SOME APPLICATIONS OF SCHERER-HOL’S THEOREM
FOR POLYNOMIAL MATRICES
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ABSTRACT. In this paper we establish some applications of the Scherer-
Hol’s theorem for polynomial matrices. Firstly, we give a representation
for polynomial matrices positive definite on subsets of compact polyhe-
dra. Then we establish a Putinar-Vasilescu Positivstellensatz for homo-
geneous and non-homogeneous polynomial matrices. Next we propose a
matrix version of the Polya-Putinar-Vasilescu Positivstellensatz. Finally,
we approximate positive semi-definite polynomial matrices using sums
of squares.

1. INTRODUCTION

Let R[X] := R[Xy,...,X,] denote the (commutative) algebra of poly-
nomials in n variables X1,..., X, with real coefficients. For a fix integer
t > 0, we denote by .#;(R[X]) the algebra of ¢ x ¢ matrices with entries in
R[X], and by .#3:(R[X]) the subalgebra of symmetric matrices. Each element
A € #,(R[X]) is a matrix whose entries are polynomials in R[X], which is
called a polynomial matriz.

For every subset ¢ of .7;(R[X]) we associate to the set

K(9) :={z e R"|G(z) > 0,VG € ¥}.

Here the notation G(x) > 0 means that the matrix G(z) is positive semi-
definite, i.e. vI'G(x)v > 0 for every vector v € R?. For 2 € R", the notation
G(z) > 0 means that the matrix G(z) is positive definite, i.e. vT G(z)v > 0
for every vector v € R* \ {0}.

In particular, for a subset G of R[X],

K(G) = {z € R"|g(z) > 0,Yg € G}.

A result which represents positive polynomials on K (G) is called a Posi-
tivstellensatz. Polya’s Positivstellensatz (1928) represents homogenoeus poly-
nomials which are positive on the orthant R’} \ {0}. Another Positivstellen-
satz "with denominators" was given by Krivine (1964) and Stengle (1974),
which yields also a proof for Artin’s theorem on Hilbert’s 17*" problem. The
first "denominator-free" Positivstellensatz was discovered by Schmiidgen
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(1991, [15]). Some other "denominator-free" Positivstellensitze were fol-
lowed by Putinar (1993, [9]), Schweighofer (2006, [19]), etc.

Handelman’s Positivstellensatz (1988) represents positive polynomials on
convex, compact polyhedra with non-empty interiors. Putinar and Vasilescu
(1999, [10]) proposed a Positivstellensatz for polynomials positive on K(G)\
{0}. Dickinson and Povh (2015, [4]) combined the Pélya and the Putinar-
Vasilescu theorems to establish a representation for homogeneous polynomi-
als positive on the intersection R} N K (G) \ {0}, which is called the Pdlya-
Putinar-Vasilescu Positivstellensatz in this paper.

A result which represents non-negative polynomials on K(G) is called a
Nichitnegativstellensatz. A Nichtnegativstellensatz "with denominator" was
given also by Krivine (1964) and Stengle (1974). Some other Nichtnega-
tivstellensétze were discovered by Scheiderer ([11, 12]). In particular, Mar-
shall (2003, [8]) approximated non-negative polynomials on K(G) using
sums of squares.

A version of Polya’s Positivstellensatz for polynomial matrices was given
by Scherer and Hol (2006, [13]), with applications e.g. in robust polyno-
mial semi-definite programs. Schmiidgen’s theorem for operator polynomials
was discovered by Cimpri¢ and Zalar [3]. Handelman’s Positivstellensatz for
polynomial matrices was studied in [7]. Some other Positivstellensétze for
polynomial matrices were studied in [6], with matrix denominators.

A version of Putniar’s Positivstellensatz for polynomial matrices was also
given by Scherer and Hol ([13]), see also in [5, Theorem 13].

Theorem 1.1. Let 2 C % (R[X]) be an Archimedean quadratic module
and F € £ (R[X]). If F(z) > 0 for all x € K(2), then F € 2.

A direct consequence of the Scherer-Hol theorem is the following

Corollary 1.2. Let 2 C . (R[X]) be an Archimedean quadratic module
and F € Z(R[X]). If F(z) > 0 for all x € K(2), then F + €l € 2 for all
e> 0.

The main aim of this paper is to apply the Scherer-Hol theorem (The-
orem 1.1 and its consequence, Corollary 1.2) to establish some Positivstel-
lensétze (resp. Nichtnegativstellensitze) for polynomial matrices. More pre-
cisely, we establish firstly in Section 3 a representation for polynomial ma-
trices positive definite on subsets of compact polyhedra. Next, in Section
4 we establish a Putinar-Vasilescu Positivstellensatz for homogeneous and
non-homogeneous polynomial matrices, which also yields a matrix version of
Reznick’s Positivstellensatz. We propose in Section 5 a matrix version of the
Polya-Putinar-Vasilescu Positivstellensatz. Finally, in Section 6 we propose
a version of the Marshall theorem for polynomial matrices, approximating
positive semi-definite polynomial matrices using sums of squares.
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2. PRELIMINARIES

In this section we shall recall some basis concepts and facts in Real alge-
braic geometry for matrices over commutative rings which are proposed by
Schmiidgen ([16], [17], [18]) and Cimpri¢ ([1], [2]).

Let R[X] := R[Xq,...,X,] denote the (commutative) algebra of poly-
nomials in n variables X1,...,X,, with real coefficients. For a fix integer
t > 0, we denote by .#;(R[X]) the algebra of ¢ x ¢ matrices with entries in
R[X], and by .#;(R[X]) the subalgebra of symmetric matrices. Each element
A € #;(R[X]) is a matrix whose entries are polynomials in R[X], which is
called a polynomial matriz. A is also called a matriz polynomial, because it
can be viewed as a polynomial in Xy, ..., X,, whose coefficients come from
A (R). Namely, we can write A as

d
A= AX°
|a|=0
where a = (a1, ,a,) € N, |a| == a1 + ... + an, X* = X' ... X",
A, € #(R), d is the maximum over all degree of the entries of A and it is
called the degree of the polynomial matrix A. To unify notation, throughout

the paper each element of .Z;(R[X]) is called a polynomial matriz.
A subset . of .7 (R[X]) is called a quadratic module if

Te s, #H+uCH, AT HAC . #NA < #;(R[X)).

The smallest quadratic module which contains a given subset ¢ of .7 (R[X])
will be denoted by .#(¥). It is clear that

M(G)={> ) AlGiAjlr,s € No,G; € 4 U{T}, Ayj € 4,(R[X])}.
i=1 j=1
Each element of the form AT A is called a square in .#;(R[X]). The set of
all finite sums of squares in . (R[X]) is denoted by >, R[X]?. Note that
A (0) =3, RIX]?.
In particular, a subset M C R[X] is called a quadratic module if
leM, M+MCM, a>M C M Va € R[X].

The smallest quadratic module of R[X] which contains a given subset G C
R[X] will be denoted by M (G), and it consists of all elements of the form
oo+ Y ity 0igi, where m € N, g; € G, and o € " R[X]?the set of finite
sums of squares of polynomials in R[X].

A subset M C R[X] is said to be a semiring if

M+MC M, MM C M, Rso C M.

For G ={g1,...,9m} C R[X], the semiring generated by G consists of finite
sums of terms of the form

aag(lll"'g?nma a:(alu'”vam)eNgbvaazou
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and denoted by P(G).
For a quadratic module or a semiring M in R[X], denote

Mt = {Z miA?Ai|m¢ € M, A; € #4R[X])}.

Since M! contains the set of sums of squares in .#;(R[X]), M® is always a
quadratic module on #;(R[X]).

For any matrix A € .#;(R[X]), the notation A > 0 means A is positive
semidefinite, i.e. for each z € R™, vT A(z)v > 0 for all v € RY; A > 0 means
A is positive definite, i.e. for each z € R", vT A(x)v > 0 for all v € R*\ {0}.

We associate each set 4 C .#;(R[X]) to the set

K(9):={z e R"|G(z) > 0,VG € ¥},
which is a basic closed semi-algebraic set in R™. In particular, for a subset
G of R[X],
K(G) ={z € R"|g(x) > 0,Vg € G}.

The following result of Cimpri¢ ([2]) shows that the set K(¥) can be deter-
mined by scalars, i.e. by polynomials in R[X].

Lemma 2.1 ([2, Proposition 5]). Let ¢ C % (R[X]). Then there exists a
subset G of R[X] with the following properties:

(1) K(¢) = K(G);

(2) M(G)' € #(9).
Moreover, if 4 is finite then G can be chosen to be finite. On the other hand,

if 4 consists of homogeneous polynomial matrices, then the polynomials in
G are also homogeneous.

A quadratic module or a semiring @) on R[X] (resp. .#;(R[X])) is said to
be Archimedean if for every f € R[X] (resp. F € .#,(R[X])), there exists a
A > 0 such that A+ f € @ (resp. \- I+ F € Q).

Lemma 2.2 ([17, Lemma 12.7, Coro. 12.8]). Let Q be a quadratic module
or a semiring on R[X1,..., X,]. Then Q is Archimedean if and only if there
exists A > 0 such that \£ X; € Q, forallti=1,...,n.

Moreover, if Q is a quadratic module, then Q is Archimedean if and only
if there exists A > 0 such that A — Y " | X? € Q.

Lemma 2.3. Let M be a quadratic module or a semiring on R[X]. Then
M is Archimedean if and only if M is Archimedean. Moreover, for a finite
subset G of R[X], we have

K(M(G)") =K(M(G)) = K(G) = K(P(G)) = K(P(G)"). (2.1)

Proof. For the case M is a quadratic module, the result follows from [6,
Prop. 4]. If M is a semiring, the result follows from Lemma 2.2. The latter
equalities are straightforward. ([
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3. POLYNOMIAL MATRICES POSITIVE DEFINITE ON SUBSETS OF COMPACT
POLYHEDRA

In this section we give an application of the Scherer-Hol theorem to repre-
sent polynomial matrices which are positive definite on subsets of compact
polyhedra.

Let m and k be positive integers with m < k. Let

G=A{g1,..., 9k} CR[X] :=R[Xy,..., X,]

such that g1, - - - , gm are linear. Denote G = {g1,..., gm}. Note that K(G) C
K(G). Let P(G) be the semiring generated by G. The following result is a
matrix version of [17, Theorem 12.44].

Theorem 3.1. Suppose that K(G) is non-empty and compact. For F €
S(R[X]), if F(z) > 0 for all z € K(G), then F € P(G)!, i.e. F can be

written as
T S
F= Z ( aaz’jgaij>AiTAia
i=1 j=1

with o;j € NE, oy >0, go9 = g§aij)1 ...g,(gaij)k and A; € #;(R[X]).

Proof. Since K(G) is compact, there exists A > 0 such that for each i =
1,...,n, the linear polynomial A + X; is non-negative on K(G). Since K(G)
is non-empty, it follows from an affine form of Farkas’ lemma (cf. [18, Lemma

12.43]) that for each i = 1,...,n we have
AEXs =X+ Mfi+. .+ A Sfms

with A\; >0, 5 =1,...,m. Hence A+ X; € P(G) for all i = 1,...,n. By
Lemma 2.2, the semiring P(G) is Archimedean.

Moreover, since P(G)! contains the set of sums of squares Y, R[X]?, it is
a quadratic module on .#;(R[X]). It follows from Lemma 2.3 that P(G)! is
also Archimedean and

K(P(G)") = K(P(G)) = K(G).

For each z € K (P(G)"), we have z € K(G), hence F(z) > 0. It follows from
the Scherer-Hol theorem that F € P(G)*. The proof is complete. O

4. A PUTINAR-VASILESCU POSITIVSTELLENSATZ FOR POLYNOMIAL
MATRICES

The Putinar-Vasilescu Positivstellensatz for homogeneous polynomials is
stated as follows.

Theorem 4.1 ([10, Theorem 4.5]). Let f and g1,...,gm be homogeneous
polynomials in R[X] := R[X7,..., X,] of even degree. Denote G = {g1,...,gm}-
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If f(z) > 0 for all x € K(G) \ {0}, then there exists a number N > 0 such
that

3 X2)f € M(0).

=1

In this section we apply the Scherer-Hol theorem to give a matrix version
of this Positivstellensatz.

Theorem 4.2. Let Y C 4, (R[X]) be a finite set of homogeneous polynomial
matrices of even degrees. Let F € ./ (R[X]) be a homogeneous polynomial
matriz of even degree d > 0. If F(xz) > 0 for all x € K(4) \ {0}, then there
exist a finite set G of homogeneous polynomials in R[X] of even degrees and

a number N > 0 such that

O _XHNF e M(G)' € .#(9).
i=1
Proof. Tt follows from Lemma 2.1 that there exists a finite subset G =

{91,-..,9m} of R[X] consisting of homogeneous polynomials of even degrees
di,...,dn, respectively, such that

K(G) = K(94) and M(G)' C .#(9).

Let A > 0 such that K(G) N S(0;\2) # 0, where S := S(0; A?) denotes the
sphere

n

{xER":)\Q—Zx?:O}.

i=1

Denote
G =GU{N-> X7 X7 - N}
i=1 i=1

Then K(G') = K(G) NS, and M(G') = M(G) + (A =3I X?), where
<)\2 -y XZQ> denotes the ideal in R[X] generated by the polynomial A% —
e

Since A2 — > | X2 € M(G), it follows from Lemma 2.2 that M(G’)
is an Archimedean quadratic module. Then it follows from Lemma 2.3 that
the quadratic module M (G’)" is also Archimedean on .#;(R[X]). By Lemma
2.3,

K(M(G)) =K(M(G"))=K(G)=K(G)NS.

For any z € K(M(G")") = K(G'), we have z € K(G) NS, hence z €
K(G) \ {0}. Then F(x) > 0. It follows from the Scherer-Hol theorem that
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F € M(G')!, i.e. F can be expressed as

I
F(X) = Z (0i0(X) + 01 (X)g1(X) + ... + 0 (X) gm (X)) AT (X) Ay (X)+

=1
l n
+ (X)) =D XF)AL(X)A(X), (4.1)
i=1 j=1

where 05 € ZR[XP, h; € R[X], A, € %(R[X])
AX;
Substituting each X; by —= in both sides of (4.1), where o := Z?:l X?

\/E
observing that
2X;
M= (5F) =0,
Jj=1 ﬁ
AX A\ AX %
F(%) = —gp¥(X), and gj(%) 7.7291(X);
we have
l m )
% AX AX X
; (=) g, (X)) AT () A (2.
; UO ; d/QUJ(\/E)gJ( )) (\/5) (\/E)
(4.2)
Denote

eq := max{deg(oyj),j =0,...,m},
ex :=max{d;,j =1,...,m},
eg := max{deg(A;),i =1,...,1},

which are even numbers. Put N := d/2+ e1/2 4 e2/2 + e3, and multiplying
both sides of (4.2) for oV, we have

AX
doN=d/2( x0) — 2N  ger/2renszg,
Ao F(X)=0 Z( 1 2 010(\/5)4_
AX AX | AX;
)\d 61/2 N e2/2—d;/2 (X 63AT Ai i .

+Z \/E))U 7 g]( ) g z(7\/5) (\/E

Note that
X X
0;0 = Ue1/2+62/20i0(i‘/5) and O-z/'j — )‘dj(o'el/QO'ij(i\/E))O'eZ/Z_dj/2

are sums of squares in R[X];

B,L' = 0‘63/2Ai(
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Then
l m
oN—d2F = Z (Hio + Z 9ij9j>B7,TBia

i=1 j=1

where 0;; := )\_dad/Qagj € S_R[X]?. It follows that
oN=U2F e M(G) C 4 (9).
U

In the case 4 = (), we have the following matrix version of Reznick’s
Positivstellensatz.

Corollary 4.3. Let F € .7, (R[X]) be a homogeneous polynomial matriz. If
F(x) > 0 for all x € R™\ {0}, then there exists a number N > 0 such that
(i XP)VF € 30, RIX]%.

To give a non-homogeneous version of Theorem 4.2, we need the following
notions. For a polynomial

9(X) = Z 9o X € R[Xy, ..., Xp]

|a|<e

of degree e, its homogenization in the ring R[ Xy, X1, ..., X,] is defined by

3(Xo, X1, Xn) == Y ga XX,
|al<e
It is clear that g is homogeneous of degree e and g(1, x1, ..., x,) = g(x1,...,2Tp)
for all (z1,...,2,) € R™..
For a polynomial matrix G € #;(R[X1,...,X,]) of degree d, we can
write

with G, € #;(R). Its homogenization in the algebra .#;(R[Xo, X1, ..., X,)])
is defined by
G(Xo,...,Xn) = D GaXX[ .

| <d
It is obvious that G is homogeneous of degree d and é(l,ml, ceeyTp) =
G(x1,...,xy,) for all (zq1,...,2,) € R™.

Corollary 4.4. Let ¢ C #;(R[X]) be a finite set of polynomial matrices
of even degrees. Let F € #,(R[X]) be a polynomial matriz of even degree.

Denote %7 = {G|G € 9} C MR[Xo,X1,...,X,]). If F(z) > 0 for all
x € K(¥9)\ {0}, then there exist a finite set G of polynomials in R[X] of
even degrees and a number N > 0 such that

(1+ Zn:XE)NF c M(GY C.#(9).

i=1
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Proof. 1t follows from Theorem 4.2 that there exist a finite set G of ho-
mogeneous polynomials of even degrees in R[ Xy, X1, ..., X,] and a number
N > 0 such that

O XHVF e MG)' C . #(9). (4.3)
=0
Denote G = {g(1,X1,...,X,)|g € G}. Since M(G)! C #(¥), we have
M(G)t C #(%). Substituting Xo = 1 in both sides of (4.3) we obtain

(1+ En:XE)NF e M(G)' C.#(9).

=1

5. A POLYA-PUTINAR-VASILESCU POSITIVSTELLENSATZ FOR
POLYNOMIAL MATRICES

Dickinson and Povh (2015, [4, Theorem 3.5]) proved the following Posi-
tivstellensatz, which is so-called the Pdlya-Putinar-Vasilescu Positivstellen-
satz for homogeneous polynomials, stated as follows.

Theorem 5.1. Let f and g1,...,gm be homogeneous polynomials in R[X]
of even degree. Denote G = {g1,...,gm}. If f(x) > 0 for all x € R} N
K(G)\{0}, then there exists a number N > 0 and homogeneous polynomials
hi,t =1,...,m with nonnegative coefficients such that

(Z X)Nf= Z higs.
i1 i1

In this section we apply the Scherer-Hol theorem to establish a version of
this Positivstellensatz for homogeneous polynomial matrices.

Theorem 5.2. Let 9 C #;(R[X]) be a finite set of homogeneous polynomial
matrices of even degrees. Let F € £ (R[X]) be a homogeneous polynomial
matriz of even degree d > 0. If F(xz) > 0 for all z € R} N K(¥) \ {0},
then there ezist a set G = {g1,...,9m} C R[X] consisting of homogeneous
polynomials of even degrees, a number N > 0, homogeneous polynomials h,;
with nonnegative coefficients, and polynomial matrices A; € .#;(R[X]), for
i1=1,....0;5=1,...,7r, such that

where a; € NIV, g%i := g;"7" . gm

To give a proof for this Positivstellensatz, we need the following results
for semirings in R[X].
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Let Py be the set of all polynomials in R[X] with nonnegative coeffi-
cients. For G = {g1,...,9m} C R[X], denote by P(G) the semiring in R[X]
generated by G. Put

PyPg = { jhaiggw . g9 € Ny, o € NI, R, € PO}.

i=1
Let A > 0 such that K(G)N{A—>_""; X; =0} # 0. Denote

G = GU{XI,...,XH}U{)\—Zvasz_)\}'

j=1  j=1
Let P(G’) be the semiring in R[X] generated by G'.

Lemma 5.3. P(G') = P,P(G) + <)\ . Xj>.

Proof. Since each element of P(G’) is a finite sum of elements of the form
n n
Aapr X7 XS gy gl (V=D X)) X - ),
j=1 j=1

with aqngy > 0, i, 85, v € No, we have P(G') C PyP(G) + <)\ -2 Xj>.
Conversely, since PyP(G) C P(G’), it is sufficient to prove that

n
<)\ - ZXj> C P(@).

j=1
In fact, for each polynomial p € R[X], we have

bp=DP+—PpP-
where pi and p_ are in Py. Since A = >, X; € P(G') and 3°7_, X; — A €
P(G"), it is easy to verify that for every p(A —>°7_; X;) € <)\ =i Xj>
with p € R[X], we have

n

pPA=Y_ X)) =ps(A =D X)) +p-(D_X;—X) € P(G).
=1

j=1 Jj=1
The proof is complete.
O

Lemma 5.4. P(G') is an Archimedean semiring, hence P(G')! is an Archimedean
quadratic module in 4, (R[X]).

Proof. For each i =1,...,n, since X; € P(G') and A > 0, we have
A+ X; € P(G).
Moreover, we have

A—X; = (/\—ZXi)Jrzn:Xi e P(G).

i=1 1=2
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It follows from Lemma 2.2 that P(G’) is an Archimedian semiring. |

Proof of Theorem 5.2. It follows from Lemma 2.1 that there exists a fi-
nite subset G = {g1, ..., gm } of R[X] consisting of homogeneous polynomials
of even degrees dq, ..., d, respectively, such that

K(G) = K(#) and M(G)' C .4(%).
Let A > 0 such that K(G)N{A— 1", X; =0} # 0. Denote

G ::GU{le--an}U{)‘_ZXj’ZXj_)\
L —

Let P(G') be the semiring in R[X] generated by G'. It follows from Lemma

5.3 that .
P(G") = P P(G < Z >

and by Lemma 2.3, we have
K(P(G")Y) =K(P(G))=K(G)=RLNK(G)N{\— Z X =0}
k=1
Then, for each z € K (P(G)"), we have z € RTNK(G)N{A\—=>"}_; X} = 0},
hence x € R} N K(G) \ {0}. The hypothesis implies that F(x) > 0. Note
that P(G’)! is Archimedean by Lemma 5.4. Thus, applying the Scherer-Hol
theorem we obtain

F c P(G")' = (POP(G) + <)\ — Zn:Xk> )t.
k=1

Then F can be written as
l r n
_ / o () _ Tp.
F_Z(Zh%g i+ (A ZX;J)Bi B., (5.1)
i=1 j=1 k=1

with o;; € N, h’aij € Py, g¥i = g§aij)1 .. .gﬁgij)m, vi € RIX], B; €
A (RIX]). X
Substituting each X; by 22 in both sides of (5.1), where o := >} X,
o

observing that
AX
A= Z - =
)\d

) — fF(X), and gaij()‘X) _ \Pij

od o oPij

AX

F(O_

where Dij = (aij)ldl + ...+ (aij)mdma we have

g (X),

T

d ! Dij
R0 =3 (0m, () 2 (0)BI B, (52)
i=1 j=1
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Let
€1 = max{deg(hilij)ai =1...Lj= 1""’T};
ey 1= max{pz‘]”t — 1’,l,] = 1,...,T};
es = max{deg(Bz‘),i =1... l}

Put N := d+ e + ez + 2e3, and multiplying both sides of (5.2) with o, we
get

AoV =Ip(X) = Zl: (XT: (O.d+61+62 &h;ﬁ(}‘%))g% (X))-

i=1 j=1 ot
(oBI () (Bl 72,

AX
Note that A; := /\*dae3B,’(—) € #(R[X]). Moreover, consider the poly-
o

nomial

APii AX
" _ dtei+e /
h’aij(X) =0 ! Qo-pij hOéij( o )
For any p € R, u # 0, we have
APij AX
d —pij ~d _.d —pij
h:)/éij (MX) =pu teitea—pij ; +61+62%h/0¢ij (7) =1 +ei1tez P;hg’éij(X).

It follows that h’c’”j is a homogeneous polynomial of degree d + e + e2 — p;;.
"

Since h’aij has nonnegative coefficients, so does hgij. Denote hq,;; = ;;j .
Then hg,; is homogeneous with nonnegative coefficients, and
l r
N IF =37 (3 hayyg® ) AT AL
=1 j=1
This completes the proof. O

In the case ¥ = (), we have the following matrix version of the Pélya
Positivstellensatz.

Corollary 5.5. Let F € (R[X]) be a homogeneous polynomial matriz
of even degree d. If F(xz) > 0 for all x € R \ {0}, then there exists a
number N > 0, homogeneous polynomials h; with nonnegative coefficients
and polynomial matrices A; € M (R[X]), for i =1,...,1, such that

n l
O _X)VF =) mATA;
=1 =1

Proof. The result follows from the proof of Theorem 5.2, with the fact that
when ¢ = (), we have G = () and P(0)) = R>¢ - the set of non-negative real
numbers, and P(G’) = Py + (A — >y Xg). O



APPLICATIONS OF SCHERER-HOL’S THEOREM 13

In the following we give a non-homogeneous version of the Pélya-Putinar-
Vasilescu Positivstellensatz for polynomial matrices, whose proof is similar
to that of Corollary 4.4.

Corollary 5.6. Let 9 C ., (R[X]) be a finite set of polynomial matrices
of even degrees. Let F € #(R[X]) be a polynomial matriz of even degree.
Denote 4 := {G|G € 4} C #(R[Xo, X1,...,X,]). If F(z) > 0 for all
x € Rﬁ“ﬂ[((?%\{O}, then there exist a finite set G = {g1,...,9m} C R[X]
consisting of polynomials of even degrees, a number N > 0, polynomials h,;
with nonnegative coefficients, and polynomial matrices A; € #;(R[X]), for
i1=1,....0;5=1,...,r, such that

n l r
(1+ Z Xz‘)NF = Z (Z haz‘jga“)AzTAiv
i1 i j=1

=1
moai . () Qij)m
where o;; € Ni*, g% 1= g, .o Gm .
6. APPROXIMATING POSITIVE SEMI-DEFINITE POLYNOMIAL MATRICES
USING SUMS OF SQUARES

Marshall (2003) proved the following theorem, which approximates non-
negative polynomials on basic closed semi-algebraic sets.

Theorem 6.1 ([8, Coro. 4.3]). Let G be a finite subset of R[X] := R[X1,..., X,]
and f € R[X]. The following are equivalent:
(1) f(z) >0 for every x € K(G).
(2) There exists an integer k > 0 such that for all rational € > 0, there
exists an integer | > 0 satisfying p'(f + ep*) € M(G), where p =
n

1+ X7,
=1

In this section we give a matrix version of this theorem, approximating
positive semi-definite polynomial matrices using sums of squares. The first
version is established for homogeneous polynomial matrices, as follows.

Theorem 6.2. Let 9 C #;(R[X]) be a finite set of homogeneous polynomial
matrices of even degrees. Let F € £ (R[X]) be a homogeneous polynomial
matriz of even degree d > 0. If F(xz) > 0 for all x € K(¥), then there
exist a finite set G of homogeneous polynomials in R[X] of even degrees and
a number X > 0 such that for every ¢ > 0, there exists a number N > 0
satisfying

oN=4/2(F 4 %0‘”21) e M(G)' C.4(%),

where o =Y 1 | X2

Proof. The existence of the set G = {¢g1,. .., gm} of homogeneous polynomi-
als in R[X] of even degrees dy, . . ., d, respectively, satisfying K (G) = K(¥)
and M (G)' C .#(¥) is given in the proof of Theorem 4.2.
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Let A > 0 such that K(G) NS # (). Denote

G =GU{N - zn:XE,Zn:X? - N
=1 =1

Then K(G') = K(G) NS, and M(G') = M(G) + (\? — Y1 | X?) which is
Archimedean. Then the quadratic module M (G’)! is also Archimedean, and
K(M(G)) =KM(G))=K(G)=K(G)NS.

For any z € K(M(G')"), we have z € K(G) NS, hence z € K(G). Then
F(z) > 0. It follows from Corollary 1.2 that for every ¢ > 0, F+¢el € M(G')?,
i.e. F + el can be expressed as

l
Ftcd=) (0n(X +Zau X)) AT (X)Ai(X)+
=1
l
F3 TR0 - 3 X2)AT () AL(X), (6.1)
=1 j=1

where o;; € STR[X]?, h; € R[X], A; € .4(R[X]).

AX;
Substituting each X; by —= in both sides of (6.1), where o := 3", X2

Jo
observing that
AX;
N — ; ( \ﬁ) =0,
AX A AX A%
F(%) = —z;F(X), and gj(%) = —3729(X);

we have

A ! AX, 0 X AX, X
—apF(X)tel = ; (UiO(ﬁ)JF]_l % /QGZJ(%)QJ(X))A?(ﬁ)Ai( ﬁ)-

(6.2)

Denote

e := max{deg(oi;),j =0,...,m},
ex :=max{d;,j =1,...,m},
es = max{deg(A;),i =1,...,l},

which are even numbers. Put N :=d/2+ e1/2 + e2/2 + e3, and multiplying
both sides of (6.2) for oV, we have

l
AX
)\dO,Nfd/2F(X) +eoVNI = od/? ZZ; <G€1/2+62/20i0(\/5)+

Z)\d 61/2 i‘/);))aez/?—djﬂ (X )> egAT()‘X)AZ()\Xi.
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AX

X
Since o} := 061/2+62/20i0(i\/5) and o}, = A% (061/201-3-(—0))052/2_‘11/2 are

AX
sums of squares in R[X], and B; := 083/2Ai(7) € M(R[X]), we have
o
_ € _ €
oN U2 (F 4 ﬁad/%) = oVTI2R(X) + ﬁaNI € M(G) C.#(9).
The proof is complete. O

A non-homogeneous version of Theorem 6.2 is given as follows, whose
proof is similar to that of Corollary 4.4.

Corollary 6.3. Let ¢ C .#;(R[X]) be a finite set of polynomial matrices of
even degrees. Let F € ./ (R[X]) be a polynomial matrix of even degree d > 0.

If f‘(x) >0 for all x € K(¥), then there exist a finite set G of polynomials
in R[X] of even degrees and a number X\ > 0 such that for every e > 0, there
exists a number N > 0 satisfying

1+ o)N=—42(F + %(1 + o)1) e M(Q) C .4(9),

where o =Y | X2.
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