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Abstract: We focus on the multiple-sets split feasibility problem of two
arbitrary (possibly infinite) collections of closed convex sets. Under some
conditions, it can be reformulated as a stochastic optimization problem. We
propose a class of random projection algorithms and prove the almost sure
convergence of these algorithms. We also provided convergence rates and
some numerical experiments to illustrate the behavior of the algorithms.

1 Introduction

Consider the classical multiple-sets split feasibility problem (MSF)

Find x ∈ ∩ti=1Ci such that Ax ∈ ∩rj=1Qj, (MSF )

where A is a given real m×n matrix, C1, . . . , Ct, Q1, . . . , Qr are closed convex
sets in Rn and Rm, respectively. The MSFP was firstly defined by Censor et al
in [6] for modeling many pratical applications especially intensity- modulated
radiation therapy. It also generalizes both the convex feasibility problem and
the split feasibility problem. When Qj ≡ Rm for all j, the (MSF) problem
becomes the convex feasibility problem ([1, 7])

Find x ∈ ∩ti=1Ci,

and when t = r = 1, it becomes the split feasibility problem ([3, 5, 9])

Find x ∈ C such that Ax ∈ Q.
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Optimization problems involving a large number of constraints appear
more and more in the pratical applications such as inverse problems, com-
puter science, machine learning and statistics (see [11] and the references
therein). The convex feasibility problem of a (possibly infinite) collections of
closed convex sets also called stochastic feasibility problem was firstly con-
sidered in [2] and then formulated as a stochastic optimization problem in
[10]. Also in [10], the authour proposed a random projection algorithm and
studied its convergence rate for stochastic feasibility problem . In [12], the
authours proposed several stochastic reformulations and develop a general
projection algorithm for the stochastic convex feasibility problem that can
be paralleled. Recently, the stochastic fixed point problem has been investi-
gated in [8]. Motivated by these works, we are interested in the stochastic
split feasiblity problem (SSF)

Find x ∈ ∩i∈ICi such that Ax ∈ ∩j∈JQj, (SSF )

where A is a given real m × n matrix and {Ci}i∈I , {Qj}j∈J are arbitrary
collections of closed convex sets in Rn and Rm, respectively. Comparing to
the clasical (MSF) problem, in (SSF), the sets I and J may be infinite. In
the next section, we reformulate the (SSF) problem as a stochastic optimiza-
tion problem and study the equivalence of these problems. In Section 3, we
propose a random projection algorithm for solving the (SSF) and study its
convergence analysis. Numerical experimental results are provided in Section
4.

2 Problem formulation

Let C be a closed convex set in Rn. We denote by PC the projection on C.
In the following lemma, we recall some important properties of PC that will
be useful for the next part of the paper.

Lemma 2.1. (see for example [4, 6])

(i) PC is firmly non-expansive,i.e. for all x, y ∈ Rn

‖PC(x)− PC(y)‖2 ≤ 〈x− y, PC(x)− PC(y)〉.

(ii) I − PC is firmly non-expansive,i.e. for all x, y ∈ Rn

‖(I − PC)(x)− (I − PC)(y)‖2 ≤ 〈x− y, (I − PC)(x)− (I − PC)(y)〉.
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Now, we consider the stochastic split feasibility problem:

Find x ∈ ∩i∈ICi such that Ax ∈ ∩j∈JQj, (SSF )

where A is a given real m × n matrix and {Ci}i∈I , {Qj}j∈J are finite or
infinite collections of closed convex sets in Rn and Rm, respectively.

Problem (SSF) can be reformulated as the following stochastic optimiza-
tion problem:

min
x∈Rn
F(x) =

1

2
E
[
‖x− PCω(x)‖2 + β‖Ax− PQθ(Ax)‖2

]
, (SOP )

where β is an arbitrary positive number, ω ∼ P , θ ∼ Q, P is a probability
distribution over I,Q is a probability distribution over J and the expectation
is taken with respect to ω, θ.

We denote the solution set of Problem (SSF) by S, and the solution set of
Problem (SOP) by S1. It is clear that a solution of (SSF) is also a solution of
(SOP), i.e. S ⊂ S1, but the inverse inclusion is not always true, for example,
when the random variable ω takes only one value in the set I or the random
variable θ takes only one value in the set J .

Lemma 2.2. Assume that S 6= ∅, then (SSF) and (SOP) are equivalent,
i.e. the solution set of (SSF) equals the solution set of (SOP) if one of the
following conditions holds:

(i) P{ω = i} > 0 for any i ∈ I and Q{θ = j} > 0 for any j ∈ J .

(ii) Linear regularity condition: There exists κ <∞ such that

dist2S(x) ≤ κF(x) ∀x ∈ Rn. (1)

Proof. (i) Let x ∈ S, then x ∈ Ci and Ax ∈ Qj for any i ∈ I, j ∈ J . Since
ω and θ are random variables taking values in the set I,J , respectively,
we have x = PCω(x), Ax = PQθ(Ax) or F(x) = 0. Therefore, S ⊂ S1.

Now, let x ∈ S1, we have F(x) = 0. For any i ∈ I,

0 = F(x) ≥ ‖x− PCi(x)‖2P{ω = i}.

But P{ω = i} > 0, then x = PCi(x) or x ∈ Ci. Similarly, we have
Ax ∈ Qj for any j ∈ J . It means that x ∈ S.

(ii) As proved in (i), S ⊂ S1. If x ∈ S1, we have

dist2S(x) ≤ κF(x) = 0.

So, x ∈ S.
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Remark 2.3. Condition (i) is similar to the condition used in [10] and
Condition (ii) (Linear regularity condition) was used in several works ([8,
10, 12]). Note that the linear regularity condition is quite conservative and
does not hold for any collection of closed convex sets (see Example 1, [12]).

Let

F (x, ω, θ) =
1

2

[
‖x− PCω(x)‖2 + β‖Ax− PQθ(Ax)‖2

]
, (2)

then
F(x) = E [F (x, ω, θ)] , (3)

and

∇F(x) = E(∇xF (x, ω, θ)) (4)

= x− E [PCω(x)] + βATAx− βATE [PQθ(Ax)] . (5)

Lemma 2.4. (i) For each ω ∈ I, θ ∈ J , F (x, ω, θ) has Lipschitz gradient
with constant L = 1+βλ(ATA), where λ(ATA) is the largest eigenvalue
of ATA.

(ii) The function F(x) also has Lipschitz gradient with constant L.

Proof. (i) It is easy to see that

∇xF (x, ω, θ) = x− PCω(x) + βAT (Ax− PQθ(Ax)).

For fixed ω ∈ E , θ ∈ F ,

‖∇xF (x, ω, θ)−∇xF (y, ω, θ)‖
≤ ‖x− PCω(x)− y + PCω(y)‖

+β
∥∥AT [Ax− PQθ(Ax)− Ay + PQθ(Ay)]

∥∥
≤ (1 + βλ(ATA))‖x− y‖.

The last inequality follows from the firmly non-expansive property of
I − PCω and I − PQθ .

(ii) Since ∇F(x) = E [∇xF (x, ω, θ)],

‖∇F(x)−∇F(y)‖
= ‖E [∇xF (x, ω, θ)]− E [∇xF (y, ω, θ)] ‖
≤ E [‖∇xF (x, ω, θ)−∇xF (y, ω, θ)‖]
≤ L‖x− y‖.
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Lemma 2.5.
E
[
‖∇xF (x, ω, θ)‖2

]
≤ 2LF(x). (6)

Proof. We have

‖∇xF (x, ω, θ)‖2

= ‖x− PCω(x) + βAT (Ax− PQθ(Ax))‖2

= ‖x− PCω(x)‖2 + β2‖AT (Ax− PQθ(Ax))‖2

+2β〈x− PCω(x), AT (Ax− PQθ(Ax))〉.

By Cauchy-Schwarz inequality,

〈x− PCω(x), AT (Ax− PQθ(Ax))〉

≤ λ(ATA)‖x− PCω(x)‖2 +
1

λ(ATA)
‖AT (Ax− PQθ(Ax))‖2.

Therefore,
‖∇xF (x, ω, θ)‖2 ≤ 2LF (x, ω, θ).

By taking expectation with respect to ω and θ, we obtain

E
[
‖∇xF (x, ω, θ)‖2

]
≤ 2LF(x).

Lemma 2.6. (Supermartingale convergence lemma[10, 13])
Let {vk}, {uk}, {ak} and {bk} be sequences of nonnegative random variables
such that

E [vk+1|Vk] ≤ (1 + ak)vk − uk + bk a.s. for all k ≥ 0,

∞∑
k=0

ak <∞ a.s.,
∞∑
k=0

bk <∞ a.s.,

where Vk denotes the σ-algebraic generated by random variables v0, . . . , vk,
u0, . . . , uk, a0, . . . , ak, b0, . . . , bk. Then, we have limk→∞ vk = v for a random
variable v ≥ 0 a.s., and

∑∞
k=0 uk <∞ a.s.

3 Algorithm and it convergence analysis

Algorithm:
Take a mini-batch size N ≥ 1, and a positive sequence {αk}k≥1

Iter 0: Let x0 be arbitrary.
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Iter k: Draw 2N independent samples ω1
k, ω

2
k, . . . , ω

N
k ∼ P , θ1k, θ

2
k, . . . , θ

N
k ∼

Q.
Compute

xk = xk−1 − αk
N

N∑
i=1

∇xF (xk−1, ωik, θ
i
k).

We denote by Xk the history of the method up to time k ≥ 1

Xk =
{
x0, (ω

i
t, 1 ≤ i ≤ N, 1 ≤ t ≤ k), (θit, 1 ≤ i ≤ N, 1 ≤ t ≤ k)

}
.

Proposition 3.1. If the sequence {αk} satisfy the following condition

∞∑
k=1

α2
k <∞,

∞∑
k=1

αk =∞,

then there exists a nonnegative random variable c such that

lim
k→∞
F(xk) = c a.s., (7)

and
lim inf
k→∞

∇F(xk) = 0 a.s. (8)

Proof. As proved in Lemma 2.4, the function F(x) has Lipschitz gradient
with constant L = 1 + λ(ATA). Therefore,

F(xk) ≤ F(xk−1) +∇F(xk−1)T (xk − xk−1) +
L

2
‖xk − xk−1‖2

= F(§‖−∞)− αk
N

N∑
i=1

∇F(xk−1)T∇xF (xk−1, ωik, θ
i
k)

+
Lα2

k

2N2
‖

N∑
i=1

∇xF (xk−1, ωik, θ
i
k)‖2.

Take the expectation on Xk−1 and note that ωik and θik are independent of
the past Xk−1 when xk−1 is determined by Xk−1, we have

E
[
F(xk)|Xk−1

]
≤ F (xk−1)− αk

N

N∑
i=1

∇F(xk−1)TE
[
∇xF (xk−1, ωik, θ

i
k)
]

+
Lα2

k

2N2
E

[
‖

N∑
i=1

∇xF (xk−1, ωik, θ
i
k)‖2

]
a.s. (9)
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By definitions of F and F , it is easy to see that

E
[
∇xF (xk−1, ωik, θ

i
k)
]

= ∇F(xk−1). (10)

In addition, thanks to Cauchy-Schwarz inequality, we have

E

[
‖

N∑
i=1

∇xF (xk−1, ωik, θ
i
k)‖2

]
≤ E

[
N

N∑
i=1

‖∇xF (xk−1, ωik, θ
i
k)‖2

]

= N

N∑
i=1

E
[
‖∇xF (xk−1, ωik, θ

i
k‖2
]
.

By using Lemma 2.5, we obtain

E

[
‖

N∑
i=1

∇xF (xk−1, ωik, θ
i
k)‖2

]
≤ 2N2LF(xk−1). (11)

Combinning (9), (10), (11), we have

E [F(x)|Xk−1] ≤ (1 + L2α2
k)F(xk−1)− αk‖∇F(xk−1)‖2 a.s. (12)

Now, thanks to the supermartingale convergence Lemma 2.6, we can con-
clude that

F(xk)→ c a.s.,

for some nonegative random variable c and

∞∑
k=1

αk‖∇F(xk−1)‖2 <∞ a.s.

But by assumption,
∑∞

k=1 αk =∞. It implies that

lim inf
k→∞

‖∇F(xk−1)‖2 = 0 a.s.

Hence,
lim inf
k→∞

∇F(xk) = 0 a.s.

Theorem 3.2. Assume that the solution set S1 of (SOP) is nonempty.
Then if

∑∞
k=1 α

2
k <∞ and

∑∞
i=1 αk =∞ the sequence {xk} generated by the

Algorithm converges almost surely to a random point in the solution set S1.
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Proof. Let z belong to S1 and F∗ = F(z) be the optimal value of (SOP). We
have

‖xk+1 − z‖2 = ‖xk−1 − z‖2 + 2〈xk−1 − z, xk − xk−1〉+ ‖xk − xk−1‖2.

= ‖xk−1 − z‖2 − 2
αk
N

N∑
i=1

〈xk−1 − z,∇xF (xk−1, ωik, θ
i
k)〉

+
α2
k

N2
‖

N∑
i=1

∇xF (xk−1, ωik, θ
i
k)‖2.

Taking the conditional expectation on Xk−1 and using

E
[
∇xF (xk−1, ωik, θ

i
k)
]

= ∇F(xk−1),

E

[
‖

N∑
i=1

∇xF (xk−1, ωik, θ
i
k)‖2

]
≤ 2N2LF(xk−1),

we obtain

E
[
‖xk − z‖2|Xk−1

]
≤ ‖xk−1 − z‖2 − 2αk∇F(xk−1)T (xk−1 − z) + 2α2

kLF(xk−1).

Since F is convex, we have

∇F(xk−1)T (xk−1 − z) ≥ F(xk−1)−F(z) = F(xk−1)−F∗.

So,

E
[
‖xk − z‖2‖Xk−1

]
≤ ‖xk−1 − z‖2 − 2αk(F(xk−1)−F∗)

+2α2
kLF(xk−1). (13)

By Proposition 3.1, the sequence F(xk−1) converge almost surely, hence it
is bounded almost surely. Combining this with the condition

∑∞
k=1 α

2
k <∞,

we imply that
∞∑
k=1

α2
kF(xk−1) <∞ a.s.

Clearly, F(xk−1) ≥ F∗ ≥ 0. Thanks to the supermartigale convergence
lemma, we have the sequence

{
‖xk − z‖

}
is convergent almost surely for z

arbitrary in S1. Moreover,

∞∑
k=1

αk(F(xk−1 −F∗) <∞ a.s.
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Therefore, lim infk→∞(F(xk−1 −F∗) = 0 a.s. or

lim inf
k→∞

F(xk−1) = F∗ a.s. (14)

On the other hand, the sequence
{
‖xk − z‖

}
is convergent almost surely.

Therefore, almost surely, {xk} is bounded and has limit points. By using
(14) and the continuity of F , we can conclude that {xk} converges and its
limit point is in S1 almost surely.

Theorem 3.3. Assume that the solution set S of (MSFP) is nonempty.
Then if there exist positive numbers α and overlineα such that

0 < α ≤ αk ≤ α <
1

L
,

then the sequence {xk} generated by the Algorithm converges almost surely
to a random point in the solution set S.

Proof. Let z be a solution of (SSF) then z ∈ S1 and the optimal value of
(SOP) is F∗ = F(z) = 0. So (13) becomes

E
[
‖xk − z‖2|Xk−1

]
≤ ‖xk−1 − z‖2 − 2αk(1− αkL)F(xk−1). (15)

Note that F(xk−1) ≥ 0 and αk(1 − αkL) > 0. By using the supermartingle
convergence lemma, we obtain that the sequence

{
‖xk − z‖

}
is convergent

almost surely for any z ∈ S. In addition,

∞∑
k=1

αk(1− αkL)F(xk−1) <∞ a.s.

Since αk(1− αkL) ≥ α(1− αL) > 0, it implies that

lim inf
k→∞

F(xk−1) = 0.

By the same argument as in the proof of Theorem 3.2, we can conclude that
{xk} converges and its limit point is in S almost surely.

The following proposition provides the convergence rate of our algorithm.

Proposition 3.4. Assume that S is nonempty and 0 < α ≤ αk ≤ α < 1
L

for every k.
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(i) Let x̂k be the average point, i.e.

x̂k =
1∑k

i=0 αi+1

k∑
i=0

αi+1x
i.

Then, we have

E[F(x̂k)] ≤ dist2S(x0)

2(1− αL)
∑k

i=0 αi+1

.

(ii) If the linear regularity condition (1) holds, then we have

E[distS(xk)] ≤
(

1− 2α(1− αL)

κ

)
E[distS(xk−1)],

and

E[F(xk)] ≤
(

1− 2α(1− αL)

κ

)k
distS(x0)

2
.

Proof. (i) Taking expectation on (15), we obtain, for any z ∈ S,

E[‖xk − z‖2] ≤ E[‖xk−1 − z‖2]− 2αk(1− αkL)E[F(xk−1)]. (16)

For any αk satisfied 0 < α ≤ αk ≤ α < 1
L

, we have

αk(1− αkL) ≥ αk(1− αL).

It implies that

2αk(1− αL)E[F(xk−1)] ≤ E[‖xk−1 − z‖2]− E[‖xk − z‖2]. (17)

By taking the sum of (17) from 1 to k + 1, we have

2(1− αL)E[
k∑
i=0

αi+1F(xi)] ≤ ‖x0 − z‖2.

Thanks to the convexity of F and by taking z = PS(x0), we can con-
clude that

E[F(x̂k)] ≤ dist2S(x0)

2(1− αL)
∑k

i=0 αi+1

.
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(ii) If the linear regularity condition holds then there exists κ < ∞ such
that

dist2S(x) ≤ κF(x) ∀x ∈ Rn.

From (15), we have

E
[
‖xk − z‖2|Xk−1

]
≤ ‖xk−1 − z‖2 − 2αk(1− αkL)

κ
dist2S(xk−1).

Taking expectation, we get

E[‖xk − z‖2] ≤ E[‖xk−1 − z‖2]− 2αk(1− αkL)

κ
E[dist2S(xk−1)]. (18)

We can choose z = PS(xk−1) and note that

‖xk − PS(xk−1)‖2 ≥ dist2S(xk).

From (18), it implies that

E[dist2S(xk)] ≤
(

1− 2αk(1− αkL)

κ

)
E[dist2S(xk−1)]

≤
(

1− 2α(1− αL)

κ

)
E[dist2S(xk−1)].

4 Numerical experiments

In this section, we report several numerical experimental results to illustrate
the behavior of our algorithm. We implement the algorithm in Matlab on a
Corei5 computer with 512Mb RAM.

Example 4.1. In this example, we suppose A is an m× n matrix and

• The random vectors ω = (ω1, ω2, . . . , ωn) and θ = (θ1, θ2, . . . , θm) are
the uniformly random vectors in [0, 1]n and [0, 1]m, respectively;

• Cω is a box in Rn defined by

Cω = {x ∈ Rn| − 1 + ωi ≤ xi ≤ ωi ∀i} .

• Qθ is a half-space in Rm defined by

Qθ =
{
y ∈ Rm| cTθ y ≤ 0

}
,

with cθ = (−1,−1, . . . ,−1) + 2θ.
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(a) The boxes Cω (b) The half-spaces Qθ

Figure 1: Boxes and half-spaces

Figure 1 illustrates the sets Cω and Qθ. It is clear that

∩ωCω = {0},

and
∩θQθ = {0},

hence the (SSF) problem has unique solution that is the origin (0, 0, . . . , 0)
of Rn. To test our algorithm, we take

β = 1; αk ≡
1

1.5(β + λ(ATA))
∀k,

and each entry of the matrix A is uniformly generated in [0, 1]. For each size
(m,n) of problem, we test the algorithm on 100 samples of A and report the
average time and error ‖xk‖ corresponding to different values of mini-batch
size N in Table 1 and 2. We stop the algorithm if ‖xk‖ ≤ 10−2 or the number
of iterations exceeds 500.

Example 4.2. Suppose that A is a 2× 2 matrix and

• ω is uniformly distribution on the unit circle C(0, 1) ⊂ R2 and Cω is
the disc with center ω and radius 2 in R2.

• θ is uniformly distribution on the circle C(0, 2) ⊂ R2 and Qθ is the disc
with center θ and radius 4 in R2.
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Table 1: Average CPUs time corresponding to different problem and mini-
batch sizes

(n,m) N = 1 N = 5 N = 10

(5,5) 3.2953 15.631 31.286
(10,5) 3.8206 18.314 36.382
(20,5) 4.1570 20.735 41.819
(50,5) 4.5560 22.590 45.254
(100.5) 6.8337 33.558 67.650

Table 2: Average error corresponding to different problem and mini-batch
sizes

(n,m) N = 1 N = 5 N = 10

(5,5) 0.073978 0.073496 0.072076
(10,5) 0.23751 0.23911 0.23908
(20,5) 0.59016 0.58459 0.58973
(50,5) 1.5513 1.5517 1.5513
(100,5) 3.0151 3.0033 3.0245

We can easily check that

∩ωCω = {x ∈ R2|‖x‖ ≤ 1} = B(0, 1),

and
∩θQθ = {y ∈ R2|‖y‖ ≤ 2} = B(0, 2).

Figure 2 helps us understand the discs Cω and Qθ. The (SSF) problem has
infinitely many solutions and x∗ is a solution of (SSF) if and only if ‖x‖ ≤ 1
and ‖Ax‖ ≤ 2. Therefore, we set

er := max(0, ‖x‖ − 1) + max(0, ‖Ax‖ − 2),

as the error for this example.
We take β = 1 and test the algorithm with different choices of mini-batch

sizes N = 1, 5, 10. The stopping rules are er < 10−4 and the number of
iterations exceeds 500. The average errors over 100 problems corresponding
to 100 randomly generated matrix A are plotted in Figure 3.

We also test the algorithm with different choices of αk. The average
times and errors are reported in Table 3. We observe that the choice of the
parameter αk plays an important role for the efficiency of the algorithm. The
error goes to 0 quite quick when αk close to 1

L
.
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(a) The discs Cω (b) The discs Qθ

Figure 2: Circles

Table 3: Average CPUs times and errors corresponding to different choices
of αk

αk = 1
1.1L

αk = 1
1.5L

αk = 1
k+1

Average CPUs time 0.33749 0.35064 2.8761
Average error 0.00031 0.00050 0.01419

5 Conclusion

We proposed a stochastic reformulation of the stochastic split feasibility prob-
lem and studied the equivalence between these problems. Then, we intro-
duced a mini-batch random projection algorithm and proved the convergence
in consistent and non-consistent cases. We also derived the linear convergence
rates for this algorithm under linear regularity condition.
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