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ABSTRACT. We study generalized least square approximation polynomials which are built from
sets of functionals. We construct sets of functionals for bivariate harmonic functions, univariate
holomorphic functions and sufficiently smooth functions on curves such that the sequences of
the generalized least square approximation polynomials converge uniformly.

1. INTRODUCTION

Let K be the real or complex field. Consider the space P(Kd) of all algebraic polynomials
in Rd . Let Pn(Kd) be the subspace consisting of all polynomials of total degree at most n.
Given a compact subset K ⊂Kd and f : K→K we denote by ‖ f‖K = supx∈K | f (x)| the usual
supremum norm on K.

A set A ⊂ Kd is said to be determining for the space of functions F , or, for short, F -
determining, if p ∈F and p|A = 0 force p≡ 0. Here p|A is restriction of p to A.

Let A be Pn(Kd)-determining and f : A→ K. In [13, Theorem 1], Calvi and Levenberg
showed that there exists a unique polynomial p ∈Pn(Kd) which minimizes the quantity

Φ f ,A(q) := ∑
a∈A
|q(a)− f (a)|2, q ∈Pn(Kd). (1.1)

The polynomial p is denoted by Λ(A, f ) and is called the discrete least square approximation
polynomial. The authors also proved a Lebesgue type inequality

‖ f −Λ(A, f )‖K ≤
(

1+C(A,K)(1+
√

#A)
)

distK( f ,Pn(Kd)), (1.2)

where K is a compact set containing A, distK( f ,Pn(Kd)) denotes the uniform distance from f
to Pn(Kd) and the constant C(A,K) is defined by

‖q‖K ≤C(A,K)‖q‖A, q ∈Pn(Kd).

Examining (1.2) we see that the uniform error between f and Λ(A, f ) is controlled by the
quantity C(A,K)

√
#A which depends only on A and K. This fact had suggested Calvi and

Levenberg to give the theory of admissible meshes. It is defined as follows. A sequence of
discrete sets A = {An ⊂ K : n ∈ N∗} is called an admissible mesh in K if there exist constants
c1 and c2 depending only on K such that

‖p‖K ≤ c1‖p‖An, p ∈Pn(Kd), n≥ 1, (1.3)

where the cardinality of An grows at most polynomially on n, i.e., #An ≤ c2nm for some fixed
m ∈ N∗ depending only on K.

For such a compact set K, if A = {An ⊂ K : n ∈ N∗} is an admissible mesh, then no non-
zero polynomial in Pn(Kd) vanishes on An. Hence we must have m≥ d since dimPn(Rd) =(n+d

d

)
∼ nd . This leads to the definition of optimal admissible meshes introduced in [17]: An

admissible mesh A is optimal if #An ≤ c3nd for some c3 > 0 depending only on K.
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Note that admissible meshes are preserved by the operations of taking unions, product and
transformation of sets under affine automorphisms. They are also stable under small pertuba-
tion and analytic transformations, see [24, 25]. From computational point of views, admissible
meshes are very useful. It was proved by Calvi and Levenberg that the least square approxima-
tion polynomials based on admissible meshes approximate the smooth functions or holomor-
phic functions uniformly. Moreover, in [8, 9, 10], the authors showed that discrete extremal
sets of Fekete and Leja types can be exacted from admissible meshes. For standard compact
sets, for instance triangles, quadrangles, disks, cylinders, the authors constructed in [11, 14]
low cardinality admissible meshes. General results on the construction of admissible meshes
in compact sets in Rd are recently given by Kroo [17, 18, 19]. He used constructive methods
to get optimal or near optimal admissible meshes on compact sets which are graph domains of
polynomials, differentiable or analytic functions, and on the compact sets which admit Bern-
stein type or Markov type inequalities. In a recent work [26], Piazzon built optimal admissible
meshes on two classes of compact set in Rd .

Observe that the value p(a) is identical with δa(p), where δa is the Dirac functional. Hence
we can rewrite (1.1) as

Φ f ,A(q) := ∑
a∈A
|δa(q)−δa( f )|2, q ∈Pn(Kd). (1.4)

In this note, we replace the δa’s and Pn(Kd) by functionals on the space of continuous func-
tions C (K) and a finite dimensional subspace Q of P(Kd) respectively. We show that the
corresponding sum of squares also attains its infimum at a unique element p ∈Q. The gener-
alized least square approximation polynomial p also admits a Lebesgue type inequality. This
leads to the notion of generalized admissible meshes.

In Section 3, we construct good functionals for the spaces of bivariate harmonic polynomials
and univariate holomorphic polynomials such that the sequence of the generalized least square
approximation polynomials converges uniformly. They consist of nests of points and families
of Radon projections.

Section 4 deals with the construction of admissible meshes on smooth curves in Rd . The
method relies heavily on Markov type inequalities on curves. Note that if Γ is an algebraic
curve in Rd , then the restriction of Pn(Kd) to Γ will form a vector space Pn(Γ) whose dimen-
sion Nn is smaller than dimPn(Kd) in general. Hence the (generalized) optimal admissible
meshes for a compact set on Pn(Γ) should have cardinality O(Nn) rather than O(nd). The
same situation happens in [12] in which Bos and Vianello constructed Tchakaloff polynomial
meshes on algebraic varieties in Rd .

2. GENERALIZED LEAST SQUARE APPROXIMATIONS

Let Q be a finite dimensional subspace of P(Kd). A set of functionals M = {µ1,µ2, . . . ,µm}
in the dual space Q] is said to be determining for Q, or, for short Q-determining, if p ∈Q and
µ j(p) = 0 for all j = 1, . . . ,m force p≡ 0. The cardinality of an Q-determining set M can not
smaller than the dimensional of Q, that is m ≥ dimQ. Note that if µi = δai for i = 1, . . . ,m,
then M is Q-determining if and only if A = {a1, . . . ,am} is Q-determining.

Theorem 2.1. Let Q be a finite dimensional subspace of P(Kd) and let M = {µ1,µ2, . . . ,µm}⊂
Q] be Q-determining. Then, for any assigned numbers c1,c2, . . . ,cm, there exists a unique
polynomial p ∈Q which minimizes the quantity

Φ(p) :=
m

∑
j=1
|µ j(p)− c j|2,

i.e., Φ(p)< Φ(q) for every q ∈Q \{p}.
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Proof. The proof is adapted from the proof of the Hilbert projection theorem. Let us set α =
inf{Φ(p) : p ∈Q}. Then there exists a sequence {pn} in Q such that

α ≤Φ(pn)≤ α +1/n, n≥ 1.

For n,k ≥ 1, we have

Φ(pn)+Φ(pk) =
m

∑
j=1

(
|µ j(pn)− c j|2 + |µ j(pk)− c j|2

)
=

m

∑
j=1

1
2

(
|µ j(pn)+µ j(pk)−2c j|2 + |µ j(pn)−µ j(pk)|2

)
=

m

∑
j=1

(
2|µ j(

pn + pk

2
)− c j|2 +

1
2
|µ j(pn)−µ j(pk)|2

)
= 2Φ(

pn + pk

2
)+

1
2

m

∑
j=1
|µ j(pn)−µ j(pk)|2.

It follows that
m

∑
j=1
|µ j(pn)−µ j(pk)|2 = 2Φ(pn)+2Φ(pk)−4Φ(

pn + pk

2
)≤ 4α +

2
n
+

2
k
−4α =

2
n
+

2
k
.

Hence

lim
n,k→∞

m

∑
j=1
|µ j(pn)−µ j(pk)|2 = 0. (2.1)

Consider a sesquilinear form defined on Q by

〈q,r〉M =
m

∑
j=1

µ j(q)µ j(r), q,r ∈Q.

By hypothesis that M is Q-determining, we easily check that 〈·, ·〉M defines a Hermitian inner
product on Q. Now, since Q is a finite dimensional space, it becomes a Hilbert space in which
the norm induced by the Hermitian inner product is given by

‖q‖M =

√
m

∑
j=1
|µ j(q)|2, q ∈Q.

Hence relation (2.1) implies that there exists limn→∞ pn = p∗ ∈Q. Equivalently, limn→∞ µ j(pn)=
µ j(p∗) for j = 1, . . . ,m, and hence

Φ(p∗) =
m

∑
j=1
|µ j(p∗)− c j|2 = lim

n→∞

m

∑
j=1
|µ j(pn)− c j|2 = α.

It remains to prove the uniqueness. Assume that Φ(p̃) = α with p̃ ∈Q. Repeating the above
arguments, we can write

2α = Φ(p∗)+Φ(p̃)

=
m

∑
j=1

(
|µ j(p∗)− c j|2 + |µ j(p̃)− c j|2

)
= 2Φ(

p∗+ p̃
2

)+
1
2

m

∑
j=1
|µ j(p∗)−µ j(p̃)|2

≥ 2α +
1
2
‖p∗− p̃‖2

M .
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It follows that ‖p∗− p̃‖M = 0, and hence, p∗ = p̃. The proof is complete. �

Definition 2.2. Let f be a function such that µ j( f ) is well-defined for every j = 1, . . . ,m. Then
the unique element p ∈Q which minimizes the quantity

Φ(p) :=
m

∑
j=1
|µ j(p)−µ j( f )|2

is denoted by S(M ; f ).

In the special case where µ j = δa j for j = 1, . . . ,m and Q =Pn(Rd), then S(M ; f ) becomes
Λ(A, f ) where A = {a1, . . . ,am}.

Starting from any ordered basis for Q, we can use the Gram-Schmidt algorithm to construct
an orthonormal basis {r j}m

j=1 of Q with respect to 〈·, ·〉M . From the projection theorem we
have

S(M ; f ) =
m

∑
j=1
〈 f ,r j〉M r j.

It is interesting if we can find an orthonormal basis corresponding to the Radon projections in
Section 3.

Let K be a Q-determining compact set. Then the map q 7→ ‖q‖K := supx∈K |q(x)| defines a
norm on Q. Since ‖ · ‖M is a norm on Q, so is the map q 7→max1≤ j≤m |µ j(q)|. From the hy-
pothesis that Q is a finite dimensional space, we can find a positive constant C1 =C1(M ,Q,K)
such that

‖q‖K ≤C1 max
1≤ j≤m

|µ j(q)|, q ∈Q. (2.2)

The following Lebesgue type inequality is similar to (1.2).

Theorem 2.3. Let Q be a finite dimensional subspace of P(Kd) and let K be an Q-determining
compact set. Let F be a subspace of C (K) that contains Q and M = {µ1,µ2, . . . ,µm} ⊂F ]

such that M is Q-determining and there exists a positive constant C2 =C2(M ,F ,K) satisfy-
ing

max
1≤ j≤m

|µ j( f )| ≤C2‖ f‖K, f ∈F . (2.3)

Then, for each f ∈F , we have

‖ f −S(M ; f )‖K ≤
(

1+2C1C2
√

m
)

distK( f ,Q), (2.4)

where distK( f ,Q) = inf{‖ f −q‖K : q ∈Q}.

Proof. For simplicity of notation, we let S stand for S(M ; f ). We choose h ∈ Q such that
‖ f −h‖K = distK( f ,Q). Observe that

‖ f −S‖K ≤ ‖ f −h‖K +‖S−h‖K.

Since S−h ∈Q, relation (2.2) gives

‖S−h‖K ≤C1 max
1≤ j≤m

|µ j(S−h)|=C1 max
1≤ j≤m

|µ j(S)−µ j(h)|.
4



On the other hand, for each 1≤ j ≤ m, we can write

|µ j(S)−µ j(h)| ≤

√
m

∑
k=1
|µk(S)−µk(h)|2

≤

√
m

∑
k=1
|µk( f )−µk(h)|2 +

√
m

∑
k=1
|µk( f )−µk(S)|2

≤ 2

√
m

∑
k=1
|µk( f )−µk(h)|2

≤ 2
√

m max
1≤k≤m

|µk( f )−µk(h)|

≤ 2
√

mC2‖ f −h‖K,

where we use the minimal property of S in the third relation and (2.3) in the last one.
Combining the above estimates we finally obtain

‖ f −S‖K ≤
(

1+2C1C2
√

m
)
‖ f −h‖K =

(
1+2C1C2

√
m
)

distK( f ,Q).

The proof is complete. �

Evidently, if M = {δa1, . . . ,δam} with a j ∈ K, then we can take C2 = 1. It is known that,
by Jackson and Bernstein types theorem, the distance distK( f ,Q) will tend to 0 rapidly as
dimQ→ ∞ when f is sufficiently smooth or holomorphic. Hence, Theorem 2.3 gives good
approximation if the quantity C1C2

√
m is not too big. This leads to the following definition.

Definition 2.4. Let Qn be finite dimensional subspaces of P(Kd) such that limn→∞ mn = ∞,
mn = dimQn. Let K be an

(
∪∞

n=1 Qn
)
-determining compact set. A sequence of discrete sets

A = {An ⊂ K : n ∈ N∗} is called an admissible mesh in K for {Qn} if there exist constants c4
and c5 depending only on K such that

‖p‖K ≤ c4‖p‖An , p ∈Qn, n≥ 1, (2.5)

where the cardinality of An grows at most polynomially on mn, i.e., #An ≤ c2(mn)
α for some

fixed α > 0 depending only on K. In the case where α = 1, A is called an optimal admissible
mesh.

3. CONSTRUCTION OF GOOD FUNCTIONALS FOR HARMONIC AND HOLOMORPHIC
POLYNOMIALS

Throughout this section, D(a,r) denotes the open disk of center a and radius r > 0. The unit
disk is denoted by D. We write Hn(R2) for the space of all bivariate harmonic polynomials of
total degree at most n. It is well known that

Hn(R2) = span{1,ℜ(x+ yi),ℑ(x+ yi), . . . ,ℜ(x+ yi)n,ℑ(x+ yi)n}, x = x+ iy.

Hence dimHn(R2) = 2n+1. Next we recall the definition of Radon projections.
For any given pair (θ , t) ∈ R× [0,1), we denote by I(θ , t) the line segment of D, where the

line passes through the point (t cosθ , t sinθ) and is perpendicular to the vector (cosθ ,sinθ).
The Radon projection Rθ ( f ; t) of a real (or complex) valued function f defined on D is the

line integral of f over I(θ , t). More precisely

Rθ ( f ; t) =
∫

I(θ ,t)

f ds =

√
1−t2∫

−
√

1−t2

f (t cosθ − ssinθ , t sinθ + scosθ)ds.
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FIGURE 1. The chord I(θ , t) of the unit circle

In [15, 16], Georgieva and Hofreither studied interpolation by harmonic polynomials using
Radon projections. They found sets of chords called regular sets which determine harmonic
polynomials of total degree at most n uniquely. The authors also investigated the convergence
of interpolation polynomial of harmonic functions based on Radon projections in the norms
L2(∂D), L2(D), Hs(∂D). In [21, 22, 23], we generalized results of Georgieva and Hofreither
and pointed out that the interpolation polynomials based on Radon projections are continuous
with respect to the chords. In a forthcoming paper we are going to construct regular sets of
chords of Hermite type for Pn(C) and study the continuity and convergence properties of cor-
responding interpolation polynomials. This section is intended to construct certain sets of func-
tionals such that the generalized least square approximation polynomials converge uniformly
to harmonic functions and holomorphic functions.

Proposition 3.1. If m≥ 7n, then there exists a set A of m points on D(a,r) such that(
1− 2nπ

m

)
‖p‖D(a,r) ≤ ‖p‖A, p ∈Hn(R2).

Proof. Without loss of generality we assume that D(a,r) is the closed unit disk D. For each

0≤ k ≤ m−1 we take a point ak+1 on the arc ̂eiθkeiθk+1 of the unit circle joining eiθk and eiθk+1

where θk =
2kπ

m
for k = 0, . . . ,m. Let us set A = {a1, . . . ,am}.

By the maximum principle we can find a point a∗ with |a∗|= 1 such that |p(a∗)|= ‖p‖D. The

point a∗ must lie on one arc, say ̂eiθkeiθk+1 with 0≤ k≤m−1. Hence, if we write ak+1 = eiϕk+1

and a∗ = eiϕ∗ with θk ≤ ϕk+1,ϕ
∗ ≤ θk+1 then |ϕk+1−ϕ∗| ≤ 2π

m
. Since p ∈Hn(R2) we can

find a trigonometric polynomial Tn of degree at most n such that p(eiθ ) = T (θ), θ ∈ R. Using
the Markov inequality for trigonometric polynomial we have

|p(a∗)− p(ak+1)| = |T (ϕ∗)−T (ϕk+1)| ≤ ‖T ′‖[0,2π]|ϕ∗−ϕk+1|
≤ n‖T‖[0,2π]|ϕ∗−ϕk+1|= n‖p‖∂D|ϕ∗−ϕk+1|

≤ 2nπ

m
‖p‖D

It follows that

‖p‖A ≥ |p(ak+1)| ≥ |p(a∗)|−
2nπ

m
‖p‖D =

(
1− 2nπ

m

)
‖p‖D.

Note that the condition m≥ 7n gives 1− 2nπ

m
> 0 which makes the estimate meaningful. The

proof is complete. �
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Proposition 3.2. If m≥ 7n, then there exists a set M of m Radon projections

M = {Rθk(·; tk) : k = 0, . . . ,m−1}
such that

max
0≤ j≤m−1

|Rθ j(p; t j)| ≥
2
m

(
1− 2πn

m

)
‖p‖D, p ∈Hn(R2)

and
max

0≤ j≤m−1
|Rθ j( f ; t j)| ≤

2π

m
‖ f‖D, f ∈ C (D).

Proof. We set θ j =
2 jπ
m

for j = 0, . . . ,m−1 and

ϕ0 =
θm−1 +θ0

2
, ϕ j+1 =

θ j +θ j+1

2
, 0≤ j ≤ m−2, ϕm = ϕ0.

We choose t j ∈ [cos
π

m
,cos

π

2m
] arbitrarily. Consider the set of Radon projections

M = {Rθ j(·; t j) : j = 0, . . . ,m−1}.

Let p ∈Hn. By the maximum principle we can find a point a∗ = eiϕ∗ with ϕk ≤ ϕ∗ ≤ ϕk+1
such that |p(a∗)| = ‖p‖D. From the mean-valued theorem for integration, there exists a point
x∗ ∈ I(θk, tk) such that

Rθk(p; tk) = 2
√

1− t2
k p(x∗). (3.1)

eiϕk+1
eiϕk

eiθk

x∗
a∗

O

FIGURE 2. An illustration of objects in the proof of Proposition 3.2

It is easily seen that√
1− t2

k ≥
√

1− cos2 π

2m
= sin

π

2m
≥ 2

π

π

2m
=

1
m
. (3.2)

Since tk ∈ [cos
π

m
,cos

π

2m
], the chord I(θk, tk) is contained in the circular segment which is cut

off from D by the chord joining eiϕk and eiϕk+1 . Hence a∗,x∗ are both in this circular segment.
It follows that

‖a∗−x∗‖ ≤ |eiϕk+1− eiϕk |= 2sin
π

m
≤ 2π

m
.
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From Markov inequality for bivariate harmonic polynomial polynomials in [28] we can write

|p(a∗)− p(x∗)| ≤ ‖∇p‖D‖a
∗−x∗‖ ≤ n‖p‖D‖a

∗−x∗‖ ≤ 2πn
m
‖p‖D.

Hence

|p(x∗)| ≥ |p(a∗)|− 2nπ

m
‖p‖D =

(
1− 2nπ

m

)
‖p‖D. (3.3)

Combining (3.1), (3.2) and (3.3) we obtain

max
0≤ j≤m−1

|Rθ j(p; t j)| ≥ |Rθk(p; tk)| ≥
2
m

(
1− 2nπ

m

)
‖p‖D.

It remains to show the inequality for f ∈ C (D). We use the mean-value theorem again to get

|Rθ j( f ; t j)| ≤ 2
√

1− t2
j sup

x∈I(θ j,t j)

| f (x)| ≤ 2
√

1− t2
j ‖ f‖D.

By construction, we have √
1− t2

j ≤
√

1− cos2 π

m
= sin

π

m
≤ π

m
.

Hence

|Rθ j( f ; t j)| ≤
2π

m
‖ f‖D, 0≤ j ≤ m−1.

This completes the proof. �

To get uniform approximation, we need a version of Jackson-type theorem for harmonic
polynomials. The following result probably known. For completeness we give a proof.

Lemma 3.3. Let f be harmonic in D(a,r) and continuous in D(a,r) such that f |∂D(a,r) is of
class C p with p ∈ N∗. Then

distD(a,r) ( f ,Hn(R2)) = o(
1
np ).

Proof. Without loss of generality we assume that D(a,r) is the unit disk. Since f |∂D is of class
C p, Theorem 3 in [20, p. 57] enables us to find a trigonometric polynomial Tn of degree at
most n such that

‖ f (eiθ )−Tn(θ)‖[0,2π] = o(
1
np ).

We write Tn(θ) = ∑
n
k=−n ckeikθ with c−k = c̄k for 0≤ k ≤ n. Define

pn(r cosθ ,r sinθ) =
n

∑
k=−n

ckr|k|eikθ .

Then pn is an element of Hn(R2) and pn|∂D = Tn. Hence, by the maximum principle, we have

‖ f − pn‖D = ‖ f (eiθ )−Tn(θ)‖[0,2π] = o(
1
np ).

�

Proposition 3.4. Let A = {An ⊂D(a,r) : n ∈N∗} be the optimal admissible mesh for Hn(R2)
constructed in Proposition 3.1 such that #An = O(n) and #An ≥ 7n. Let f be harmonic in
D(a,r) and continuous in D(a,r) such that f |∂D(a,r) is of class C p with p ∈ N∗. Then

‖ f −S[An; f ]‖D(a,r) = o
( 1

np−1/2

)
.
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Moreover, if f is a harmonic function in a neighborhood of D(a,r), then there exists ρ ∈ (0,1)
such that

limsup
n→∞

(
‖ f −S[An; f ]‖D(a,r)

) 1
n ≤ ρ.

Proof. We set mn = #An. Then 7n ≤ mn ≤Cn where C is a positive constant. By construction
we have

‖p‖An ≥ (1− 2πn
mn

)‖p‖D(a,r), p ∈Hn(R2).

Evidently, ‖g‖An ≤ ‖g‖D(a,r) for any g ∈ C (D(a,r)). Hence, applying Theorem 2.3 we obtain

‖ f −S[An; f ]‖D(a,r) ≤
(

1+
2mn

mn−2πn
√

mn

)
distD(a,r) ( f ,Hn(R2)). (3.4)

Since 7n≤ mn ≤Cn, we have(
1+

2mn

mn−2πn

)√
mn =

(
1+

2
1−2πn/mn

)√
mn ≤ (1+

2
1−2π/7

)
√

Cn = O(
√

n).

From Lemma 3.3 and (3.4), we conclude that

‖ f −S[An; f ]‖D(a,r) = o
( 1

np−1/2

)
.

The first part of the proposition is proved.
Under the hypothesis that f is a harmonic function in a neighborhood of D(a,r), the main

theorem in [3] guarantees the existence of ρ ∈ (0,1) such that

limsup
n→∞

(
distD(a,r) ( f ,Hn(R2))

) 1
n ≤ ρ. (3.5)

Combining the last relation with (3.4) we get the desired estimate. The proof is complete. �

Proposition 3.5. Let Mn be the set of Radon projections constructed in Proposition 3.2 such
that #Mn = O(n) and #Mn ≥ 7n. Let f be harmonic in D and continuous in D such that f |∂D
is of class C p with p ∈ N∗. Then

‖ f −S[Mn; f ]‖D = o
( 1

np−1/2

)
.

Furthermore if f is a harmonic function on a neighborhood of D then there exists ρ ∈ (0,1)
such that

limsup
n→∞

(
‖ f −S[Mn; f ]‖D

) 1
n ≤ ρ.

Proof. As in the proof of Proposition 3.4, we can use Theorem 2.3 and Proposition 3.2 to write

‖ f −S[Mn; f ]‖D ≤
(

1+
2m2

n
2(mn−2πn)

2π

mn

√
mn

)
distD ( f ,Hn(R2))

=
(

1+
2πmn

mn−2πn
√

mn

)
distD ( f ,Hn(R2))

= O(
√

n)distD ( f ,Hn(R2)),

where mn = #Mn with 7n ≤ mn ≤ Cn. Hence the desired estimates follows directly from
Lemma 3.3 and relation (3.5), and the proof is complete. �
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In the proof of Proposition 3.2, we use the maximum principle, mean-value theorem for
integration and the Markov inequality for harmonic polynomials. These three properties also
hold for homomorphic polynomials in C. Hence we can repeat the proof of Proposition 3.2 to
obtain the following result. We states it without proof.

Proposition 3.6. Let m≥ 7n and

M = {Rθk(·; tk) : k = 0, . . . ,m−1}

be the set of m Radon projections constructed in Proposition 3.2. Then

max
0≤ j≤m−1

|Rθ j(p; t j)| ≥
2
m

(
1− 2πn

m

)
‖p‖D, p ∈Pn(C)

and

max
0≤ j≤m−1

|Rθ j( f ; t j)| ≤
2π

m
‖ f‖D, f ∈ C (D).

Proposition 3.7. Let Mn be the set of Radon projections constructed in Proposition 3.6 such
that #Mn = O(n) and #Mn ≥ 7n. Let f be a holomorphic function in a neighborhood of D
then there exists ρ ∈ (0,1) such that

limsup
n→∞

(
‖ f −S[Mn; f ]‖D

) 1
n ≤ ρ.

Proof. Repeating the arguments in the proof of Proposition 3.5, we use Theorem 2.3 and Propo-
sition 3.6 to get

‖ f −S[Mn; f ]‖D ≤ O(
√

n)distD ( f ,Pn(C)). (3.6)

Suppose that f is holomorphic in a neighborhood of D(0,r) with r > 1. From the classical
Bernstein theorem in [1] we have

limsup
n→∞

(
distD(0,r) ( f ,Pn(C))

) 1
n ≤ 1

r
.

Combining the last estimate with (3.6) we get the desired relation. The proof is complete. �

4. ADMISSIBLE MESHES ON CURVES

This section is devoted the study of admissible meshes on curves in Rd . Using the classi-
cal method, we show that curves that admitting tangential Markov inequality always contain
admissible meshes.

Proposition 4.1. Let Γ be a smooth curve in Rd . If Γ admits a tangential Markov inequality of
the form

‖DT p‖Γ ≤C(deg p)`‖p‖Γ, p ∈P(Rd), (4.1)

or
‖(p◦ρ)′‖[a,b] ≤C(deg p)`‖p‖Γ, p ∈P(Rd), (4.2)

where ρ : [a,b]→Rd is a parameterization of Γ, then there exists an admissible mesh A= {An}
on Γ for Pn(Rd) with #An = O(n`).

Proof. We first assume that (4.2) holds. We set m = 2([C(b−a)n`]+1) and

An = {ρ(t j) : t j = a+
(b−a) j

m
, j = 0, . . . ,m}.
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For arbitrary p ∈Pn(Rd), let ‖p‖Γ = p(ρ(t∗)) with t∗ ∈ [a,b]. We can find j such that |t∗−
t j| ≤

b−a
m

. It follows that

|p(ρ(t j))− p(ρ(t∗))| ≤ ‖(p◦ρ)′‖[a,b]|t j− t∗|

≤ C(b−a)n`‖p‖Γ

m
≤ ‖p‖Γ

2
.

Hence

‖p‖An ≥ |p(ρ(t j))| ≥ |p(ρ(t∗))|−
‖p‖Γ

2
=
‖p‖Γ

2
.

If (4.1) holds, then we choose a parameterization ρ : [a,b]→ Rd of Γ. By definition we have

|DT p(ρ(t))|=
|
(

p◦ρ(t)
)′|

‖ρ ′(t)‖
≥
|
(

p◦ρ(t)
)′|

M
, t ∈ [a,b],

where M = sup{‖ρ ′(t)‖ : a≤ t ≤ b}. It follows that

‖(p◦ρ)′‖[a,b] ≤CM(deg p)`‖p‖Γ, p ∈P(RN). (4.3)

The last equality is analogous of (4.2). Using (4.3) we can construct admissible meshes. The
proof is complete. �

Corollary 4.2. Let P1,P2, . . . ,Pd be univariate real polynomials and

Γ = {(t,eP1(t), . . . ,ePd(t)) : t ∈ [a,b]}.
Then there exists an admissible mesh A = {An} on Γ for Pn(Rd+1) with #An = O(n6(d+1)).

Proof. We set
ρ(t) = (t,eP1(t), . . . ,ePd(t)), t ∈ R.

By Theorem 3.2 in [5], there is a constant C =C(a,b,Γ) such that, for all P ∈P(Rd+1),

‖g′(t)‖[a,b] ≤C(degP)6(d+1)‖g‖[a,b], g = P◦ρ. (4.4)

Applying Proposition 4.1 we can construct an admissible mesh A = {An : n ∈ N∗} on Γ with
#An = O(n6(d+1)).

�

A sharp estimate is obtained in [4]: If Q is a univariate real polynomial, then there is a
constant C =C(a,b,Q) such that for all P ∈P(R2) we have

‖
(
P(t,eQ(t))

)′‖[a,b] ≤C(degP)4‖P(t,eQ(t))‖[a,b]. (4.5)

Using Proposition 4.1 we can construct an admissible mesh B= {Bn : n∈N∗} on γ = {(t,eQ(t)) :
t ∈ [a,b]} with #Bn = O(n4). Here we note that dimPn(γ) = dimPn(R2) = O(n2).

Corollary 4.3. Let Q a univariate real polynomial and γ = {(t,eQ(t)) : t ∈ [a,b]}. Then there
exists an admissible mesh B = {Bn : n ∈ N∗} on γ for Pn(R2) with #Bn = O(n4).

Corollary 4.4. Let K be a smooth compact algebraic curve in Rd without boundary. Then
there exists an optimal admissible mesh A = {An ⊂ K : n ∈ N∗}.

Proof. It is known that dimPn(K) = O(n) when n is sufficiently large (see [2]). The main
theorem in [6] asserts that K admits the tangential Markov inequality of the form

‖DT p‖K ≤M(deg p)‖p‖K, p ∈P(Rd).

By Proposition 4.1, we can construct an optimal mesh A = {An ⊂ K : n ≥ 1} such that #An =
O(n). �
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On the other hand, if K is an arc of a smooth algebraic curve K̃ in R2 in which we allow end
points of K, then K behave just as the Markov inequality of [−1,1]. The following inequality
was proved in [6, Proposition 6.1],

‖DT p‖K ≤M(deg p)2‖p‖K, p ∈P(R2).

By Proposition 4.1, we have the following corollary.

Corollary 4.5. Let K be an arc of a smooth algebraic curve K̃ in R2. Then there exists an
admissible mesh A = {An ⊂ K : n≥ 1} such that #An = O(n2).

Finally, when the algebraic curves are not smooth, it can admit the tangential Markov in-
equality, but the exponent is bigger. In [7, Theorem 3] the authors showed that if γ = {(x,xr) :
x ∈ [0,1]} where r = l/m, l ≥ m positive integers, is in the lowest term, then

‖DT p‖γ ≤C(deg p)2m‖p‖γ , p ∈Pd.

Proposition 4.1 guarantees the existence of an admissible mesh A = {An ⊂ γ : n ∈ N∗} such
that #An = O(n2m).

In the above results, we have constructed admissible meshes on some kind of curves. If the
compact curves admit Jackson-type theorems, then we can use Theorem 2.3 to obtain uniform
approximation results. Here we only deal with smooth compact algebraic curves in Rd without
boundary. We recall the definition of Ragozin [27]. Let K be such a curve. For 0 < α ≤ 1 and
k ≥ 0. We say that a function f : K→ R belongs to C k,(α)(K) if for each x ∈ K there exists a
chart ϕ : (−1,1)→ K with x ∈ intϕ((−1,1)) and f ◦ϕ ∈ C k,(α)(−1,1), i.e.,

sup
s,t∈(−1,1),s6=t

|( f ◦ϕ)(k)(s)− ( f ◦ϕ)(k)(t)|
|s− t|α

< ∞.

In [27, Section 2], Ragozin proved the following approximation property

distK ( f ,Pn(Rd)) = O
( 1

nk+α

)
. (4.6)

Corollary 4.6. Let K be a smooth compact algebraic curve in Rd without boundary. Let A =
{An} be the optimal admissible meshes constructed in Corollary 4.4. Let f ∈ Ck,(α)(K) with
0 < α ≤ 1. Then

‖ f −S(An; f )‖K = O(
1

nk+α−1/2 ).

Proof. From Theorem 2.3 we get

‖ f −S(An; f )‖K ≤
(

1+2C
√

#An

)
distK ( f ,Pn(Rd)).

Since #An = O(n), relation (4.6) implies the desired relation. The proof is complete. �
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