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Abstract. Let u ∈ Lsp ∩ C1,1
loc (Rn \ {0}) be a positive solution, which may

blow up at zero, of the equation

(−∆)spu =

(
1

|x|n−β
∗
uq

|x|α

)
uq−1

|x|α
in Rn \ {0},

where 0 < s < 1, 0 < β < n, p > 2, q ≥ 1 and α > 0. We prove that if u sat-
isfies some suitable asymptotic properties, then u must be radially symmetric

and monotone decreasing about the origin. In stead of using equivalent frac-
tional systems, we exploit a direct method of moving planes for the weighted

Choquard nonlinearity. This method allows us to cover the full range 0 < β < n

in our results.

1. Introduction. In this paper, we establish the symmetry and monotonicity of
positive solutions to the following nonlocal equation

(−∆)spu =

(
1

|x|n−β
∗ uq

|x|α

)
uq−1

|x|α
in Rn \ {0} (1)

where 0 < s < 1, 0 < β < n, p > 2, q ≥ 1, α > 0 and the convolution of two
functions f and g is defined as

(f ∗ g)(x) =

∫
Rn
f(x− y)g(y)dy.

Let us recall that (−∆)sp is the fractional p-Laplacian in Rn which is defined as
a nonlocal pseudo-differential operator

(−∆)spu(x) = Cn,spPV

∫
Rn

|u(x)− u(y)|p−2[u(x)− u(y)]

|x− y|n+sp
dy.

Here, PV stands for the Cauchy principal value and Cn,sp is a normalization con-

stant. Such operator is well-defined for all x ∈ Rn \ {0} if u ∈ Lsp ∩C1,1
loc (Rn \ {0}),
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where

Lsp =

{
u ∈ Lp−1

loc (Rn) |
∫
Rn

|1 + u(x)|p−1

1 + |x|n+sp
dx <∞

}
,

see [6] for more details.
The fractional p-Laplacian appears in some mathematical models such as the

non-local “Tug-of-War” game (see [3, 4]). When p = 2, this operator become the
well-known fractional Laplacian, which has been studied intensively by various au-
thors in the last decade. Several methods have been proposed to overcome the
difficulty caused by the nonlocal nature of this operator. One may use Caffarelli-
Silvestre’s extension method [5] to reduce the nonlocal problem into a local one
in higher dimensions. Another useful tool to handle the fractional Laplacian is
the integral equation method [8], in which a given pseudo-differential equation was
transformed into their equivalent integral one. Later, Chen-Li-Li [7] introduced
the direct method of moving planes for the fractional Laplacian which allows one
to study the symmetry and nonexistence of positive L2s ∩ C1,1 solutions of var-
ious nonlocal equations and systems. However, none of aforementioned methods
can be applied to the fractional p-Laplacian. Very recently, Chen-Li [6] introduced
some new ideas which allow them to establish the symmetry properties of positive
solutions for the fractional p-Laplacian equation

(−∆)spu = f(u) in Rn or B1(0).

After the direct method of moving planes was introduced, a series of fruitful results
have been obtained. Many of them improve previous ones established by using other
methods, we refer to [9, 10,12,14,16,18,20,24] and references therein.

One may observe that the right hand side of (1) is also a nonlocal term. This
phenomenon causes some mathematical difficulties which make the study of such
problem particularly interesting. Furthermore, problem (1) is an analog of the
Choquard equation

−∆u+ V (x)u =

(
1

|x|n−2
∗ u2

)
u in R3,

which arises naturally in a variety of applications, for instance, the physics of mul-
tiple particle systems, quantum mechanics, Hartree-Fock theory, physics of laser
beams and so on, which we refer to [13,15,23].

Problems of Choquard type have been studied extensively by several authors in
the last decades. A good introduction to mathematical treatment of Choquard equa-
tions is a survey paper by Moroz-Schaftingen [22]. Some existence and multiplicity
results for Choquard equations involving the fractional Laplacian and p-Laplacian
can be found in recent papers [1, 2, 19, 26] and references therein. Choquard equa-
tions with weights were also investigated by some authors, see [11] for instance.

It is not easy to investigate the qualitative properties of solutions to (1) directly
due to the presence of the convolution term in the right hand side. To overcome
this difficulty, one possible approach when p = 2 is to set v = 1

|x|n−β ∗
uq

|x|α and

transform (1) into an equivalent integral system of the form
u(x) = C

∫
Rn

uq−1(y)v(y)

|x− y|n−2s|y|α
dy in Rn,

v(x) =

∫
Rn

uq(y)

|x− y|n−β |y|α
dy in Rn.
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Then integral equation methods, such as the method of moving planes in integral
forms, may be used to establish symmetry, nonexistence or classification of solutions,
see [17, 21, 25] for more details about this approach. However, such transformation
does not exist for the case p > 2. Nevertheless, when α = 0 and 0 < β < 2, equation
(1) is equivalent to the fractional system{

(−∆)spu = vuq−1 in Rn,
(−∆)

β
2 v = uq in Rn,

(2)

up to a suitable scaling. Using this approach, Ma-Zhang [18] proved the symmetry
and nonexistence of positive solutions of (2) in the case 0 < β < 2 and p = 2.
Very recently, Ma-Zhang [20] partially extended this result to the case p > 2. They

proved that if u ∈ Lsp ∩C1,1
loc (Rn) and v ∈ Lβ ∩C1,1

loc (Rn) is a positive solution pair
of (2) with q > p − 1 and u, v satisfy some asymptotic properties at infinity, then
u must be radially symmetric and monotone decreasing about some point in Rn.
However, they still assume 0 < β < 2 as this assumption is unavoidable in their
approach.

Motivated by the above works, in this paper, we study the symmetry and mono-
tonicity of positive solutions of (1) without the restriction β < 2 or q > p − 1.
Moreover, in our result, u is allowed to blow up at zero. In stead of using the equiv-
alent fractional system as in [18, 20], we exploit a direct method of moving planes
for the weighted Choquard nonlinearity. This approach allows us to cover the full
range 0 < β < n and α > 0 in our results.

Our first result is the following.

Theorem 1.1. Assume 0 < s < 1, 0 < β < n, p > 1, q > 0 and α > 0.

(i) If equation (1) has a positive solution u ∈ Lsp ∩ C1,1
loc (Rn \ {0}) such that

lim inf
y→0

u(y) > 0,

then α < n.
(ii) If equation (1) has a positive solution u ∈ Lsp ∩ C1,1

loc (Rn \ {0}) such that for
some γ ∈ R and c > 0,

u(x) ≥ c

|x|γ
as |x| → ∞,

then γq > β − α.

In this paper, we deal with solutions having properties mentioned in Theorem 1.1.
Therefore, it is necessary to assume α < n and γq > β−α. For two positive functions

f and g defined in Rn \ {x0}, we denote f ∼ g as x→ x0 if 0 < lim infx→x0
f(x)
g(x) ≤

lim supx→x0
f(x)
g(x) <∞. Our main result is the following theorem.

Theorem 1.2. Assume 0 < s < 1, 0 < α, β < n, p > 2, q ≥ 1 and u ∈ Lsp ∩
C1,1

loc (Rn \ {0}) is a positive solution of (1) such that

u(x) ∼ 1

|x|γ
as |x| → ∞ (3)

for some γ > max{0, β−αq } satisfying

min{γ(q − p) + n+ α, γ(2q − p) + 2α} > sp+ β. (4)



4 P. LE

Assume in addition that

u(x) ≤ C

|x|δ
as x→ 0 (5)

for some C > 0, δ ∈ (0, n−αq ) and

lim inf
y→0

u(y) > u(x) for all x ∈ Rn. (6)

Then u must be radially symmetric and monotone decreasing about the origin.

Remark 1. Because the Kelvin transform is not valid for the fractional p-Laplacian,
we need to impose the additional assumptions on the behavior of u at infinity.
Furthermore, since u is not defined at zero, we need some control around this
singular point to make the moving plane method work. Obviously, if (6) does not
hold, then u cannot be monotone decreasing about the origin.

As a consequence of Theorem 1.2, we have the following symmetry result for
positive solutions which blow up at rate δ < n−α

q near the origin.

Corollary 1. Assume 0 < s < 1, 0 < α, β < n, p > 2, q ≥ 1 and u ∈ Lsp ∩
C1,1

loc (Rn \ {0}) is a positive solution of (1) such that

u(x) ∼ 1

|x|γ
as |x| → ∞

for some γ > max{0, β−αq } satisfying min{γ(q−p)+n+α, γ(2q−p)+2α} > sp+β

and

u(x) ∼ 1

|x|δ
as x→ 0

for some δ ∈ (0, n−αq ). Then u must be radially symmetric and monotone decreasing

about the origin.

The remainder of this paper is organized as follows. In Section 2, we recall some
basic notations and lemmas used in the direct method of moving planes for the
fractional p-Laplacian. Then the proofs of Theorem 1.1 and 1.2 are given in the
last section.

2. Preliminaries. In order to apply the method of moving planes, we first intro-
duce some basic notations and lemmas. For λ ∈ R, let

Tλ = {x ∈ Rn | x1 = λ}
be the moving plane,

Σλ = {x ∈ Rn | x1 < λ}
be the region to the left of the plane and

xλ = (2λ− x1, x2, . . . , xn)

be the reflection of the point x = (x1, x2, . . . , xn) about the plane Tλ.
Moreover, to compare the values of u(x) with u(xλ), we denote

wλ(x) = uλ(x)− u(x), where uλ(x) = u(xλ).

For the convenience, we also denote by C,C ′ the generic positive constants whose
concrete values may change from line to line or even in the same line.

The following maximum principle and boundary estimate lemmas were estab-
lished in [6]. They plays the essential roles in the direct method for the fractional
p-Laplacian.
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Lemma 2.1 (A maximum principle for anti-symmetric functions [6]). Let Ω be a

bounded domain in Σλ. Assume that u ∈ Lsp ∩ C1,1
loc (Ω). If{

(−∆)spuλ − (−∆)spu ≥ 0 in Ω,

wλ ≥ 0 in Σλ \ Ω,

then

wλ ≥ 0 in Ω.

Furthermore, if wλ = 0 at some point in Ω, then wλ = 0 almost everywhere in
Rn.

These conclusions hold for unbounded region Ω if we further assume that

lim inf
|x|→∞

wλ(x) ≥ 0.

Lemma 2.2 (A boundary estimate [6]). Assume that wλ0 > 0 in Σλ0 . Suppose
λk ↘ λ0 and xk ∈ Σλk such that

wλk(xk) = min
Σλk

wλk ≤ 0 and xk → x0 ∈ Tλ0 .

Let

δk = dist(xk, Tλk) = λk − xk1 .
Then

lim sup
δk→0

1

δk

(
(−∆)spuλk(xk)− (−∆)spu(xk)

)
< 0.

The following elementary inequality is also useful in the next section.

Lemma 2.3. For any 0 < t1 ≤ t2 and q ≥ 0, we have

tq1 − t
q
2 ≥ max{q, 1}tq−1

2 (t1 − t2).

Proof. If q ≥ 1, then there exists ξ ∈ (t1, t2) such that

tq1 − t
q
2 = qξq−1(t1 − t2) ≥ qtq−1

2 (t1 − t2),

while if 0 ≤ q < 1, then

tq1 − t
q
2 ≥ t1t

q−1
2 − tq2 = tq−1

2 (t1 − t2).

3. Proof of the main results.

3.1. Necessary conditions for the existence of positive solutions.

Proof of Theorem 1.1. Assume that (1) has a positive solution u ∈ Lsp ∩C1,1
loc (Rn \

{0}). Taking any x0 6= 0, we have

∞ >

(
1

|x|n−β
∗ uq

|x|α

)
(x0) =

∫
Rn

uq(y)

|x0 − y|n−β |y|α
dy

=

∫
B|x0|(0)

uq(y)

|x0 − y|n−β |y|α
dy +

∫
Rn\B|x0|(0)

uq(y)

|x0 − y|n−β |y|α
dy

≥ 1

(2|x0|)n−β

∫
B|x0|(0)

uq(y)

|y|α
dy +

1

2n−β

∫
Rn\B|x0|(0)

uq(y)

|y|n+α−β dy. (7)
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If lim inf
y→0

u(y) > 0, then infB|x0|(0) u > 0 and (7) yields

∞ >

∫
B|x0|(0)

uq(y)

|y|α
dy ≥

(
inf

B|x0|(0)
u

)q ∫
B|x0|(0)

dy

|y|α
,

which indicates α < n.
Now we assume u(x) ≥ c

|x|γ for all large |x|, then (7) leads to

∞ >

∫
Rn\B|x0|(0)

uq(y)

|y|n+α−β dy ≥ C
∫
Rn\B|x0|(0)

dy

|y|n+α−β+γq
,

which implies γq > β − α.

3.2. Symmetry of positive solutions. In this subsection, we apply the method
of moving planes to prove Theorem 1.2. Beside using notations mentioned in Section
2, we also denote for λ ≤ 0,

Σ∗λ = Σλ \ {0λ}

and

Σ−λ = {x ∈ Σ∗λ : wλ(x) < 0}.

We define for all x ∈ Σλ,

F (x) =

(
1

|x|n−β
∗ uq

|x|α

)
(x) =

∫
Rn

uq(y)

|x− y|n−β |y|α
dy,

H(x) =

(
1

|x|n−β
∗ u

q−1

|x|α

)
(x) =

∫
Rn

uq−1(y)

|x− y|n−β |y|α
dy,

Pλ(x) =

∫
Σ−λ

uq−1(y)wλ(y)

|x− y|n−β |y|α
dy.

Lemma 3.1. If λ ≤ 0 and x ∈ Σ−λ , then

(−∆)spuλ(x)− (−∆)spu(x) ≥ max{q − 1, 1}F (x)
uq−2(x)

|x|α
wλ(x) + qPλ(x)

uq−1(x)

|x|α
.

Proof. Using (1) and the fact λ ≤ 0 < α, we have

(−∆)spuλ(x)− (−∆)spu(x) = F (xλ)
uq−1
λ (x)

|xλ|α
− F (x)

uq−1(x)

|x|α

≥ F (xλ)
uq−1
λ (x)

|x|α
− F (x)

uq−1(x)

|x|α

= F (x)
uq−1
λ (x)− uq−1(x)

|x|α
+
(
F (xλ)− F (x)

) uq−1
λ (x)

|x|α
. (8)

From Lemma 2.3 and the fact wλ(x) < 0, we have

uq−1
λ (x)− uq−1(x)

|x|α
≥ max{q − 1, 1}uq−2(x)[uλ(x)− u(x)]

|x|α

= max{q − 1, 1}u
q−2(x)

|x|α
wλ(x) (9)
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and

(
F (xλ)− F (x)

) uq−1
λ (x)

|x|α

=

(∫
Rn

uq(y)

|xλ − y|n−β |y|α
dy −

∫
Rn

uq(y)

|x− y|n−β |y|α
dy

)
uq−1
λ (x)

|x|α

=

∫
Σλ

(
1

|x− y|n−β
− 1

|xλ − y|n−β

)(
uqλ(y)

|yλ|α
− uq(y)

|y|α

)
dy ·

uq−1
λ (x)

|x|α
(10)

≥
∫

Σλ

(
1

|x− y|n−β
− 1

|xλ − y|n−β

)
uqλ(y)− uq(y)

|y|α
dy ·

uq−1
λ (x)

|x|α

≥
∫

Σ−λ

1

|x− y|n−β
uqλ(y)− uq(y)

|y|α
dy ·

uq−1
λ (x)

|x|α

≥
∫

Σ−λ

quq−1(y)[uλ(y)− u(y)]

|x− y|n−β |y|α
dy ·

uq−1
λ (x)

|x|α

≥ qPλ(x)
uq−1(x)

|x|α
. (11)

The conclusion follows immediately from (8), (9) and (11).

Lemma 3.2 (Decay at infinity). Assume λ ≤ λ < 0 and for some x∗ ∈ Σ∗λ we have

wλ(x∗) = min
Σλ

wλ < 0.

Then there exist R0 > 0 (depending on λ but independent of λ) such that |x∗| < R0.

Proof. From Lemma 3.1, we have

(−∆)spuλ(x∗)− (−∆)spu(x∗) ≥ c(x∗)wλ(x∗), (12)

where

c(x) = max{q − 1, 1}F (x)
uq−2(x)

|x|α
+ qH(x)

uq−1(x)

|x|α
, x ∈ Σλ. (13)

We claim that

0 < c(x) <
C + C ′ ln |x|
|x|n+α−β+γ(q−2)

+
C

|x|2α−β+2γ(q−1)
for all x ∈ Σλ, (14)

where C,C ′ > 0 are independent of x and λ.
To prove (14), we first deduce from (3) that

c

|y|γ
< u(y) <

C

|y|γ
for all y ∈ Rn \B |λ|

2

(0), (15)
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where C, c > 0 depend on λ but are independent of y. Moreover, from (5), we have
for all x ∈ Σλ, ∫

|y|< |x|2

uq(y)

|y|α
dy =

∫
|y|< |λ|2

uq(y)

|y|α
dy +

∫
|λ|
2 ≤|y|<

|x|
2

uq(y)

|y|α
dy

≤ C
∫

|y|< |λ|2

dy

|y|α+δq
+ C

∫
|λ|
2 ≤|y|<

|x|
2

dy

|y|α+γq

≤


C if γq > n− α,
C + C|x|n−α−γq if γq < n− α,
C + C ′ ln |x| if γq = n− α.

(16)

Similarly,∫
|y|< |x|2

uq−1(y)

|y|α
dy ≤


C if γ(q − 1) > n− α,
C + C ′|x|n−α−γ(q−1) if γ(q − 1) < n− α,
C + C ′ ln |x| if γ(q − 1) = n− α.

(17)

We then estimate F (x) for x ∈ Σλ as follows

F (x) =

∫
Rn

uq(y)

|x− y|n−β |y|α
dy

=


∫

|y|< |x|2

+

∫
|x−y|≥ |x|2
|y|≥ |x|2

+

∫
|x−y|< |x|2


uq(y)

|x− y|n−β |y|α
dy

≤ 2n−β

|x|n−β

∫
|y|< |x|2

uq(y)

|y|α
dy +

∫
|x−y|≥ |x|2
|y|≥ |x|2

C

|x− y|n−β |y|α+γq
dy

+

∫
|x−y|< |x|2

C

|x− y|n−β |y|α+γq
dy

≤ 2n−β

|x|n−β

∫
|y|< |x|2

uq(y)

|y|α
dy + 3n−β

∫
|y|≥ |x|2

C

|y|n+α−β+γq
dy

+
2α+γq

|x|α+γq

∫
|x−y|< |x|2

C

|x− y|n−β
dy.

The following elementary facts have been used in the above estimation

|x− y| ≥ |x| − |y| > |x|
2

if |y| < |x|
2
,

|x− y| ≥ |x|+ |x− y|
3

≥ |y|
3

if |x− y| ≥ |x|
2
.

|y| ≥ |x| − |x− y| > |x|
2

if |x− y| < |x|
2
.
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Therefore, we may use (16) to obtain

F (x) ≤

{
C

|x|n−β + C
|x|α−β+γq if γq 6= n− α,

C+C′ ln |x|
|x|n−β if γq = n− α.

(18)

Similarly, we may use (17) to get

H(x) ≤

{
C

|x|n−β + C
|x|α−β+γ(q−1) if γ(q − 1) 6= n− α,

C+C′ ln |x|
|x|n−β if γ(q − 1) = n− α.

(19)

By collecting (13), (15), (18) and (19), we deduce

0 < c(x) <

{
C

|x|n+α−β+γ(q−2) + C
|x|2α−β+2γ(q−1) if γq 6= n− α,

C+C′ ln |x|
|x|n+α−β+γ(q−2) + C

|x|2α−β+2γ(q−1) if γq = n− α,

which clearly implies (14).
For simplicity, we denote G(t) = |t|p−2t. Then G is strictly increasing in R and

for all t1 ≤ t2, we have

G(t1)−G(t2) ≤ C|t2|p−2(t1 − t2) (20)

(see [6, Lemma 5.1]).
Using the definition of the fractional p-Laplacian and the monotonicity of G, we

can compute

(−∆)spuλ(x∗)− (−∆)spu(x∗)

= Cn,spPV

∫
Rn

G(uλ(x∗)− uλ(y))−G(u(x∗)− u(y))

|x∗ − y|n+sp
dy

= Cn,spPV

∫
Σλ

G(uλ(x∗)− uλ(y))−G(u(x∗)− u(y))

|x∗ − y|n+sp
dy

+ Cn,sp

∫
Σλ

G(uλ(x∗)− u(y))−G(u(x∗)− uλ(y))

|x∗ − yλ|n+sp
dy

≤ Cn,spPV
∫

Σλ

G(uλ(x∗)− uλ(y))−G(u(x∗)− u(y))

|x∗ − yλ|n+sp
dy

+ Cn,sp

∫
Σλ

G(uλ(x∗)− u(y))−G(u(x∗)− uλ(y))

|x∗ − yλ|n+sp
dy

≤ Cn,sp
∫

Σλ

G(uλ(x∗)− u(y))−G(u(x∗)− u(y))

|x∗ − yλ|n+sp
dy,

where we have used
1

|x∗ − y|n+sp
≥ 1

|x∗ − yλ|n+sp
,

G(uλ(x∗)− uλ(y))−G(u(x∗)− u(y)) = G′(ζ1)(wλ(x∗)− wλ(y)) ≤ 0

and

G(uλ(x∗)− uλ(y))−G(u(x∗)− uλ(y)) = G′(ζ2)wλ(x∗) ≤ 0

for some ζ1, ζ2.
Now we apply the inequality (20) to get

(−∆)spuλ(x∗)− (−∆)spu(x∗) ≤ Cwλ(x∗)

∫
Σλ

|u(x∗)− u(y)|p−2

|x∗ − yλ|n+sp
dy. (21)
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Let us denote M =
(

2C
c

) 1
γ , where C, c are the same as in (15). Then for any x, y

such that |y| > M |x| and |x| ≥ |λ|2 , we deduce from (15) that

u(y) <
C

|y|γ
<

c

2|x|γ
<
u(x)

2
.

We choose some point z ∈ Σλ such that |z| = (M + 1)|x∗| and B|x∗|(z) ⊂ Σλ,

then u(y) < 1
2u(x∗) for all y ∈ B|x∗|(z). Therefore,∫

Σλ

|u(x∗)− u(y)|p−2

|x∗ − yλ|n+sp
dy ≥ up−2(x∗)

2p−2

∫
B|x∗|(z)

dy

|x∗ − yλ|n+sp

=
up−2(x∗)

2p−2

∫
B|x∗|(zλ)

dy

|x∗ − y|n+sp

≥ up−2(x∗)

2p−2

∫
B|x∗|(zλ)

dy

[(M + 3)|x∗|]n+sp

≥ Cu
p−2(x∗)

|x∗|sp
,

(22)

where we have used the fact

|x∗ − y| ≤ |x∗|+ | − zλ|+ |zλ − y|

≤ |x∗|+ |z|+ |zλ − y| ≤ (M + 3)|x∗| for all y ∈ B|x∗|(zλ).

Substituting (22) into (21) and using (3), we deduce

(−∆)spuλ(x∗)− (−∆)spu(x∗) ≤ Cwλ(x∗)
up−2(x∗)

|x∗|sp
≤ Cwλ(x∗)

|x∗|γ(p−2)+sp
. (23)

The inequalities (12), (14) and (23) imply

C + C ′ ln |x∗|
|x∗|n+α−β+γ(q−2)

+
C

|x∗|2α−β+2γ(q−1)
≥ 1

|x∗|γ(p−2)+sp
,

or equivalently,

C + C ′ ln |x∗|
|x∗|n+α−β+γ(q−p)−sp +

C

|x∗|2α−β+γ(2q−p)−sp ≥ 1.

This fact and (4) would imply |x∗| < R0 for some R0 > 0 independent of λ.

We are ready to prove our main result.

Proof of Theorem 1.2. We will show the symmetry of u about T0 by moving plane
Tλ along x1 direction from −∞ to the right.

For λ < 0, since

lim inf
x→0λ

wλ(x) = lim inf
x→0λ

(uλ(x)− u(x)) = lim inf
x→0

u(x)− u(0λ) > 0,

wλ is strictly positive near its singular point 0λ.
This fact indicates that if wλ is negative somewhere in Σλ, then the negative

minima of wλ are attained in the interior of Σ∗λ. We carry on the method of moving
planes in two steps.

Step 1. (Move the plane along x1 direction from near −∞)
In this step, we show that for λ sufficiently negative,

wλ ≥ 0 in Σ∗λ. (24)
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Indeed, we may choose λ < −R0, where R0 is defined in Lemma 3.2 with λ = −1.
If (24) does not hold for such λ, then there exists x∗ ∈ Σ∗λ such that wλ(x∗) =
min
Σλ

wλ < 0. Hence |x∗| < R0 by Lemma 3.2. This contradicts x∗ ∈ Σ∗λ and

λ < −R0. Hence, (24) is proved.
Step 2. (Move the plane to the limiting position)
Step 1 provides a starting point, from which we can now move the plane Tλ to

the right as long as (24) holds to its limiting position. Define

λ0 = sup{λ ≤ 0 | wµ ≥ 0 in Σ∗µ for all µ ≤ λ}.

In this step, we show that

λ0 = 0. (25)

Suppose (25) is false, i.e., λ0 < 0. Since wλ depends on λ continuously, we have

wλ0 ≥ 0 in Σ∗λ0
.

Then we may use (8) and (10) in the proof of Lemma 3.1 to get

(−∆)spuλ0
(x)− (−∆)spu(x) ≥

(
F (xλ0)− F (x)

) uq−1
λ0

(x)

|x|α

=

∫
Σλ0

(
1

|x− y|n−β
− 1

|xλ0 − y|n−β

)(
uqλ0

(y)

|yλ0 |α
− uq(y)

|y|α

)
dy ·

uq−1
λ0

(x)

|x|α

≥
∫

Σλ0

(
1

|x− y|n−β
− 1

|xλ0 − y|n−β

)(
1

|yλ0 |α
− 1

|y|α

)
uq(y)dy ·

uq−1
λ0

(x)

|x|α

> 0

for all x ∈ Σ∗λ0
. This indicates wλ0 6≡ 0.

Then by the strong maximum principle (see Lemma 2.1), we have

wλ0
> 0 in Σ∗λ0

.

On the other hand, by the definition of λ0, there exists a sequence λk ↘ λ0 and
xk ∈ Σ∗λk such that

λk <
λ0

2
, wλk(xk) = min

Σλk

wλk < 0 and ∇wλk(xk) = 0. (26)

By Lemma 3.2, we have |xk| < R0, where R0 is defined in Lemma 3.2 with
λ = λ0

2 . Therefore, we may assume that xk → x0. Now from (26), we have

wλ0
(x0) ≤ 0, hence x0 ∈ Tλ0

; and ∇wλ0
(x0) = 0.

It follows that
wλk(xk)

δk
→ 0 as k →∞.

Consequently, we may use (12) and (14) to get

1

δk

(
(−∆)spuλk(xk)− (−∆)spu(xk)

)
≥ c(xk)

wλk(xk)

δk

≥

 sup
x∈Σλ0

2

∩BR0
(0)

c(x)

 wλk(xk)

δk
→ 0.
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This contradicts Lemma 2.2 and hence (25) is proved. Consequently, w0 ≥ 0 in
Σ0. By moving the plane along x1 direction from near +∞, we also have w0 ≤ 0 in
Σ0. Therefore, u is symmetric and monotone decreasing about plane T0.

We may repeat the above argument for any direction to conclude that u is radially
symmetric and monotone decreasing about the origin. This completes the proof of
Theorem 1.2.
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