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Abstract In this paper, we introduce a new algorithm for solving variational inequality
problems with monotone and Lipschitz-continuous mappings in real Hilbert spaces. Our al-
gorithm requires only to compute one projection onto the feasible set per iteration. We prove
under certain mild assumptions, a strong convergence theorem for the proposed algorithm to
a solution of a variational inequality problem. Finally, we give some numerical experiments
illustrating the performance of the proposed algorithm for variational inequality problems.
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1 Introduction

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖ ·‖. Let
C be a nonempty closed convex subset in H.

Now, we consider the classical variational inequality problem (VIP), which is to find a
point x∗ ∈C such that

〈Ax∗,y− x∗〉 ≥ 0, ∀y ∈C, (1)

where A : H→ H is a mapping.

We assume that the following conditions hold:
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(C1) The solution set of (1), denoted by V I(C,A), is nonempty.
(C2) The mapping A is monotone, i.e.,

〈Ax−Ay,x− y〉 ≥ 0, ∀x,y ∈ H.

(C3) The mapping A is Lipschitz-continuous with constant L > 0, i.e., there exists L > 0
such that

‖Ax−Ay‖ ≤ L‖x− y‖, ∀x,y ∈ H.

Variational inequality theory is an important tool in economics, engineering mechanics,
mathematical programming, transportation, and others (see, for example, [2,3,11,16,18]).
Many numerical methods have been constructed for solving variational inequalities and re-
lated optimization problems, see [7,4,5,6,17,23,31,32,33,34,36,40,41] and the references
therein.

One of the most popular method for solving the problem (VIP) is the extragradient
method (EGM) which introduced in 1976 by Korpelevich [19] as follows:

x ∈C,

yn = PC(xn−λAxn),

xn+1 = PC(xn−λAyn), ∀n≥ 0,
(2)

where λ ∈ (0,
1
L
) and PC denotes the metric projection from H onto C.

First, this method (EGM) was proposed for solving saddle point problems in finite-
dimensional space, but, after that, this method was further extended to the problem (VIP) in
both Euclidean spaces and Hilbert spaces.

In recent years, the method (EGM) has received great attention by many authors, that is,
there are many results have been obtained by the extragradient method and its modifications
when A is monotone and L-Lipschitz continuous in infinite-dimensional Hilbert spaces (see,
for instance, [8,22,26,39]).

In [22], to obtian the strong convergence of extragradient method (EGM) in real Hilbert
spaces, Maingé proposed the algorithm as follows

x0 ∈ H,

yn = PC(xn−λnAxn),

tn = PC(xn−λnAyn),

xn+1 = tn−αnFtn,

where A : H → H is monotone on C and L-Lipschitz continuous on H and F : H → H is
Lipschitz continuous and strongly monotone on C such that V I(C,A) 6= /0. Maingé proved

that if the parameters satisfy the conditions: λn ∈ [a,b]⊂ (0,
1
L
), αn ∈ [0,1), limn→∞ αn = 0

and ∑
∞
n=0 αn = ∞ then the sequence {xn} converges strongly to x∗ ∈ V I(C,A), where x∗ is

the element such that
〈Fx∗,x− x∗〉 ≥ 0 ∀x ∈V I(C,A).

The drawback of these results is the need to calculate two projections onto the closed
convex set C in each iteration. So, in case that the set C is not simple to calculate projection
onto it, a minimum distance problem has to be solved twice in one iteration, which is a fact
that might affect the efficiency and applicability of this method (EGM).
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To overcome this drawback. Censor et al. [4] introduced the subgradient extragradient
method (SEGM), in which the second projection onto C is replaced by a projection onto a
specific constructible half-space:

yn = PC(xn−λAxn),

Tn = {w ∈ H : 〈xn−λAxn− yn,w− yn〉 ≤ 0},
xn+1 = PTn(xn−λAyn), ∀n≥ 0,

(3)

where λ ∈ (0,
1
L
). In order to obtain the strong convergence of the method (SEGM), they

[5] also introduced the following hybrid subgradient extragradient method (HSEGM):

x0 ∈ H
yn = PC(xn−µAxn),

Tn = {x ∈ H : 〈xn−λAxn− yn,x− yn〉 ≤ 0},
zn = αnxn +(1−αn)PTn(xn−λAyn),

Cn = {w ∈ H : ‖zn−w‖ ≤ ‖xn−w‖},
Qn = {w ∈ H : 〈xn−w,x0− xn〉 ≥ 0},
xn+1 = PCn∩Qn x0, ∀n≥ 0,

(4)

and they proved, under appropriate conditions, that the the sequence {xn} generated by (4)
converges strongly to a point p = PV I(C,A)(x0).

As Kraikaew and Saejung noted in [17] that the sequence {xn} generated by (4) seems to
be difficult to use in practical problems because the computation of the next iterate becomes
a subproblem of finding a point in the intersection of two additional half-spaces.

Inspired by the results in [5], Kraikaew and Saejung [17] combined the subgradient
extragradient method and the Halpern method to propose an algorithm, which is called the
Halpern subgradient extragradient method (HPSEGM) for solving the problem (VIP) as
follows: 

x0 ∈ H,

yn = PC(xn−λAxn),

Tn = {x ∈ H : 〈xn−λAxn− yn,x− yn〉 ≤ 0},
zn = PTn(xn−λAyn),

xn+1 = αnx0 +(1−αn)zn, ∀n≥ 0,

(5)

where λ ∈ (0,
1
L
), {αn} ⊂ (0,1), limn→∞ αn = 0, ∑

∞
n=1 αn = +∞, and they proved that the

sequence {xn} generated by the method (HPSEGM) converges strongly to a point p =
PV IP(C,A)x0.

In this paper, we wish to focus on a close, but different type of the algorithm, known as
Tseng’s extragradient method (TEGM) [37], which use only one projection in each itera-
tion: 

x0 ∈ H,

yn = PC(xn−λAxn),

xn+1 = yn−λ (Ayn−Axn), ∀n≥ 0,
(6)

where λ ∈ (0,
1
L
).



4 Duong Viet Thong et al.

Recently, the method (TEGM) for solving the problem (VIP) (1) has received great
attention by many authors (see, for example, [31,35,38] and the references therein).

In this paper, motivated and inspired by the work of Censor et al. [5], Kraikaew and Sae-
jung [17], first, we investigate the strong convergence for solving the problem (VIP) by our
new algorithm which is a combination between the modified Tseng extragradient method
and the viscosity method [20,25] for solving the problem (VIP) in Hilbert spaces. Second,
we show that an advantage of the proposed algorithm is the computation of only two values
of the inequality mapping and one projection onto the feasible set per one iteration, which
distinguishes our method from most other projection-type methods for variational inequality
problems with monotone mappings (see [5,12,17,23,38]). Finally, we give some numeri-
cal experiments for the performance of the proposed algorithm for variational inequality
problems.

This paper is organized as follows: In Sect. 2, we recall some definitions and prelimi-
nary results for further use. Sect. 3 deals with analyzing the convergence of the proposed
algorithms. Finally, in Sect. 4, we perform some numerical experiments to illustrate the
behaviours of the proposed algorithms in comparison with other algorithms.

2 Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H.

• The weak convergence of {xn} to x is denoted by xn ⇀ x as n→ ∞;
• The strong convergence of {xn} to x is written as xn→ x as n→ ∞.

For each x,y ∈ H, we have the following:

‖x+ y‖2 = ‖x‖2 +2〈x,y〉+‖y‖2;

‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉; (7)

For all point x ∈ H, there exists the unique nearest point in C, denoted by PCx, such that

‖x−PCx‖ ≤ ‖x− y‖, ∀y ∈C.

PC is called the metric projection of H onto C. It is known that PC is nonexpansive.

Lemma 2.1 ([13]) Let C be a nonempty closed convex subset of a real Hilbert space H. For
any x ∈ H and z ∈C, we have

z = PCx ⇐⇒ 〈x− z,z− y〉 ≥ 0, ∀y ∈C.

Lemma 2.2 ([13]) Let C be a closed convex subset in a real Hilbert space H and x ∈ H.
Then

(1) ‖PCx−PCy‖2 ≤ 〈PCx−PCy,x− y〉 for all y ∈C;
(2) ‖PCx− y‖2 ≤ ‖x− y‖2−‖x−PCx‖2 for all y ∈C.

For some more properties of the metric projection, refer to Section 3 in [13].
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Lemma 2.3 ([15,28]) Let {an} be sequence of nonnegative real numbers, {αn} be a se-
quence of real numbers in (0,1) with ∑

∞
n=1 αn = ∞ and {bn} be a sequence of real numbers.

Assume that
an+1 ≤ (1−αn)an +αnbn, ∀n≥ 1,

If limsupk→∞ bnk ≤ 0 for every subsequence {ank} of {an} satisfying liminfk→∞(ank+1 −
ank)≥ 0 then limn→∞ an = 0.

Lemma 2.4 ([17]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let
A : H→H be a monotone and L-Lipschitz continuous mapping on C and let S = PC(I−λA),
where λ > 0. If {xn} is a sequence in H satisfying xn ⇀ q and xn − Sxn → 0, then q ∈
V I(C,A) = Fix(S).

3 Main results

Recently, some authors have studied the convergence of modified inertial Mann algo-
rithms and inertial CQ-algorithms to fixed points of nonexpansive mappings ([10]) and the
convergence of inertial projection and contraction algorithms to solutions of variational in-
equality problems in Hilbert spaces ([9]).

In this section, we construct Algorithm 3.1 by the modified Tseng extragradient via
using the term αn(xn− xn−1), which is called the inertia, and it can be regarded as the pro-
cedure of speeding up the convergence properties (see, for example, [1,21,27]). Therefore,
the following algorithm is different from the algorithms studied in [31,37,38].

Let f : H→ H be a contraction mapping with contraction parameter κ ∈ [0,1). Let λ ∈
(0,

1
L
), {αn} ⊂ [0,α) for some α > 0 and {βn} ⊂ (0,1) satisfying the following conditions:

lim
n→∞

βn = 0,
∞

∑
n=1

βn = ∞.

Now, we introduce the following algorithm:

Algorithm 3.1

Initialization: Let x0,x1 ∈ H be arbitrary.

Iterative Steps: Calculate xn+1 as follows:

Step 1. Set wn = xn +αn(xn− xn−1) and compute

yn = PC(wn−λAwn).

If yn = wn, then stop and yn is a solution of the problem (VIP).
Otherwise, go to Step 2.
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Step 2. Comptue Compute

xn+1 = βn f (xn)+(1−βn)zn,

where zn = yn−λ (Ayn−Awn). Set n := n+1 and go to Step 1.

Now, we give our main results in this paper.

Theorem 3.1 Assume that (C1), (C2), (C3) hold and the sequence {αn} is chosen such that
it satisfies the following condition:

lim
n→∞

αn

βn
‖xn− xn−1‖= 0. (8)

Then the sequence {xn} generated by Algorithm 3.1 converges strongly to an element p ∈
V I(C,A), where p = PV I(C,A) ◦ f (p).

Remark 3.1 In [29], Suantai et al. noted that the condition (8) is easily implemented in the
numerical computation since the value of ‖xn−xn−1‖ is known before choosing αn. Indeed,
the parameter αn can be chosen such that

αn =

min{ τn
‖xn−xn−1‖

,
α

2
} if xn 6= xn−1,

α

2
if otherwise,

where {τn} is a positive sequence such that τn = ◦(βn).

Proof Claim 1. The sequence {xn} is bounded. Indeed, for p = PV I(C,A) ◦ f (p), first, we
show that

‖zn− p‖2 ≤ ‖wn− p‖2− (1−λ
2L2)‖yn−wn‖2. (9)

Now, we have

‖zn− p‖2 = ‖yn−λ (Ayn−Awn)− p‖2

= ‖yn− p‖2 +λ
2‖Ayn−Awn‖2−2λ 〈yn− p,Ayn−Awn〉

= ‖wn− p‖2 +‖wn− yn‖2 +2〈yn−wn,wn− p〉+λ
2‖Ayn−Awn‖2

−2λ 〈yn− p,Ayn−Awn〉
= ‖wn− p‖2 +‖wn− yn‖2−2〈yn−wn,yn−wn〉+2〈yn−wn,yn− p〉
+λ

2‖Ayn−Awn‖2−2λ 〈yn− p,Ayn−Awn〉
= ‖wn− p‖2−‖wn− yn‖2 +2〈yn−wn,yn− p〉+λ

2‖Ayn−Awn‖2

−2λ 〈yn− p,Ayn−Awn〉. (10)

Since yn = PC(wn−λAwn), we have

〈yn−wn +λAwn,yn− p〉 ≤ 0

or, equivalently,
〈yn−wn,yn− p〉 ≤ −λ 〈Awn,yn− p〉. (11)
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From (10) and (11), it follows that

‖zn− p‖2 ≤ ‖wn− p‖2−‖wn− yn‖2−2λ 〈Awn,yn− p〉+λ
2‖Ayn−Awn‖2

−2λ 〈yn− p,Ayn−Awn〉
= ‖wn− p‖2−‖wn− yn‖2 +λ

2‖Ayn−Awn‖2−2λ 〈yn− p,Ayn〉
≤ ‖wn− p‖2−‖wn− yn‖2 +λ

2L2‖yn−wn‖2−2λ 〈yn− p,Ayn−Ap〉
−2λ 〈yn− p,Ap〉
≤ ‖wn− p‖2− (1−λ

2L2)‖yn−wn‖2.

Therefore, we have
‖zn− p‖ ≤ ‖wn− p‖. (12)

From the definition of wn, we get

‖wn− p‖= ‖xn +αn(xn− xn−1)− p‖
≤ ‖xn− p‖+αn‖xn− xn−1‖

= ‖xn− p‖+βn.
αn

βn
‖xn− xn−1‖. (13)

By the condition
αn

βn
‖xn−xn−1‖→ 0, it follows that there exists a constant M1 > 0 such that

αn

βn
‖xn− xn−1‖ ≤M1, ∀n≥ 1. (14)

Combining (12), (13) and (18), we obtain

‖zn− p‖ ≤ ‖wn− p‖ ≤ ‖xn− p‖+βnM1. (15)

From the definition of {xn}, we get

‖xn+1− p‖= ‖βn f (xn)+(1−βn)zn− p‖
= ‖βn( f (xn)− p)+(1−βn)(zn− p)‖
≤ βn‖ f (xn)− p‖+(1−βn)‖zn− p‖
≤ βn‖ f (xn)− f (p)‖+βn‖ f (p)− p‖+(1−βn)‖zn− p‖
≤ βnκ‖xn− p‖+βn‖ f (p)− p‖+(1−βn)‖zn− p‖. (16)

Substituting (15) into (16), we obtain

‖xn+1− p‖ ≤ (1− (1−κ)βn)‖xn− p‖+βnM1 +βn‖ f (p)− p‖.

= (1− (1−κ)βn)‖xn− p‖+(1−κ)βn
M1 +‖ f (p)− p‖

1−κ

≤max
{
‖xn− p‖, M1 +‖ f (p)− p‖

1−κ

}
≤ ·· ·

≤max
{
‖x0− p‖, M1 +‖ f (p)− p‖

1−κ

}
.

This implies {xn} is bounded. We also get {zn},{ f (xn)},{wn} are bounded.
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Claim 2.

(1−βn)(1−λ
2L2)‖yn−wn‖2 ≤ ‖xn−q‖2−‖xn+1−q‖2 +βnM4 (17)

for some M4 > 0. Indeed, we get

‖xn+1− p‖2 ≤ βn‖ f (xn)− p‖2 +(1−βn)‖zn− p‖2

≤ βn(‖ f (xn)− f (p)‖+‖ f (p)− p‖)2 +‖zn− p‖2

≤ βn(κ‖xn− p‖+‖ f (p)− p‖)2 +(1−βn)‖zn− p‖2

≤ βn(‖xn− p‖+‖ f (p)− p‖)2 +(1−βn)‖zn− p‖2

= βn‖xn− p‖2 +βn(2‖xn− p‖ · ‖ f (p)− p‖
+‖ f (p)− p‖2)+(1−βn)‖zn− p‖2

≤ βn‖xn− p‖2 +(1−βn)‖zn− p‖2 +βnM2 (18)

for some M2 > 0. Substituting (9) into (18), we get

‖xn+1− p‖2 ≤ βn‖xn− p‖2 +(1−βn)‖wn− p‖2

− (1−βn)(1−λ
2L2)‖yn−wn‖2 +βnM2, (19)

which implies from (15) that

‖wn− p‖2 ≤ (‖xn− p‖+βnM1)
2

= ‖xn− p‖2 +βn(2M1‖xn− p‖+βnM2
1 )

≤ ‖xn− p‖2 +βnM3, (20)

for some M3 > 0. Combining (19) and (20), we obtain

‖xn+1− p‖2 ≤ βn‖xn− p‖2 +(1−βn)‖xn− p‖2 +βnM3

− (1−βn)(1−λ
2L2)‖yn−wn‖2 +βnM2

= ‖xn− p‖2 +βnM3− (1−βn)(1−λ
2L2)‖yn−wn‖2 +βnM2.

This implies that

(1−βn)(1−λ
2L2)‖yn−wn‖2 ≤ ‖xn−q‖2−‖xn+1−q‖2 +βnM4,

where M4 := M2 +M3.

Claim 3.

‖xn+1− p‖2 ≤ (1− (1−κ)βn)‖xn− p‖2

+(1−κ)βn ·
[ 2

1−κ
〈 f (p)− p,xn+1− p〉+ 3M

1−κ
· αn

βn
· ‖xn− xn−1‖

]
for some M > 0. Indeed, we have

‖wn− p‖2 = ‖xn +αn(xn− xn−1)− p‖2

= ‖xn− p‖2 +2αn〈xn− p,xn− xn−1〉+α
2
n‖xn− xn−1‖2

≤ ‖xn− p‖2 +2αn‖xn− p‖‖xn− xn−1‖+α
2
n‖xn− xn−1‖2. (21)
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Using (7), we have

‖xn+1− p‖2 = ‖βn f (xn)+(1−βn)zn− p‖2

= ‖βn( f (xn)− f (p))+(1−βn)(zn− p)+βn( f (p)− p)‖2

≤ ‖βn( f (xn)− f (p))+(1−βn)(zn− p)‖2 +2βn〈 f (p)− p,xn+1− p〉
≤ βn‖ f (xn)− f (p)‖2 +(1−βn)‖zn− p‖2 +2βn〈 f (p)− p,xn+1− p〉
≤ βnκ

2‖xn− p‖2 +(1−βn)‖zn− p‖2 +2βn〈 f (p)− p,xn+1− p〉
≤ βnκ‖xn− p‖2 +(1−βn)‖zn− p‖2 +2βn〈 f (p)− p,xn+1− p〉
≤ βnκ‖xn− p‖2 +(1−βn)‖wn− p‖2 +2βn〈 f (p)− p,xn+1− p〉. (22)

Substituting (21) into (22), we have

‖xn+1− p‖2

≤ (1− (1−κ)βn)‖xn− p‖2 +2αn‖xn− x∗‖‖xn− xn−1‖+α
2
n‖xn− xn−1‖2

+2βn〈 f (p)− p,xn+1− p〉

= (1− (1−κ)βn)‖xn− p‖2 +(1−κ)βn ·
2

1−κ
〈 f (p)− p,xn+1− p〉

+αn‖xn− xn−1‖(2‖xn− x∗‖+αn‖xn− xn−1‖)

≤ (1− (1−κ)βn)‖xn− p‖2 +(1−κ)βn ·
2

1−κ
〈 f (p)− p,xn+1− p〉

+αn‖xn− xn−1‖(2‖xn− x∗‖+α‖xn− xn−1‖)
≤ (1− (1−κ)βn)‖xn− p‖2

+(1−κ)βn ·
2

1−κ
〈 f (p)− p,xn+1− p〉+3Mαn‖xn− xn−1‖

≤ (1− (1−κ)βn)‖xn− p‖2

+(1−κ)βn ·
[ 2

1−κ
〈 f (p)− p,xn+1− p〉+ 3M

1−κ
· αn

βn
· ‖xn− xn−1‖

]
,

where M := supn∈N{‖xn− x∗‖,θ‖xn− xn−1‖}> 0.

Claim 4. {‖xn − p‖2} converges to zero. Indeed, by Lemma 2.3 it suffices to show
that limsupk→∞〈 f (p)− p,xnk+1− p〉 ≤ 0 for every subsequence {‖xnk − p‖} of {‖xn− p‖}
satisfying

liminf
k→∞

(‖xnk+1− p‖−‖xnk − p‖)≥ 0.

For this, suppose that {‖xnk− p‖} is a subsequence of {‖xn− p‖} such that liminfk→∞(‖xnk+1−
p‖−‖xnk − p‖)≥ 0. Then

liminf
k→∞

(‖xnk+1− p‖2−‖xnk− p‖2)= liminf
k→∞

[(‖xnk+1− p‖−‖xnk− p‖)(‖xnk+1− p‖+‖xnk− p‖)]≥ 0.

By Claim 2 we obtian

limsup
k→∞

(1−βnk)(1−λ
2L2)‖ynk −wnk‖

2 ≤ limsup
k→∞

[‖xnk − p‖2−‖xnk+1−q‖2 +βnk M4]

≤ limsup
k→∞

[‖xnk − p‖2−‖xnk − p‖2]+ limsup
k→∞

βnk M4

=− liminf
k→∞

[‖xnk+1−q‖2−‖xnk
− p‖2]

≤ 0.
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This implies that

lim
k→∞
‖ynk −wnk‖= 0. (23)

Now, we show that

‖xnk+1− xnk‖→ 0 as n→ ∞. (24)

Indeed, from (23), it follows that

‖znk −wnk‖= ‖ynk −λ (Aynk −Awnk)−wnk‖
≤ ‖ynk −wnk‖+λ‖Aynk −Awnk‖
≤ (1+λL)‖ynk −wnk‖→ 0. (25)

Moreover, we have

‖xnk+1− znk‖= βnk‖znk − f (xnk)‖→ 0, (26)

and

‖xnk −wnk‖= αnk‖xnk − xnk−1‖= βnk .
αnk

βnk

‖xnk − xnk−1‖→ 0. (27)

From (25), (26) and (27), we get

‖xnk+1− xnk‖ ≤ ‖xnk+1− znk‖+‖znk −wnk‖+‖wnk − xnk‖→ 0.

Since the sequence {xnk} is bounded, it follows that there exists a subsequence {xnk j
} of

{xnk}, which converges weakly to some z ∈ H, such that

limsup
k→∞

〈 f (p)− p,xnk − p〉= lim
j→∞
〈 f (p)− p,xnk j

− p〉= 〈 f (p)− p,z− p〉. (28)

From (23) and Lemma 2.4, we have z ∈ V I(C,A) and, from (28) and the definition of p =
PV I(C,A) ◦ f (p), we have

limsup
k→∞

〈 f (p)− p,xnk − p〉= 〈 f (p)− p,z− p〉 ≤ 0. (29)

Combining (24) and (29), we have

limsup
k→∞

〈 f (p)− p,xnk+1− p〉 ≤ limsup
k→∞

〈 f (p)− p,xnk − p〉

= 〈 f (p)− p,z− p〉
≤ 0. (30)

Hence, by (30), Claim 3 and Lemma 2.3, we have limn→∞ ‖xn− p‖= 0. That is the desired
result.
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4 Numerical illustrations

In this section, we provide two numerical examples to test the proposed algorithm. All
the codes were written in Matlab (R2015a) and run on PC with Intel(R) Core(TM) i3-370M
Processor 2.40 GHz.

Now, we apply Algorithm 3.1 to solve the variational inequality problem (VIP) and
compare numerical results with other algorithms. In the numerical results reported in the
following tables, ‘Iter.’ and ‘Sec.’ denote the number of iterations and the cpu time in sec-
onds, respectively.

Example 1 Suppose that H = L2([0,1]) with the inner product

〈x,y〉 :=
∫ 1

0
x(t)y(t)dt, ∀x,y ∈ H

and the induced norm

‖x‖ :=
(∫ 1

0
|x(t)|2dt

) 1
2
, ∀x ∈ H.

Let C := {x ∈ H : ‖x‖ ≤ 1} be the unit ball and define an operator A : C→ H by

(Ax)(t) = max{0,x(t)}.

It is easy to see that A is 1-Lipschitz continuous and monotone on C. With these given C and
A, the set of solutions to the variational inequality problem (VIP) is given by

Γ = {0} 6= /0.

It is known that

PC(x) =

{
x

‖x‖L2
, if ‖x‖L2 > 1,

x, if ‖x‖L2 ≤ 1.

Now, we apply Algorithm 3.1 (iTEM), Maingé’s algorithm [22] (M and Kraikaew and
Saejung’s algorithm [17] (KR) to solve the variational inequality problem (VIP).

We use the following:

(i) the same parameter λ = 0.5;
(ii) the stopping rule ‖yn−wn‖< 10−3 for Algorithm 3.1 and ‖yn−xn‖< 10−3 for Maingé’s

algorithm and Kraikaew and Saejung’s algorithm;
(iii) the same starting point x0.

Moreover, with respect to Algorithm 3.1, we take f (x) = x
8 , βn =

1
n+1 , θ = 0.6 and

αn =

min
{

θ ,
β 2

n

‖xn− xn−1‖

}
if xn 6= xn−1,

θ otherwise.
(31)

We also choose αn = 1
n+1 for Maingé’s algorithm (M) and Kraikaew and Saejung’s

algorithm (KR). We now make comparison of three algorithms with different x0 and report
the results in Table 4.1.
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x0(t) = t/200 x0(t) = 1
252 (t

2− e−t) x0(t) = 1
525 (sin(−3t)+ cos(−10t))

Sec. Iter. Sec. Iter. Sec. Iter.

Algorithm KR 0.076122 183 0.020808 49 0.011425 28
Algorithm M 0.025144 183 0.0062326 49 0.0035868 28
iTEM 0.0034307 19 0.0024726 15 0.0023558 14

Table 4.1: Comparison of three algorithms in Example 1

The convergence behaviour of algorithms with different starting point is given in Fig-
ures 1-3. In these figures, the value of errors ‖yn−wn‖ (our Algorithm 3.1) and ‖yn− xn‖
(Algorithm (KR) and Algorithm (M) is represented by the y-axis, number of iterations is
represented by the x-axis.

Number of iterations

0 20 40 60 80 100 120 140 160 180 200

E
r
r
o
r

10-3

10-2

10-1

100

101

102

Algorithm (KR)

Algorithm (M)

(iTEM)

Fig. 1: Comparison of three algorithms in Example 1 with x0 = t/200.
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Number of iterations
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Algorithm (M)
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Fig. 2: Comparison of three algorithms in Example 1 with x0 =
1

252 (t
2− e−t).
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Fig. 3: Comparison of three algorithms in Example 1 with x0 =
1

525 (sin(−3t)+cos(−10t)).
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Example 2 Consider the linear operator A : Rm→ Rm defined by A(x) = Mx+ q, which is
taken from [14] and has been considered by many authors for numerical experiments, see,
for example, [24,31], where

M = BBT +S+D,

B is an m×m matrix, S is an m×m skew-symmetric matrix, D is an m×m diagonal matrix,
whose diagonal entries are nonnegative (so M is positive definite), q is a vector in Rm. It
is clear that A is monotone and Lipschitz continuous with the Lipschitz constant L = ||M||.
For q = 0, the unique solution of the corresponding variational inequality is {0}. We will
compare our Algorithm 3.1 (iTEM) with the standard algorithm (Algorithm 3.1 with αk = 0,
shortly, (TEM). The starting point is x0 = (1,1, · · · ,1) ∈ Rm. All entries of the matrices
B,S,D are generated randomly (matrices of normally distributed random numbers).

The feasible set, control parameters and stopping rulues are choosen as in Example 1
except βn =

1
n+2 . The results are described in Table 4.2 and Figures 4–6.

m = 10 m = 40 m = 80

Sec. Iter. Sec. Iter. Sec. Iter.

iTEM 0.4056 56 0.4531 64 1.3281 75
TEM 2.3868 396 4.0313 618 12.1563 710

Table 4.2: Comparison of two algorithms with different m

Number of iterations
0 50 100 150 200 250 300 350 400

E
r
r
o
r

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

(iTEM)

 (TEM)

Fig. 4: Comparison of two algorithms in Example 2 with m = 10.
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Number of iterations
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Fig. 5: Comparison of two algorithms in Example 2 with m = 40.
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Fig. 6: Comparison of two algorithms in Example 2 with m = 80.
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5 Conclusions

The paper has proposed a new method for solving monotone and Lipschitz VIPs in
Hilbert spaces. Under some suitable conditions imposed on parameters, we have proved the
strong convergence of the algorithm. The efficiency of the proposed algorithms has also
been illustrated by several numerical experiments.
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