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Abstract. In this paper we establish some applications of the Scherer-
Hol’s theorem for polynomial matrices. Firstly, we give a representation
for polynomial matrices positive definite on subsets of compact polyhe-
dra. Then we establish a Putinar-Vasilescu Positivstellensatz for homo-
geneous and non-homogeneous polynomial matrices. Next we propose a
matrix version of the Pólya-Putinar-Vasilescu Positivstellensatz. Finally,
we approximate positive semi-definite polynomial matrices using sums
of squares.

1. Introduction

Let R[X] := R[X1, . . . , Xn] denote the (commutative) algebra of poly-
nomials in n variables X1, . . . , Xn with real coefficients. For a fix integer
t > 0, we denote by Mt(R[X]) the algebra of t × t matrices with entries in
R[X], and by St(R[X]) the subalgebra of symmetric matrices. Each element
A ∈Mt(R[X]) is a matrix whose entries are polynomials in R[X], which is
called a polynomial matrix.

For every subset G of St(R[X]) we associate to the set

K(G ) := {x ∈ Rn|G(x) ≥ 0, ∀G ∈ G }.
Here the notation G(x) ≥ 0 means that the matrix G(x) is positive semi-
definite, i.e. vTG(x)v ≥ 0 for every vector v ∈ Rt. For x ∈ Rn, the notation
G(x) > 0 means that the matrix G(x) is positive definite, i.e. vTG(x)v > 0
for every vector v ∈ Rt \ {0}.
In particular, for a subset G of R[X],

K(G) = {x ∈ Rn|g(x) ≥ 0, ∀g ∈ G}.
A result which represents positive polynomials on K(G) is called a Posi-

tivstellensatz. Pólya’s Positivstellensatz (1928) represents homogenoeus poly-
nomials which are positive on the orthant Rn+ \ {0}. Another Positivstellen-
satz "with denominators" was given by Krivine (1964) and Stengle (1974),
which yields also a proof for Artin’s theorem on Hilbert’s 17th problem. The
first "denominator-free" Positivstellensatz was discovered by Schmüdgen
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(1991, [15]). Some other "denominator-free" Positivstellensätze were fol-
lowed by Putinar (1993, [9]), Schweighofer (2006, [19]), etc.

Handelman’s Positivstellensatz (1988) represents positive polynomials on
convex, compact polyhedra with non-empty interiors. Putinar and Vasilescu
(1999, [10]) proposed a Positivstellensatz for polynomials positive on K(G)\
{0}. Dickinson and Povh (2015, [4]) combined the Pólya and the Putinar-
Vasilescu theorems to establish a representation for homogeneous polynomi-
als positive on the intersection Rn+ ∩K(G) \ {0}, which is called the Pólya-
Putinar-Vasilescu Positivstellensatz in this paper.

A result which represents non-negative polynomials on K(G) is called a
Nichtnegativstellensatz. A Nichtnegativstellensatz "with denominator" was
given also by Krivine (1964) and Stengle (1974). Some other Nichtnega-
tivstellensätze were discovered by Scheiderer ([11, 12]). In particular, Mar-
shall (2003, [8]) approximated non-negative polynomials on K(G) using
sums of squares.

A version of Pólya’s Positivstellensatz for polynomial matrices was given
by Scherer and Hol (2006, [13]), with applications e.g. in robust polyno-
mial semi-definite programs. Schmüdgen’s theorem for operator polynomials
was discovered by Cimprič and Zalar [3]. Handelman’s Positivstellensatz for
polynomial matrices was studied in [7]. Some other Positivstellensätze for
polynomial matrices were studied in [6], with matrix denominators.

A version of Putniar’s Positivstellensatz for polynomial matrices was also
given by Scherer and Hol ([13]), see also in [5, Theorem 13].

Theorem 1.1. Let Q ⊆ St(R[X]) be an Archimedean quadratic module
and F ∈ St(R[X]). If F(x) > 0 for all x ∈ K(Q), then F ∈ Q.

A direct consequence of the Scherer-Hol theorem is the following

Corollary 1.2. Let Q ⊆ St(R[X]) be an Archimedean quadratic module
and F ∈ St(R[X]). If F(x) ≥ 0 for all x ∈ K(Q), then F + εI ∈ Q for all
ε > 0.

The main aim of this paper is to apply the Scherer-Hol theorem (The-
orem 1.1 and its consequence, Corollary 1.2) to establish some Positivstel-
lensätze (resp. Nichtnegativstellensätze) for polynomial matrices. More pre-
cisely, we establish firstly in Section 3 a representation for polynomial ma-
trices positive definite on subsets of compact polyhedra. Next, in Section
4 we establish a Putinar-Vasilescu Positivstellensatz for homogeneous and
non-homogeneous polynomial matrices, which also yields a matrix version of
Reznick’s Positivstellensatz. We propose in Section 5 a matrix version of the
Pólya-Putinar-Vasilescu Positivstellensatz. Finally, in Section 6 we propose
a version of the Marshall theorem for polynomial matrices, approximating
positive semi-definite polynomial matrices using sums of squares.
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2. Preliminaries

In this section we shall recall some basis concepts and facts in Real alge-
braic geometry for matrices over commutative rings which are proposed by
Schmüdgen ([16], [17], [18]) and Cimprič ([1], [2]).

Let R[X] := R[X1, . . . , Xn] denote the (commutative) algebra of poly-
nomials in n variables X1, . . . , Xn with real coefficients. For a fix integer
t > 0, we denote by Mt(R[X]) the algebra of t × t matrices with entries in
R[X], and by St(R[X]) the subalgebra of symmetric matrices. Each element
A ∈Mt(R[X]) is a matrix whose entries are polynomials in R[X], which is
called a polynomial matrix. A is also called a matrix polynomial, because it
can be viewed as a polynomial in X1, . . . , Xn whose coefficients come from
Mt(R). Namely, we can write A as

A =
d∑
|α|=0

AαX
α,

where α = (α1, · · · , αn) ∈ Nn0 , |α| := α1 + . . . + αn, Xα := Xα1
1 . . . Xαn

n ,
Aα ∈Mt(R), d is the maximum over all degree of the entries of A and it is
called the degree of the polynomial matrix A. To unify notation, throughout
the paper each element of Mt(R[X]) is called a polynomial matrix.

A subset M of St(R[X]) is called a quadratic module if

I ∈M , M + M ⊆M , ATMA ⊆M ,∀A ∈Mt(R[X]).

The smallest quadratic module which contains a given subset G of St(R[X])
will be denoted by M (G ). It is clear that

M (G ) = {
r∑
i=1

s∑
j=1

AT
ijGiAij |r, s ∈ N0,Gi ∈ G ∪ {I},Aij ∈Mt(R[X])}.

Each element of the form ATA is called a square in Mt(R[X]). The set of
all finite sums of squares in Mt(R[X]) is denoted by

∑
tR[X]2. Note that

M (∅) =
∑

tR[X]2.
In particular, a subset M ⊆ R[X] is called a quadratic module if

1 ∈M, M +M ⊆M, a2M ⊆M ∀a ∈ R[X].

The smallest quadratic module of R[X] which contains a given subset G ⊆
R[X] will be denoted by M(G), and it consists of all elements of the form
σ0 +

∑m
i=1 σigi, where m ∈ N, gi ∈ G, and σ ∈

∑
R[X]2-the set of finite

sums of squares of polynomials in R[X].
A subset M ⊆ R[X] is said to be a semiring if

M +M ⊆M, MM ⊆M, R≥0 ⊆M.

For G = {g1, . . . , gm} ⊆ R[X], the semiring generated by G consists of finite
sums of terms of the form

aαg
α1
1 . . . gαm

m , α = (α1, . . . , αm) ∈ Nm0 , aα ≥ 0,



4 TRUNG HOA DINH, TOAN MINH HO, AND CONG TRINH LE

and denoted by P (G).
For a quadratic module or a semiring M in R[X], denote

M t := {
∑
i

miA
T
i Ai|mi ∈M,Ai ∈Mt(R[X])}.

Since M t contains the set of sums of squares in Mt(R[X]), M t is always a
quadratic module on Mt(R[X]).

For any matrix A ∈ Mt(R[X]), the notation A ≥ 0 means A is positive
semidefinite, i.e. for each x ∈ Rn, vTA(x)v ≥ 0 for all v ∈ Rt; A > 0 means
A is positive definite, i.e. for each x ∈ Rn, vTA(x)v > 0 for all v ∈ Rt \ {0}.

We associate each set G ⊆ St(R[X]) to the set

K(G ) := {x ∈ Rn|G(x) ≥ 0, ∀G ∈ G },

which is a basic closed semi-algebraic set in Rn. In particular, for a subset
G of R[X],

K(G) = {x ∈ Rn|g(x) ≥ 0, ∀g ∈ G}.
The following result of Cimprič ([2]) shows that the set K(G ) can be deter-
mined by scalars, i.e. by polynomials in R[X].

Lemma 2.1 ([2, Proposition 5]). Let G ⊆ St(R[X]). Then there exists a
subset G of R[X] with the following properties:

(1) K(G ) = K(G);
(2) M(G)t ⊆M (G ).

Moreover, if G is finite then G can be chosen to be finite. On the other hand,
if G consists of homogeneous polynomial matrices, then the polynomials in
G are also homogeneous.

A quadratic module or a semiring Q on R[X] (resp. Mt(R[X])) is said to
be Archimedean if for every f ∈ R[X] (resp. F ∈Mt(R[X])), there exists a
λ > 0 such that λ± f ∈ Q (resp. λ · I± F ∈ Q).

Lemma 2.2 ([17, Lemma 12.7, Coro. 12.8]). Let Q be a quadratic module
or a semiring on R[X1, . . . , Xn]. Then Q is Archimedean if and only if there
exists λ > 0 such that λ±Xi ∈ Q, for all i = 1, . . . , n.

Moreover, if Q is a quadratic module, then Q is Archimedean if and only
if there exists λ > 0 such that λ−

∑n
i=1X

2
i ∈ Q.

Lemma 2.3. Let M be a quadratic module or a semiring on R[X]. Then
M is Archimedean if and only if M t is Archimedean. Moreover, for a finite
subset G of R[X], we have

K
(
M(G)t

)
= K

(
M(G)

)
= K(G) = K

(
P (G)

)
= K

(
P (G)t

)
. (2.1)

Proof. For the case M is a quadratic module, the result follows from [6,
Prop. 4]. If M is a semiring, the result follows from Lemma 2.2. The latter
equalities are straightforward. �
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3. Polynomial matrices positive definite on subsets of compact
polyhedra

In this section we give an application of the Scherer-Hol theorem to repre-
sent polynomial matrices which are positive definite on subsets of compact
polyhedra.

Let m and k be positive integers with m ≤ k. Let

G = {g1, . . . , gk} ⊆ R[X] := R[X1, . . . , Xn]

such that g1, · · · , gm are linear. Denote Ĝ = {g1, . . . , gm}. Note thatK(G) ⊆
K(Ĝ). Let P (G) be the semiring generated by G. The following result is a
matrix version of [17, Theorem 12.44].

Theorem 3.1. Suppose that K(Ĝ) is non-empty and compact. For F ∈
St(R[X]), if F(x) > 0 for all x ∈ K(G), then F ∈ P (G)t, i.e. F can be
written as

F =
r∑
i=1

( s∑
j=1

aαijg
αij

)
AT
i Ai,

with αij ∈ Nk0, aαij ≥ 0, gαij := g
(αij)1
1 . . . g

(αij)k
k and Ai ∈Mt(R[X]).

Proof. Since K(Ĝ) is compact, there exists λ > 0 such that for each i =

1, . . . , n, the linear polynomial λ±Xi is non-negative on K(Ĝ). Since K(Ĝ)
is non-empty, it follows from an affine form of Farkas’ lemma (cf. [18, Lemma
12.43]) that for each i = 1, . . . , n we have

λ±Xi = λ0 + λ1f1 + . . .+ λmfm,

with λj ≥ 0, j = 1, . . . ,m. Hence λ ± Xi ∈ P (G) for all i = 1, . . . , n. By
Lemma 2.2, the semiring P (G) is Archimedean.

Moreover, since P (G)t contains the set of sums of squares
∑

tR[X]2, it is
a quadratic module on Mt(R[X]). It follows from Lemma 2.3 that P (G)t is
also Archimedean and

K
(
P (G)t

)
= K(P (G)) = K(G).

For each x ∈ K
(
P (G)t

)
, we have x ∈ K(G), hence F(x) > 0. It follows from

the Scherer-Hol theorem that F ∈ P (G)t. The proof is complete. �

4. A Putinar-Vasilescu Positivstellensatz for polynomial
matrices

The Putinar-Vasilescu Positivstellensatz for homogeneous polynomials is
stated as follows.

Theorem 4.1 ([10, Theorem 4.5]). Let f and g1, . . . , gm be homogeneous
polynomials in R[X] := R[X1, . . . , Xn] of even degree. Denote G = {g1, . . . , gm}.
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If f(x) > 0 for all x ∈ K(G) \ {0}, then there exists a number N > 0 such
that

(
n∑
i=1

X2
i )
Nf ∈M(G).

In this section we apply the Scherer-Hol theorem to give a matrix version
of this Positivstellensatz.

Theorem 4.2. Let G ⊆Mt(R[X]) be a finite set of homogeneous polynomial
matrices of even degrees. Let F ∈ St(R[X]) be a homogeneous polynomial
matrix of even degree d > 0. If F(x) > 0 for all x ∈ K(G ) \ {0}, then there
exist a finite set G of homogeneous polynomials in R[X] of even degrees and
a number N > 0 such that

(
n∑
i=1

X2
i )
NF ∈M(G)t ⊆M (G ).

Proof. It follows from Lemma 2.1 that there exists a finite subset G =
{g1, . . . , gm} of R[X] consisting of homogeneous polynomials of even degrees
d1, . . . , dm, respectively, such that

K(G) = K(G ) and M(G)t ⊆M (G ).

Let λ > 0 such that K(G) ∩ S(0;λ2) 6= ∅, where S := S(0;λ2) denotes the
sphere

{x ∈ Rn : λ2 −
n∑
i=1

x2i = 0}.

Denote

G′ = G ∪ {λ2 −
n∑
i=1

X2
i ,

n∑
i=1

X2
i − λ2}.

Then K(G′) = K(G) ∩ S, and M(G′) = M(G) +
〈
λ2 −

∑n
i=1X

2
i

〉
, where〈

λ2 −
∑n

i=1X
2
i

〉
denotes the ideal in R[X] generated by the polynomial λ2−∑n

i=1X
2
i .

Since λ2 −
∑n

i=1X
2
i ∈ M(G′), it follows from Lemma 2.2 that M(G′)

is an Archimedean quadratic module. Then it follows from Lemma 2.3 that
the quadratic moduleM(G′)t is also Archimedean on Mt(R[X]). By Lemma
2.3,

K
(
M(G′)t

)
= K(M(G′)) = K(G′) = K(G) ∩ S.

For any x ∈ K
(
M(G′)t

)
= K(G′), we have x ∈ K(G) ∩ S, hence x ∈

K(G) \ {0}. Then F(x) > 0. It follows from the Scherer-Hol theorem that
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F ∈M(G′)t, i.e. F can be expressed as

F(X) =

l∑
i=1

(
σi0(X) + σi1(X)g1(X) + . . .+ σim(X)gm(X)

)
AT
i (X)Ai(X)+

+
l∑

i=1

hi(X)(λ2 −
n∑
j=1

X2
j )A

T
i (X)Ai(X), (4.1)

where σij ∈
∑

R[X]2, hi ∈ R[X], Ai ∈Mt(R[X]).

Substituting each Xi by
λXi√
σ

in both sides of (4.1), where σ :=
∑n

j=1X
2
j ,

observing that

λ2 −
n∑
j=1

(λXi√
σ

)2
= 0,

F
(λX√

σ

)
=

λd

σd/2
F(X), and gj

(λX√
σ

)
=

λdj

σdj/2
gj(X),

we have

λd

σd/2
F(X) =

l∑
i=1

(
σi0
(λX√

σ

)
+

m∑
j=1

λdj

σdj/2
σij
(λX√

σ

)
gj(X)

)
AT
i

(λX√
σ

)
Ai

(λXi√
σ

)
.

(4.2)
Denote

e1 := max{deg(σij), j = 0, . . . ,m},
e2 := max{dj , j = 1, . . . ,m},
e3 := max{deg(Ai), i = 1, . . . , l},

which are even numbers. Put N := d/2 + e1/2 + e2/2 + e3, and multiplying
both sides of (4.2) for σN , we have

λdσN−d/2F(X) = σd/2
l∑

i=1

(
σe1/2+e2/2σi0

(λX√
σ

)
+

+
m∑
j=1

λdj (σe1/2σij(
λX√
σ
))σe2/2−dj/2gj(X)

)
σe3AT

i

(λX√
σ

)
Ai

(λXi√
σ

)
.

Note that

σ′i0 := σe1/2+e2/2σi0
(λX√

σ

)
and σ′ij := λdj (σe1/2σij(

λX√
σ
))σe2/2−dj/2

are sums of squares in R[X];

Bi := σe3/2Ai

(λX√
σ

)
∈Mt(R[X]).
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Then

σN−d/2F =
l∑

i=1

(
θi0 +

m∑
j=1

θijgj

)
BT
i Bi,

where θij := λ−dσd/2σ′ij ∈
∑

R[X]2. It follows that

σN−d/2F ∈M(G)t ⊆M (G ).

�

In the case G = ∅, we have the following matrix version of Reznick’s
Positivstellensatz.

Corollary 4.3. Let F ∈ St(R[X]) be a homogeneous polynomial matrix. If
F(x) > 0 for all x ∈ Rn \ {0}, then there exists a number N > 0 such that
(
∑n

i=1X
2
i )
NF ∈

∑
tR[X]2.

To give a non-homogeneous version of Theorem 4.2, we need the following
notions. For a polynomial

g(X) =
∑
|α|≤e

gαX
α ∈ R[X1, . . . , Xn]

of degree e, its homogenization in the ring R[X0, X1, . . . , Xn] is defined by

g̃(X0, X1, . . . , Xn) :=
∑
|α|≤e

gαX
αX

e−|α|
0 .

It is clear that g̃ is homogeneous of degree e and g̃(1, x1, . . . , xn) = g(x1, . . . , xn)
for all (x1, . . . , xn) ∈ Rn..

For a polynomial matrix G ∈ Mt(R[X1, . . . , Xn]) of degree d, we can
write

G(X) =
∑
|α|≤d

GαX
α,

withGα ∈Mt(R). Its homogenization in the algebra Mt(R[X0, X1, . . . , Xn])
is defined by

G̃(X0, . . . , Xn) =
∑
|α|≤d

GαX
αX

d−|α|
0 .

It is obvious that G̃ is homogeneous of degree d and G̃(1, x1, . . . , xn) =
G(x1, . . . , xn) for all (x1, . . . , xn) ∈ Rn.

Corollary 4.4. Let G ⊆ Mt(R[X]) be a finite set of polynomial matrices
of even degrees. Let F ∈ St(R[X]) be a polynomial matrix of even degree.
Denote G̃ := {G̃|G ∈ G } ⊆ Mt(R[X0, X1, . . . , Xn]). If F̃(x) > 0 for all
x ∈ K(G̃ ) \ {0}, then there exist a finite set G of polynomials in R[X] of
even degrees and a number N > 0 such that

(1 +
n∑
i=1

X2
i )
NF ∈M(G)t ⊆M (G ).
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Proof. It follows from Theorem 4.2 that there exist a finite set G̃ of ho-
mogeneous polynomials of even degrees in R[X0, X1, . . . , Xn] and a number
N > 0 such that

(
n∑
i=0

X2
i )
N F̃ ∈M(G̃)t ⊆M (G̃ ). (4.3)

Denote G = {g(1, X1, . . . , Xn)|g ∈ G̃}. Since M(G̃)t ⊆ M (G̃ ), we have
M(G)t ⊆M (G ). Substituting X0 = 1 in both sides of (4.3) we obtain

(1 +

n∑
i=1

X2
i )
NF ∈M(G)t ⊆M (G ).

�

5. A Pólya-Putinar-Vasilescu Positivstellensatz for
polynomial matrices

Dickinson and Povh (2015, [4, Theorem 3.5]) proved the following Posi-
tivstellensatz, which is so-called the Pólya-Putinar-Vasilescu Positivstellen-
satz for homogeneous polynomials, stated as follows.

Theorem 5.1. Let f and g1, . . . , gm be homogeneous polynomials in R[X]
of even degree. Denote G = {g1, . . . , gm}. If f(x) > 0 for all x ∈ Rn+ ∩
K(G)\{0}, then there exists a number N > 0 and homogeneous polynomials
hi, i = 1, . . . ,m with nonnegative coefficients such that

(
n∑
i=1

Xi)
Nf =

m∑
i=1

higi.

In this section we apply the Scherer-Hol theorem to establish a version of
this Positivstellensatz for homogeneous polynomial matrices.

Theorem 5.2. Let G ⊆Mt(R[X]) be a finite set of homogeneous polynomial
matrices of even degrees. Let F ∈ St(R[X]) be a homogeneous polynomial
matrix of even degree d > 0. If F(x) > 0 for all x ∈ Rn+ ∩ K(G ) \ {0},
then there exist a set G = {g1, . . . , gm} ⊆ R[X] consisting of homogeneous
polynomials of even degrees, a number N > 0, homogeneous polynomials hαij

with nonnegative coefficients, and polynomial matrices Ai ∈Mt(R[X]), for
i = 1, . . . , l; j = 1, . . . , r, such that

(
n∑
i=1

Xi)
NF =

l∑
i=1

( r∑
j=1

hαijg
αij

)
AT
i Ai,

where αij ∈ Nm0 , gαij := g
(αij)1
1 . . . g

(αij)m
m .

To give a proof for this Positivstellensatz, we need the following results
for semirings in R[X].



10 TRUNG HOA DINH, TOAN MINH HO, AND CONG TRINH LE

Let P0 be the set of all polynomials in R[X] with nonnegative coeffi-
cients. For G = {g1, . . . , gm} ⊆ R[X], denote by P (G) the semiring in R[X]
generated by G. Put

P0PG :=
{ r∑
i=1

hαig
(αi)1
1 . . . g(αi)m

m |r ∈ N0, αi ∈ Nm0 , hαi ∈ P0

}
.

Let λ > 0 such that K(G) ∩ {λ−
∑n

i=1Xi = 0} 6= ∅. Denote

G′ := G ∪ {X1, . . . , Xn} ∪ {λ−
n∑
j=1

Xj ,

n∑
j=1

Xj − λ}.

Let P (G′) be the semiring in R[X] generated by G′.

Lemma 5.3. P (G′) = P0P (G) +
〈
λ−

∑n
j=1Xj

〉
.

Proof. Since each element of P (G′) is a finite sum of elements of the form

aαβγX
α1
1 . . . Xαn

n gβ11 . . . gβmm (λ−
n∑
j=1

Xj)
γ1(

n∑
j=1

Xj − λ)γ2 ,

with aαβγ ≥ 0, αi, βj , γk ∈ N0, we have P (G′) ⊆ P0P (G) +
〈
λ−

∑n
j=1Xj

〉
.

Conversely, since P0P (G) ⊆ P (G′), it is sufficient to prove that〈
λ−

n∑
j=1

Xj

〉
⊆ P (G′).

In fact, for each polynomial p ∈ R[X], we have

p = p+ − p−,
where p+ and p− are in P0. Since λ−

∑n
j=1Xj ∈ P (G′) and

∑n
j=1Xj − λ ∈

P (G′), it is easy to verify that for every p(λ−
∑n

j=1Xj) ∈
〈
λ−

∑n
j=1Xj

〉
with p ∈ R[X], we have

p(λ−
n∑
j=1

Xj) = p+(λ−
n∑
j=1

Xj) + p−(

n∑
j=1

Xj − λ) ∈ P (G′).

The proof is complete.
�

Lemma 5.4. P (G′) is an Archimedean semiring, hence P (G′)t is an Archimedean
quadratic module in Mt(R[X]).

Proof. For each i = 1, . . . , n, since Xi ∈ P (G′) and λ > 0, we have

λ+Xi ∈ P (G′).
Moreover, we have

λ−Xi = (λ−
n∑
i=1

Xi) +

n∑
i=2

Xi ∈ P (G′).
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It follows from Lemma 2.2 that P (G′) is an Archimedian semiring. �

Proof of Theorem 5.2. It follows from Lemma 2.1 that there exists a fi-
nite subset G = {g1, . . . , gm} of R[X] consisting of homogeneous polynomials
of even degrees d1, . . . , dm, respectively, such that

K(G) = K(G ) and M(G)t ⊆M (G ).

Let λ > 0 such that K(G) ∩ {λ−
∑n

i=1Xi = 0} 6= ∅. Denote

G′ := G ∪ {X1, . . . , Xn} ∪ {λ−
n∑
j=1

Xj ,
n∑
j=1

Xj − λ}.

Let P (G′) be the semiring in R[X] generated by G′. It follows from Lemma
5.3 that

P (G′) = P0P (G) +

〈
λ−

n∑
j=1

Xj

〉
,

and by Lemma 2.3, we have

K
(
P (G′)t

)
= K(P (G′)) = K(G′) = Rn+ ∩K(G) ∩ {λ−

n∑
k=1

Xk = 0}.

Then, for each x ∈ K
(
P (G′)t

)
, we have x ∈ Rn+∩K(G)∩{λ−

∑n
k=1Xk = 0},

hence x ∈ Rn+ ∩ K(G) \ {0}. The hypothesis implies that F(x) > 0. Note
that P (G′)t is Archimedean by Lemma 5.4. Thus, applying the Scherer-Hol
theorem we obtain

F ∈ P (G′)t =
(
P0P (G) +

〈
λ−

n∑
k=1

Xk

〉)t
.

Then F can be written as

F =

l∑
i=1

( r∑
j=1

h′αij
gαij + ϕi(λ−

n∑
k=1

Xk)
)
BT
i Bi, (5.1)

with αij ∈ Nm0 , h′αij
∈ P0, gαij := g

(αij)1
1 . . . g

(αij)m
m , ϕi ∈ R[X], Bi ∈

Mt(R[X]).

Substituting each Xi by
λXi

σ
in both sides of (5.1), where σ :=

∑n
k=1Xk,

observing that

λ−
n∑
k=1

λXk

σ
= 0,

F
(λX
σ

)
=
λd

σd
F(X), and gαij

(λX
σ

)
=
λpij

σpij
gαij (X),

where pij = (αij)1d1 + . . .+ (αij)mdm, we have

λd

σd
F(X) =

l∑
i=1

( r∑
j=1

h′αij

(λX
σ

)λpij
σpij

gαij (X)
)
BT
i

(λX
σ

)
Bi

(λX
σ

)
. (5.2)
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Let

e1 := max{deg(h′αij
), i = 1, . . . , l; j = 1, . . . , r};

e2 := max{pij , i = 1, . . . , l; j = 1, . . . , r};
e3 := max{deg(Bi), i = 1, . . . , l}.

Put N := d+ e1 + e2 +2e3, and multiplying both sides of (5.2) with σN , we
get

λdσN−dF(X) =

l∑
i=1

( r∑
j=1

(
σd+e1+e2

λpij

σpij
h′αij

(λX
σ

))
gαij (X)

)
·

·
(
σe3BT

i

(λX
σ

))(
σe3Bi

(λX
σ

))
.

Note that Ai := λ−dσe3Bi

(λX
σ

)
∈Mt(R[X]). Moreover, consider the poly-

nomial

h′′αij
(X) = σd+e1+e2

λpij

σpij
h′αij

(λX
σ

)
.

For any µ ∈ R, µ 6= 0, we have

h′′αij
(µX) = µd+e1+e2−pijσd+e1+e2

λpij

σpij
h′αij

(λX
σ

)
= µd+e1+e2−pijh′′αij

(X).

It follows that h′′αij
is a homogeneous polynomial of degree d+ e1 + e2− pij .

Since h′αij
has nonnegative coefficients, so does h′′αij

. Denote hαij =
h′′αij

λd
.

Then hαij is homogeneous with nonnegative coefficients, and

σN−dF =
l∑

i=1

( r∑
j=1

hαijg
αij

)
AT
i Ai.

This completes the proof. �

In the case G = ∅, we have the following matrix version of the Pólya
Positivstellensatz.

Corollary 5.5. Let F ∈ St(R[X]) be a homogeneous polynomial matrix
of even degree d. If F(x) > 0 for all x ∈ Rn+ \ {0}, then there exists a
number N > 0, homogeneous polynomials hi with nonnegative coefficients
and polynomial matrices Ai ∈Mt(R[X]), for i = 1, . . . , l, such that

(
n∑
i=1

Xi)
NF =

l∑
i=1

hiA
T
i Ai.

Proof. The result follows from the proof of Theorem 5.2, with the fact that
when G = ∅, we have G = ∅ and P (∅) = R≥0 - the set of non-negative real
numbers, and P (G′) = P0 + 〈λ−

∑n
k=1Xk〉. �
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In the following we give a non-homogeneous version of the Pólya-Putinar-
Vasilescu Positivstellensatz for polynomial matrices, whose proof is similar
to that of Corollary 4.4.

Corollary 5.6. Let G ⊆ Mt(R[X]) be a finite set of polynomial matrices
of even degrees. Let F ∈ St(R[X]) be a polynomial matrix of even degree.
Denote G̃ := {G̃|G ∈ G } ⊆ Mt(R[X0, X1, . . . , Xn]). If F̃(x) > 0 for all
x ∈ Rn+1

+ ∩K(G̃ )\{0}, then there exist a finite set G = {g1, . . . , gm} ⊆ R[X]
consisting of polynomials of even degrees, a number N > 0, polynomials hαij

with nonnegative coefficients, and polynomial matrices Ai ∈Mt(R[X]), for
i = 1, . . . , l; j = 1, . . . , r, such that

(1 +
n∑
i=1

Xi)
NF =

l∑
i=1

( r∑
j=1

hαijg
αij

)
AT
i Ai,

where αij ∈ Nm0 , gαij := g
(αij)1
1 . . . g

(αij)m
m .

6. Approximating positive semi-definite polynomial matrices
using sums of squares

Marshall (2003) proved the following theorem, which approximates non-
negative polynomials on basic closed semi-algebraic sets.

Theorem 6.1 ([8, Coro. 4.3]). Let G be a finite subset of R[X] := R[X1, . . . , Xn]
and f ∈ R[X]. The following are equivalent:

(1) f(x) ≥ 0 for every x ∈ K(G).
(2) There exists an integer k ≥ 0 such that for all rational ε > 0, there

exists an integer l ≥ 0 satisfying pl(f + εpk) ∈ M(G), where p =

1 +
n∑
i=1

X2
i .

In this section we give a matrix version of this theorem, approximating
positive semi-definite polynomial matrices using sums of squares. The first
version is established for homogeneous polynomial matrices, as follows.

Theorem 6.2. Let G ⊆Mt(R[X]) be a finite set of homogeneous polynomial
matrices of even degrees. Let F ∈ St(R[X]) be a homogeneous polynomial
matrix of even degree d > 0. If F(x) ≥ 0 for all x ∈ K(G ), then there
exist a finite set G of homogeneous polynomials in R[X] of even degrees and
a number λ > 0 such that for every ε > 0, there exists a number N > 0
satisfying

σN−d/2(F+
ε

λd
σd/2I) ∈M(G)t ⊆M (G ),

where σ =
∑n

i=1X
2
i .

Proof. The existence of the set G = {g1, . . . , gm} of homogeneous polynomi-
als in R[X] of even degrees d1, . . . , dm, respectively, satisfying K(G) = K(G )
and M(G)t ⊆M (G ) is given in the proof of Theorem 4.2.
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Let λ > 0 such that K(G) ∩ S 6= ∅. Denote

G′ = G ∪ {λ2 −
n∑
i=1

X2
i ,

n∑
i=1

X2
i − λ2}.

Then K(G′) = K(G) ∩ S, and M(G′) = M(G) +
〈
λ2 −

∑n
i=1X

2
i

〉
which is

Archimedean. Then the quadratic module M(G′)t is also Archimedean, and

K
(
M(G′)t

)
= K(M(G′)) = K(G′) = K(G) ∩ S.

For any x ∈ K
(
M(G′)t

)
, we have x ∈ K(G) ∩ S, hence x ∈ K(G). Then

F(x) ≥ 0. It follows from Corollary 1.2 that for every ε > 0, F+εI ∈M(G′)t,
i.e. F+ εI can be expressed as

F+ εI =

l∑
i=1

(
σi0(X) +

m∑
j=1

σij(X)gj(X)
)
AT
i (X)Ai(X)+

+
l∑

i=1

hi(X)(λ2 −
n∑
j=1

X2
j )A

T
i (X)Ai(X), (6.1)

where σij ∈
∑

R[X]2, hi ∈ R[X], Ai ∈Mt(R[X]).

Substituting each Xi by
λXi√
σ

in both sides of (6.1), where σ :=
∑n

j=1X
2
j ,

observing that

λ2 −
n∑
j=1

(λXi√
σ

)2
= 0,

F
(λX√

σ

)
=

λd

σd/2
F(X), and gj

(λX√
σ

)
=

λdj

σdj/2
gj(X),

we have

λd

σd/2
F(X)+εI =

l∑
i=1

(
σi0
(λX√

σ

)
+

m∑
j=1

λdj

σdj/2
σij
(λX√

σ

)
gj(X)

)
AT
i

(λX√
σ

)
Ai

(λXi√
σ

)
.

(6.2)
Denote

e1 := max{deg(σij), j = 0, . . . ,m},
e2 := max{dj , j = 1, . . . ,m},
e3 := max{deg(Ai), i = 1, . . . , l},

which are even numbers. Put N := d/2 + e1/2 + e2/2 + e3, and multiplying
both sides of (6.2) for σN , we have

λdσN−d/2F(X) + εσNI = σd/2
l∑

i=1

(
σe1/2+e2/2σi0

(λX√
σ

)
+

+
m∑
j=1

λdj (σe1/2σij(
λX√
σ
))σe2/2−dj/2gj(X)

)
σe3AT

i

(λX√
σ

)
Ai

(λXi√
σ

)
.
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Since σ′i0 := σe1/2+e2/2σi0
(λX√

σ

)
and σ′ij := λdj (σe1/2σij(

λX√
σ
))σe2/2−dj/2 are

sums of squares in R[X], and Bi := σe3/2Ai

(λX√
σ

)
∈Mt(R[X]), we have

σN−d/2(F+
ε

λd
σd/2I) = σN−d/2F(X) +

ε

λd
σNI ∈M(G)t ⊆M (G ).

The proof is complete. �

A non-homogeneous version of Theorem 6.2 is given as follows, whose
proof is similar to that of Corollary 4.4.

Corollary 6.3. Let G ⊆Mt(R[X]) be a finite set of polynomial matrices of
even degrees. Let F ∈ St(R[X]) be a polynomial matrix of even degree d > 0.
If F̃(x) ≥ 0 for all x ∈ K(G̃ ), then there exist a finite set G of polynomials
in R[X] of even degrees and a number λ > 0 such that for every ε > 0, there
exists a number N > 0 satisfying

(1 + σ)N−d/2(F+
ε

λd
(1 + σ)d/2I) ∈M(G)t ⊆M (G ),

where σ =
∑n

i=1X
2
i .
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