)

)
= x(t) −

n−1∑
k=0

tk

k! x
(k)(0).

In particular, when 0 < α < 1, we have

0 I
α
t

(
C
0 D

α
t x(t)

)
= x(t) − x(0).

Now, we consider a class of fractional-order neural network systems with parameter
uncertainties described by
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⎧
⎪⎨
⎪⎩

C
0 D

α
t x(t) = − [A + �A(t)] x(t) + [D + �D(t)] f (x(t)) + Wω(t), t ≥ 0,

y(t) = M f (x(t)) + Nω(t), t ≥ 0,

x(0) = x0 ∈ R
n,

(1)

where 0 < α < 1 is the fractional commensurate order of the system, x(t) =
(x1(t), . . . , xn(t))T ∈ R

n is the pseudo state vector, y(t) ∈ R
p is the output vec-

tor, ω(t) ∈ R
m is the disturbance input, n is the number of neurals, f (x(t)) =

( f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T ∈ R
n denotes the activation function, A =

diag{a1, a2, . . . , an} ∈ R
n×n is a positive diagonal matrix, D ∈ R

n×n is the intercon-
nection weight matrix, W ∈ R

n×m, M ∈ R
p×n, N ∈ R

p×m are known real matrices,
�A(t) = GaFa(t)Ha,�D(t) = Gd Fd(t)Hd , Ga,Gd , Ha, Hd are known real constant
matrices of appropriate dimensions; Fa(t), Fd(t) are unknown real time-varying matrices
satisfying FT

a (t)Fa(t) ≤ I , FT
d (t)Fd(t) ≤ I ,∀t ≥ 0.

In order to obtain the main results about the finite-time passivity of the system (1), the
following conditions are needed in a later study.

Assumption 1 The activation functions fi (.) are continuous, fi (0) = 0 (i = 1, . . . , n), and
satisfies Lipschitz condition on R with Lipschitz constant li > 0 :

| fi (x) − fi (y)| ≤ li |x − y|,∀x, y ∈ R. (2)

Especially, when y = 0, we have

| fi (x)| ≤ li |x |, ∀x ∈ R. (3)

Assumption 2 The disturbance input ω(t) ∈ R
m is time-varying satisfying the following

condition:
∃d > 0 : ωT (t)ω(t) < d,∀t ∈ [0, T f ]. (4)

Definition 3 [34,35] (Finite-time boundedness) Given positive numbers T f , c1, c2(c1 <

c2), d, and a symmetric positive definite matrix R ∈ R
n×n . The system (1) with the output

y(t) = 0 is robustly finite-time stable with respect to (c1, c2, T f , R, d) if xT0 Rx0 ≤ c1 �⇒
xT (t)Rx(t) < c2,∀t ∈ [0, T f ], for all the disturbance input ω(t) ∈ R

m satisfying the
Assumption 2.

Definition 4 (Finite-time passivity) The system (1) is said to be finite-time passive with
respect to (c1, c2, T f , R, d) if the following conditions are satisfied:

(i) When the input y(t) ≡ 0, the system (1) is robustly finite-time stable with respect to
(c1, c2, T f , R, d).

(ii) Under the zero initial condition, there exist a scalar γ > 0 such that the following
inequality holds

2 0 I
α
t

(
yT (t)ω(t)

)
≥ −γ 0 I

α
t

(
ωT (t)ω(t)

)
,∀t ∈ [0, T f ].

Remark 1 It should be noted that when α = 1 the Definition 4 is turned into the definition of
finite-time passivity of integer-order systems which have been considered in [30]. Therefore,
this definition generalize those given in the literature.

Now, we recalled the following auxiliary lemmas which are essential in order to derive
our main results in this paper.
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Lemma 2 ([36]) Let x(t) ∈ R
n be a vector of diffrentiable function. Then, for any time

instant t ≥ t0, the following relationship holds

1

2
C
t0D

α
t

(
xT (t)Px(t)

)
≤ xT (t)P C

t0D
α
t x(t), ∀α ∈ (0, 1),∀t ≥ t0 ≥ 0,

where P ∈ R
n×n is a symmetric positive definite matrix.

Lemma 3 ([37]) Given constant matrices X , Y , Z with appropriate dimensions satisfying
Y = Y T > 0, X = XT , then X + ZT Y−1Z < 0 if and only if

[
X ZT

Z −Y

]
< 0.

3 Main Results

Firstly, we derive a sufficient condition for the finite-time boundedness of the fractional-order
neural network systems with parameter uncertainties (1).

Theorem 1 For given positive numbers c1, c2, T f and a symmetric positive definite matrix
R. Assume that the Assumptions 1, 2 are satisfied. The system (1) with the output y(t) ≡
0 is robustly finite-time stable with respect to (c1, c2, T f , R, d) if there exist a symmetric
positive definite matrix P ∈ R

n×n and positive numbers θ, ε1, ε2, ε3 satisfying the following
conditions

⎡
⎢⎢⎢⎢⎣

Ξ11 PD PGa PGd PW
∗ Ξ22 0 0 0
∗ ∗ −ε1 I 0 0
∗ ∗ ∗ −ε2 I 0
∗ ∗ ∗ ∗ −ε3 I

⎤
⎥⎥⎥⎥⎦

< 0, (5a)

λ2c1 + dε3

Γ (α + 1)
T α
f < λ1c2, (5b)

where

P = R− 1
2 PR− 1

2 , λ1 = λmin(P), λ2 = λmax(P), L = diag{l1, l2, . . . , ln},
Ξ11 = −PA − AT P + ε1H

T
a Ha + θLT L,

Ξ22 = ε2H
T
d Hd − θ I .

Proof Consider the following non-negative quadratic function

V (x(t)) = xT (t)Px(t).

It follows from Lemma 2 that we obtain the α−order (0 < α < 1) Caputo derivative of
V (x(t)) along the trajectories of the system (1) as follows:

C
0 D

α
t V (x(t)) ≤ 2xT (t)P C

0 D
α
t x(t)

= xT (t)
[
−PA − AT P

]
x(t) − 2xT (t)PGaFa(t)Hax(t)

+ 2xT (t)PDf (x(t)) + 2xT (t)PGd Fd(t)Hd f (x(t)) + 2xT (t)PWω(t).
(6)
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By using the Cauchy matrix inequality, we have the following estimates

−2xT (t)PGaFa(t)Hax(t) ≤ ε−1
1 xT (t)PGaG

T
a Px(t) + ε1x

T (t)HT
a Hax(t), (7)

2xT (t)PGd Fd(t)Hd f (x(t)) ≤ ε−1
2 xT (t)PGdG

T
d Px(t) + ε2 f

T (x(t))HT
d Hd f (x(t)),

(8)

2xT (t)PWω(t) ≤ ε−1
3 xT (t)PWWT Px(t) + ε3ω

T (t)ω(t). (9)

From the Assumption 1, we have

0 ≤ −θ f T (x(t)) f (x(t)) + θxT (t)LT Lx(t). (10)

From (6)–(10), we obtain

C
0 D

α
t V (x(t)) ≤ ηT (t)Ωη(t) + ε3ω

T (t)ω(t), (11)

where

η(t) =
[

x(t)
f (x(t))

]
, Ω =

[
Ω11 PD
DT P Ω22

]
,

with

Ω11 = −PA−AT P+θLT L+ε1H
T
a Ha+ε−1

1 PGaG
T
a P+ε−1

2 PGdG
T
d P+ε−1

3 PWWT P,

Ω22 = ε2H
T
d Hd − θ I .

Using the Schur Complement Lemma (Lemma 3), we can see that Ω < 0 is equivalent to
(5a). Therefore, from the condition (5a), we have the following estimate

C
0 D

α
t V (x(t)) ≤ ε3ω

T (t)ω(t), ∀t ∈ [0, T f ]. (12)

Integrating with order α both sides of (12) from 0 to t (0 < t < T f ) and using Lemma 1, we
have

xT (t)Px(t) ≤ xT (0)Px(0) + 0 I
α
t

(
ε3ω

T (t)ω(t)
)

= xT (0)Px(0) + ε3

Γ (α)

∫ t

0
(t − s)α−1ωT (s)ω(s)ds

≤ xT (0)Px(0) + dε3

Γ (α)

∫ t

0
(t − s)α−1ds

≤ xT (0)Px(0) + dε3

Γ (α + 1)
T α
f .

(13)

On the other hand, the following condition holds

xT (t)Px(t) = xT (t)R
1
2 PR

1
2 x(t) ≥ λmin(P)xT (t)Rx(t) = λ1x

T (t)Rx(t), (14)

and

xT (0)Px(0) = xT (0)R
1
2 PR

1
2 x(0) ≤ λmax(P)xT (0)Rx(0) = λ2x

T (0)Rx(0) ≤ λ2c1.
(15)

Combining (13), (14) and (15), we get

λ1x
T (t)Rx(t) ≤ V (x(t)) = xT (t)Px(t) ≤ λ2c1 + dε3

Γ (α + 1)
T α
f .

Condition (5b) implies that xT (t)Rx(t) < c2. Thus, the system (1) with the output y(t) = 0
is robustly finite-time stable with respect to (c1, c2, T f , R, d). This completes the proof of
the theorem. ��
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Remark 2 The problem of finite-time stability for fractional-order neural networks have been
attracted a lot of research attention by many authors in the literatures. For example, by
using Hölder inequality, Gronwall inequalities and inequality scaling skills, the authors in
[38] studied the problem of finite-time stability of fractional delayed neural networks of
retarded-type. The result of [38] was later improved in [39]. As an extension, the problem
of finite-time stability for fractional-order complex-valued neural networks was considered
in [40]. We note that all the above results considered the problem of finite-time stability for
fractional-order neural networks. To the best of authors knowledge, so far, no result on the
finite-time boundedness for Caputo fractional neural networks with uncertainties has been
reported. By using finite-time stable theory and linear matrix inequality approach, Theorem
1 solves the problem of finite-time boundedness for fractional-order neural networks with
uncertainties in the form of linear matrix inequalities. Compared with the existing results
[38,40] based on matrix norm computation, our linear matrix inequality approach has the
advantage that the linear matrix inequalities can be solved numerically and effectively by
using the interior-point method [37].

Next, we present a sufficient condition for finite-time passivity of the fractional-order
neural network systems with parameter uncertainties (1).

Theorem 2 For given positive numbers c1, c2, T f and a symmetric positive definite matrix R.
Assume that the Assumptions 1, 2 are satisfied. The system (1) is robustly finite-time passive
with respect to (c1, c2, T f , R, d) if there exist a symmetric positive definite matrix P ∈ R

n×n

and positive numbers γ, θ, ε1, ε2, ε3 satisfying the following conditions
⎡
⎢⎢⎢⎢⎢⎢⎣

Ξ11 PD 0 PGa PGd PW
∗ Ξ22 −MT 0 0 0
∗ ∗ Ξ33 0 0 0
∗ ∗ ∗ −ε1 I 0 0
∗ ∗ ∗ ∗ −ε2 I 0
∗ ∗ ∗ ∗ ∗ −ε3 I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0, (16a)

λ2c1 + dε3

Γ (α + 1)
T α
f < λ1c2, (16b)

where

P = R− 1
2 PR− 1

2 , λ1 = λmin(P), λ2 = λmax(P), L = diag{l1, l2, . . . , ln},
Ξ11 = −PA − AT P + ε1H

T
a Ha + θLT L,

Ξ22 = ε2H
T
d Hd − θ I ,

Ξ33 = ε3 I − (N + NT + γ I ).

Proof When y(t) = 0, (16a) and (16b) imply (5a) and (5b). Therefore, from Theorem 1, the
system is robustly finite-time stable with respect to (c1, c2, T f , R, d). To show the finite-time
passive analysis of the system (1), we choose the non-negative quadratic function as given
in Theorem 1. We have the following estimate:

C
0 D

α
t V (x(t)) − 2yT (t)ω(t) − γωT (t)ω(t) ≤ ξ T (t)Ω̂ξ(t), (17)

where

ξ(t) =
⎡
⎣

x(t)
f (x(t))
ω(t)

⎤
⎦ , Ω̂ =

⎡
⎣

Ω11 PD 0
∗ Ω22 −MT

∗ ∗ Ω33

⎤
⎦ ,
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with

Ω11 = −PA−AT P+θLT L+ε1H
T
a Ha+ε−1

1 PGaG
T
a P+ε−1

2 PGdG
T
d P+ε−1

3 PWWT P,

Ω22 = ε2H
T
d Hd − θ I ,

Ω33 = ε3 I − (N + NT + γ I ).

By using the Schur Complement Lemma (Lemma 3), we have that Ω̂ < 0 is equivalent to
(16a). Therefore, from the Condition (16a), we obtain

C
0 D

α
t V (x(t)) − 2yT (t)ω(t) − γωT (t)ω(t) ≤ 0. (18)

Now, we set

J = 0 I
α
t

(
−2yT (t)ω(t) − γωT (t)ω(t)

)

= 1

Γ (α)

∫ t

0
(t − s)α−1

(
−2yT (s)ω(s) − γωT (s)ω(s)

)
ds, t ∈ [0, T f ].

Noting the zero initial condition and using Lemma 1, we have

J = 0 I
α
t

(
C
0 D

α
t V (x(t)) − 2yT (t)ω(t) − γωT (t)ω(t)

)
− V (x(t))

≤ 0 I
α
t

(
C
0 D

α
t V (x(t)) − 2yT (t)ω(t) − γωT (t)ω(t)

) (19)

due to V (x(t)) ≥ 0.
Combining (18) and (19), we get J < 0. Hence

2 0 I
α
t

(
yT (t)ω(t)

)
≥ −γ 0 I

α
t

(
ωT (t)ω(t)

)
,∀t ∈ [0, T f ].

Hence it can be concluded that the system (1) is finite-time passive. This completes the proof
of the theorem. ��
Remark 3 Since the Condition (16a) are linear matrix inequalities, we can solve the condition
by using Matlab’s LMI Control Toolbox in [37]. Therefore, from Theorem 2, we have the
following Algorithm to solve the problem of robust finite-time passivity for the fractional-
order neural network systems with parameter uncertainties (1):

Step 1 Solve the linearmatrix inequalities (16a) andobtain symmetric positive definitematrix
P ∈ R

n×n and positive numbers γ, θ, ε1, ε2, ε3.

Step 2 Compute P = R− 1
2 PR− 1

2 , λ1 = λmin(P), λ2 = λmax(P).
Step 3 Check Condition (16b) in Theorem 2. If they hold, enter Step 4; else return to Step 1.
Step 4 The system (1) is finite-time passive with respect to (c1, c2, T f , R, d).

Remark 4 Thepresentmethod used inTheorem2can be regarded as an extension of passivity-
based methods for integer order neural networks systems (see, e.g., [21,22,24]) to fractional
order ones. To the best of our knowledge, this is the first time that finite-time passivity of
fractional-order neural networks with uncertainties is investigated. Thanks to Lemmas 1 and
2, the investigation is readily achievable.

We now discuss a special case of system (1). Particularly, when �A(t) = 0,�D(t) = 0,
then system (1) is reduced to the Caputo fractional order neural networks which has been
considered in [9]
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⎧
⎪⎨
⎪⎩

C
0 D

α
t x(t) = −Ax(t) + Df (x(t)) + Wω(t), t ≥ 0,

y(t) = M f (x(t)) + Nω(t),

x(0) = x0 ∈ R
n .

(20)

The authors in [9] considered the problemof Lyapunov asymptotic stability of the system (20)
when output y(t) ≡ 0 and disturbance input ω(t) ≡ 0. In contrast, in this paper, we study the
problems of finite-time boundedness and finite-time passivity of the Caputo fractional-order
neural network (20). According to Theorems 1 and 2, we immediately have the following
results.

Corollary 1 For given positive numbers c1, c2, T f and a symmetric positive definite matrix
R. Assume that the Assumptions 1, 2 are satisfied. The system (20)with the output y(t) ≡ 0 is
robustly finite-time stable with respect to (c1, c2, T f , R, d) if there exist a symmetric positive
definite matrix P ∈ R

n×n and positive numbers θ, ε satisfying the following conditions
⎡
⎣

(−PA − AT P + θLT L
)
PD PW

∗ −θ I 0
∗ ∗ −ε I

⎤
⎦ < 0, (21a)

λ2c1 + dε

Γ (α + 1)
T α
f < λ1c2, (21b)

where

P = R− 1
2 PR− 1

2 , λ1 = λmin(P), λ2 = λmax(P), L = diag{l1, l2, . . . , ln}.
Corollary 2 For given positive numbers c1, c2, T f and a symmetric positive definite matrix
R. Assume that the Assumptions 1, 2 are satisfied. The system (20) is robustly finite-time
passive with respect to (c1, c2, T f , R, d) if there exist a symmetric positive definite matrix
P ∈ R

n×n and positive numbers γ, θ, ε satisfying the following conditions
⎡
⎢⎢⎣

(−PA − AT P + θLT L
)
PD 0 PW

∗ −θ I −MT 0
∗ ∗ (

ε I − (N + NT + γ I )
)

0
∗ ∗ ∗ −ε I

⎤
⎥⎥⎦ < 0, (22a)

λ2c1 + dε

Γ (α + 1)
T α
f < λ1c2, (22b)

where

P = R− 1
2 PR− 1

2 , λ1 = λmin(P), λ2 = λmax(P), L = diag{l1, l2, . . . , ln}.
Remark 5 In this paper, we derive some sufficient conditions that ensure the finite-time pas-
sivity of the fractional-order neural networks by constructing a simple Lyapunov functional
and using linear matrix inequality approach. To get less conservative criteria by constructing
a more complex Lyapunov function is not easy because it is very difficult to calculate the
fractional order derivative of a complex Lyapunov function [9,41]. Therefore, constructing a
more suitable and effective Lyapunov functional is essential and require further investigation.

4 Numerical Examples

In this section, we provide three examples to demonstrate the effectiveness of the proposed
method.
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Fig. 1 xT (t)Rx(t) of the system for α = 0.96

Example 1 In system (20) with output y(t) ≡ 0, we consider the following neural networks
of n = 3 neurons with hub structure [42], α = 0.96, x(t) = (x1(t), x2(t), x3(t))T ∈ R

3 is
pseudo state, f (x(t)) = (sin(x1(t)), tanh(x2(t)), tanh(x3(t)))T ∈ R

3 is activation function,
ω(t) = 0.1 cos t ∈ R is disturbance input, A = diag{6, 2, 2}, and

D =
⎡
⎣
3 −2 −2
1 1 0
1 0 1

⎤
⎦ , W =

⎡
⎣
0.2
0.5
0.9

⎤
⎦ .

Then system (20) with output y(t) ≡ 0 can be rewritten as

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

C
0 D0.96

t x1(t) = −6x1(t) + 3 sin(x1(t)) − 2 tanh(x2(t)) − 2 tanh(x3(t)) + 0.02 cos t, t ≥ 0,
C
0 D0.96

t x2(t) = −2x2(t) + sin(x1(t)) + tanh(x2(t)) + 0.05 cos t, t ≥ 0,
C
0 D0.96

t x3(t) = −2x3(t) + sin(x1(t)) + tanh(x3(t)) + 0.09 cos t, t ≥ 0,

x(0) = x0 ∈ R
3.

(23)
We consider problem of finite-time boundedness of the Caputo fractional-order neural net-
works (23). We see that the Assumptions 1 and 2 hold with L = diag{1, 1, 1}, d = 0.01.
Let c1 = 1, c2 = 3.7, T f = 10 and matrix R = I . By using Corollary 1, we found that the
Conditions (21a), (21b) are satisfied with θ = 0.8763, ε = 1.0818 and

P =
⎡
⎣

0.1692 −0.0033 −0.0035
−0.0033 0.4879 −0.0249
−0.0035 −0.0249 0.4790

⎤
⎦ .

Thus the conditions of Corollary 2 are satisfied. Therefore, system (23) is robust finite-time
boundedness with respect to (1, 3.7, 10, I , 0.01).

The trajectory of xT (t)Rx(t) for the system is shown in Fig. 1, which clearly demonstrate
that the system (23) is robustly finite-time boundedness.

Example 2 In system (20), consider the following neural networks of n = 3 neurons with
ring structure [42], α = 0.98, x(t) = (x1(t), x2(t), x3(t))T ∈ R

3 is pseudo state, f (x(t)) =
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Fig. 2 xT (t)Rx(t) of the system for α = 0.98

(sin(x1(t)), sin(x2(t)), sin(x3(t)))T ∈ R
3 is activation function, ω(t) = 0.1 sin t ∈ R is

disturbance input, y(t) ∈ R is output vector, A = diag{5, 6, 5.5}, and

D =
⎡
⎣

3 1 −2.5
−2.5 3 1
1 −2.5 3

⎤
⎦ , W =

⎡
⎣
0.2
0.3
0.5

⎤
⎦ , M = [

0.1 0.3 0.1
]
, N = [

1
]
.

Then system (20) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C
0 D

0.98
t x1(t) = −5x1(t) + 3 sin(x1(t)) + sin(x2(t)) − 2.5 sin(x3(t)) + 0.02 sin t, t ≥ 0,

C
0 D

0.98
t x2(t) = −6x2(t) − 2.5 sin(x1(t)) + 3 sin(x2(t)) + sin(x3(t)) + 0.03 sin t, t ≥ 0,

C
0 D

0.98
t x3(t) = −5.5x3(t)+ sin(x1(t))−2.5 sin(x2(t)) + 3 sin(x3(t)) + 0.05 sin t, t ≥ 0,

y(t) = 0.1 sin(x1(t)) + 0.3 sin(x2(t)) + 0.1 sin(x3(t)) + 0.1 sin t, t ≥ 0,

x(0) = x0 ∈ R
3.

(24)
We consider problem of finite-time passivity of the Caputo fractional-order neural networks
(24). We see that the Assumptions 1 and 2 hold with L = diag{1, 1, 1}, d = 0.01. Let
c1 = 1, c2 = 2.3, T f = 10 and matrix R = I . By using Corollary 2, we found that the
Conditions (22a), (22b) are satisfied with θ = 1.0692, ε = 1.5909, γ = 1.2841 and

P =
⎡
⎣
0.2068 0.0192 0.0210
0.0192 0.1840 0.0173
0.0210 0.0173 0.1945

⎤
⎦ .

Thus the conditions of Corollary 2 are satisfied. Therefore, system (24) is robustly finite-time
passive with respect to (1, 2.3, 10, I , 0.01).

The trajectory of xT (t)Rx(t) for the system is shown in Fig. 2, which clearly demonstrate
that the system (24) is robustly finite-time passive.
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Fig. 3 xT (t)Rx(t) of the system for α = 0.95

Example 3 We consider the fractional-order neural network systems with parameter uncer-
tainties:
⎧
⎪⎨
⎪⎩

C
0 D

0.95
t x(t) = − [A+GaFa(t)Ha] x(t)+ [D+Gd Fd(t)Hd ] f (x(t))+Wω(t), ∀t ≥ 0,

y(t) = Mx(t) + Nω(t),

x(0) = x0 ∈ R
2,

(25)
where x(t) = (x1(t), x2(t))T ∈ R

2 and

A =
[
2 0
0 3

]
, Ga =

[
0
1

]
, Ha = [

0.2 0.3
]
, Fa(t) = sin t,

D =
[
0.1 0.5
0.9 1

]
, Gd =

[
0.1
0.1

]
, Hd = [

0.5 0.8
]
, Fd(t) = sin t,

W =
[
0.05
0.06

]
, M = [

1 2
]
, N = [

1
]
.

The disturbance is choose as ω(t) = √
0.1 sin t ∈ R. Hence the disturbance satisfying Con-

dition 4 with d = 0.1. Take the activation function as f (x(t)) = (tanh x1(t), tanh x2(t))T ∈
R
2. We have the activation function f (x(t)) satisfies the Condition 2 with L = diag{1, 1}.

Let c1 = 1, c2 = 3.3, T f = 10 and matrix R = I . By using Theorem 2 and Remark 2,
we found that the Conditions (16a), (16b) are satisfied with θ = 5.0421, γ = 4.6726, ε1 =
3.5343, ε2 = 1.9506, ε3 = 2.8204, and

P =
[
2.2328 −0.0080

−0.0080 1.4915

]
.

Thus the conditions of Theorem 2 are satisfied. Therefore, system (25) is robustly finite-time
passive with respect to (1, 3.3, 10, I , 0.1).

The trajectory of xT (t)Rx(t) for the system is shown in Fig. 3, which clearly demonstrate
that the system (25) is robustly finite-time passive.
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5 Conclusion

This paper has dealt with the problem of finite-time passivity analysis of fractional-order
neural network systems with uncertainties. By extending the concept of passivity-based
methods for integer-order neural network systems to fractional-order neural network systems
and utilizing a recently established lemma for the Caputo fractional derivative of a quadratic
function and using linear matrix inequalities approach, LMI-based conditions that ensure the
passivity of the fractional-order neural network systems have been derived. The effectiveness
of proposed method has been demonstrated by three numerical examples.
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