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Abstract5

This paper introduces two algorithms for constructing efficient 2-level foldover6

designs (EFDs): one constructs EFDs from Hadamard matrices and one constructs7

EFDs from scratch. Some of the constructed designs are less D-efficient than the8

efficient 2-level foldover designs of Errore et al. (2017) but offer more degrees of9

orthogonality among the main effects (MEs) and do not require some 2-factor in-10

teractions (2FIs) to be fully aliased with each other. The algorithms also offer a11

mechanism to choose follow-up runs which consist of additional foldover pairs. A12

catalog of EFDs for up to 28 factors is given.13
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1 Introduction16

Consider a well-known experiment discussed in Box et al. ”Choosing follow-up runs”17

(2005, Section 7.2) (hereafter abbreviated as BHH) which studied the effects of eight factors18

on percent shrinkage in an injection molding process: A, Mold Temperature; B, Moisture;19

C, Hold Press; D, Cavity Thickness; E, Booster Pressure; F, Cycle Time; G, Gate Size20

and H, Screw Speed. (See also Meyer et al., 1996). The design for this experiment is a 28−4
21

fractional factorial design (FFD) of resolution IV. It can also be considered as a foldover22

design with eight runs in Figure 1, forming a half fraction design matrix (HFM). In this23

figure A, B, C form a factorial; D = AB, E = AC, F = BC, G = ABC and H is a24

column of 1’s. The analysis of the data can be found from the references mentioned above.25

The following questions related to the design and analysis of this experiment can be raised:26

27

28

Figure 1: HFM of the injection molding experiment in BHH.29

1. The MEs of the design whose HFM is in Figure 1 are orthogonal to each other and30
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to the 2FIs. However, the following 2FIs are aliased with each other: AB = CG = DH =31

EF, AC = BG = DF = EH, AD = BH = CF = EG, AE = BF = CH = DG, AF =32

BE = CD = GH, AG = BC = DE = FH, AH = BD = CE = FG. Is there another33

candidate design, having the same number of factors and runs with MEs being orthogonal34

to the 2FIs, but no 2FI is fully aliased with another 2FI.35

2. The normal probability plot of the effect injection molding experiment shows that36

factors A and C, together with the 2-factor interaction chains AE = BF = CH =37

DG, stand out. Using two empirical principles, effect sparsity and effect heredity (Wu &38

Hamada, 2009 Section 4.6), and the fact that factors B, D , F and C are negligible, we39

could collapse the original experiment to the one with only four factors A, C, E and H.40

Can we augment the collapsed experiment with two foldover pairs of points, so that the41

practitioners can dealias the interactions associated with AE?42

Before answering to questions like these, let us review some of the most recent works43

on 2-level FFDs. Errore et al. (2017), hereafter abbreviated as EJLN, pointed out four44

desirable features for a screening design such as the one for the above injection molding45

experiment: (i) orthogonality of MEs; (ii) orthogonality of MEs and 2FIs; (iii) orthogonal-46

ity of 2FIs with one another; (iv) economic run size. The Plackett-Burman designs and47

resolution III FFDs have features (i) and (iv) but not (ii) and (iii). The resolution IV48

FFDs, such as the one for the injection molding experiment, have all desirable features49

except (iii). Finally, the resolution V FFDs have all desirable features except (iv). EJLN50

extended the work of Webb (1968), Margolin (1969), Miller & Sitter (2001) and Lin, Miller51

& Sitter (2008) and introduced a new class of efficient EFDs. EFDs are available for any52

number of runs equal to or greater than 2m where m is the number of factors. As expected,53
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all EFDs have MEs orthogonal to 2FIs and can be constructed such that the fully aliased54

2FIs can be eliminated.55

The purposes of this papers are: (i) to introduce two algorithms for constructing EFDs:56

one uses Hadamard matrices (Heydayat & Wallis, 1978) or the ±1 maximal-determinant57

matrices, and one constructs EFDs from scratch. Both algorithms use the minimum G258

aberration (Tang & Deng, 1999) as a surrogate design criterion; (ii) to provide a mechanism59

to build follow-up experiments using the augmented foldover pair of points; and (iii) to60

construct a catalog of HFMs of EFDs with m ≤ 28.61

2 Our surrogate criterion for finding EFDs62

Consider an FFD whose model includes the MEs and 2FIs constructed from an n×m63

design matrix X = (xui), u = 1, . . . , n; i = 1, . . . ,m:64

yu = β0 +
m∑
i=1

βixui +
m−1∑
i=1

m∑
j=i+1

βijxuixuj + εu u = 1, . . . , n. (1)

Here, yu is the response at point u, β’s are the unknown parameters, and εu (εu iid65

N(0, σ2)) is the error associated with point u. Note that the first m+ 1 terms in (1) form66

the ME model. In matrix notation, (1) can be written as y = Xβ+ ε where X is the model67

matrix (also called the expanded design matrix) of size n× p where p = 1 +m+ (m2 ). The68

uth row of X can be written as (1, xu1, . . . , xum, xu1xu2, . . . , xu(m−1)xum, ). The X′X69

information matrix contains the following terms: (i)
∑
xi, (i = 1, . . . ,m); (ii)

∑
xixj, (i <70

j); (iii)
∑
xixjxk, (i < j < k); and (iv)

∑
xixjxkxl (i < j < k < l) where the subscript71

i, j, k, l = 1, . . . ,m and the summations are taken over n design points. There are m72
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summations in (i), (m2 ) in (ii), (m3 ) in (iii) and (m4 ) in (iv). For regular FFDs, i.e. FFDs for m73

factors in 2m−k runs, the summations in (i)-(iv) will be either 0 or n. If all the summations74

in (i) and (ii) are zeros, it is called resolution III; if all in (i)-(iii) are zeros, it is called75

resolution IV and if all in (i)-(iv) are zeros, it is called resolution V. For non-regular FFDs76

in n runs where n can take any value, the summations in (i)-(iv) can take values between77

−n and n.78

We denote the averages of the sum of squares of the summations in (i)-(iv) byA1, A2, A379

and A4, respectively. As for a foldover design, meaning a design whose first HFM is X and80

the second is −X, A1 and A3 are zeros, we can then use the pair (A2, A4) as the surrogate81

criteria for finding EFDs. The pair (A∗2, A
∗
4) of an EFD d∗ is said to be minimum if for a82

pair (A2, A4) of any different EFD with the same number of factors and runs, A∗2 < A2 or83

A∗2 = A2 and A∗4 ≤ A4.84

Remarks:85

1. It can be seen that our computationally-cheap surrogate criterion is very closely86

allied to the minimum G2 aberration criterion (Tang & Deng, 1999) for finding good non-87

regular FFDs. This criterion can also be considered as the refinement of the E(s2) criterion88

proposed by Booth & Cox (1962) for finding supersaturated designs (See also Nguyen, 1996)89

or the S−criterion suggested by Shah (1960) for finding efficient incomplete block designs90

(See also Eccleston & Heydayat, 1974). Note that minimizing the sum of squares of the91

elements of X′X (or minimizing trace (X′X)2) given trace(X′X) = const. as in the case92

of 2-level designs is the same as minimizing
∑
λ2
i given

∑
λi =const., where λ1, λ2, . . . are93

the eigenvalues of X′X. Clearly, smaller
∑
λ2
i tends to give the smaller

∑
λ−1
i and larger94

Πλi, which are related to the well-known A- and D-optimality criteria, respectively.95
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2. There is no guarantee that the most D-efficient design is the one found by the96

surrogate criterion in the previous paragraphs. At the same time, there is no guarantee97

that the most D-efficient design is the most desirable. In Section 4, we will give examples98

to illustrate this point.99

3 The FOLD algorithms100

In the following, we will describe two FOLD algorithms for constructing HFMs of size101

n×m (m ≤ n) from which an EFD for m factors in 2n runs can be constructed:102

FOLD 1: This algorithm, which is mostly used in this paper, forms an HFM of103

size n × m by selecting m columns randomly from an input ±1 square matrix of order104

n ≥ m. If n = 4, 8, 12 . . . = 4t, where t is an integer, a Hadamard matrix of order105

n is used. If n = 3, 7, 11 . . . = 4t − 1, the core of a normalized Hadamard matrix106

of order n + 1 will be used. For other n’s, a ±1 maximal-determinant matrix of order107

n in http://www.indiana.edu/~maxdet/ is used. Hadamard matrices of order up to108

n = 32 can be found in Heydayat & Wallis (1978). Hadamard matrices of order up to109

n = 256 is available at http://neilsloane.com/hadamard/ and the GNU Octave software110

https://www.gnu.org/software/octave/.111

For each parameter set (m, n), m ≤ n, several HFMs are constructed, each of which112

corresponds to a “try”. For each try, the (A2, A4) pair is calculated. Among all tries that113

result in the minimum (A2, A4), we choose the one with the maximum |X′1X1| where X1114

is the model matrix corresponding to the MEs. Clearly, when m = n, FOLD 1 requires a115

single try.116

Remarks:117
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1. A ±1 square matrix H of order n is Hadamard if H′H = nI, where I is the identity118

matrix.119

2. To calculate A2 and A4, for each row u of X, (u = 1, . . . , n) calculate vector Ju of120

length (m2 ) + (m4 ):121

Ju = (xu1xu2, . . . , xu(m−1)xum, xu1xu2xu3xu4, . . . , xu(m−3)xu(m−2)xu(m−1)xum). (2)

We then calculate J =
∑n

u=1 Ju and set A2 and A4 equal to the averages of the sums122

of squares of the first (m2 ) elements of J and the last (m4 ) elements of J respectively.123

3. The lower bound for A2 is 0 when n = 4t, and 1 when n is odd. We use this lower124

bound as the stopping rule for the FOLD algorithms.125

FOLD 2: This algorithm constructs HFMs from scratch. It has two steps:126

1. Form an initial HFM X of size n ×m by allocating ±1 randomly to its elements.127

Calculate (A2, A4).128

2. In each row u of X, search for a pair of different elements such that swapping them129

results in the smallest pair (A2, A4). If found, swap them and update X and J . Repeat130

this step until A2 reaches its lower bound or no further update on X is required.131

For each parameter set (m, n), Steps 1-2 make up one “try”. Among all tries which132

result in the minimum (A2, A4), choose the one with the maximum |X′1X1|, where X1 is133

the model matrix corresponding to the MEs.134

Remarks:135

1. For a parameter set (m, n), there is no guarantee that FOLD 2 can construct a136

EFD with no 2FIs fully aliased. To construct an HFM of an EFD with no 2FIs fully137
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aliased (or compound EFD using the terminology of EJLN), we add the requirement138

that r2FIs
max be smaller than 1. So among the set of candidate designs with minimum139

(A2, A4) and r2FIs
max less than a threshold value (say 0.9), the one with maximum140

|X′1X1| is selected.141

2. FOLD 2 can also augment an HFM with additional rows (or columns).142

4 Discussion143

Table 1 displays the goodness statistics of 63 EFDs with m ranging from 3 to 28 and run144

sizes ≥ 2m. The goodness statistics of these selected EFDs include Deff , rave, rmax, f(rmax)145

and r2FIs
max where146

Deff =
1

2n
|X′1X1|

1
m+1 (3)

in which X1 is the ME model matrix formed by the first m + 1 columns of X; rave and147

rmax are the average and the maximum of the correlations (in terms of the absolute values)148

among the m main-effect columns of X. f(rmax) is the frequency of rmax, and r2FIs
max is the149

maximum of the correlations among the 2FI columns of X. Clearly, r2FIs
max = 1 indicates150

that at least a pair of 2FIs is fully aliased.151

All HFMs of the 63 EFDs in Table 1 were constructed by FOLD 1 using Hadamard152

matrices, cores of Hadamard matrices and ±1 maximal-determinant matrices of order153

n ≥ m. Details on the choices of these matrices are in the previous section. FOLD 1 is154

extremely fast. It constructed the HFMs of 63 EFDs in Table 1 in less than 20 seconds on155

a laptop with CORETMi7 (each EFD with m < n was given 100 tries).156
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Out of 63 EFDs in Table 1, 48 have A2 values equal to either 0 or 1. We call them157

EFD*’s. For 26 EFD*’s with A2 = 0, the correlation among the ME columns is 0; for 22158

EFD*’s with A2 = 1, this correlation is ± 1
n
.159

Out of 27 EFDs in Table 1 of EJCN, 22 match ours in terms of the goodness statistics.160

For the remaining five parameter sets (m, n)=(7, 7), (9, 11), (10, 11), (11,11) and (13, 15),161

our solutions are EFD*s, while the ones of EJCN are not. While our EFD*’s are slightly162

less D-efficient than EJCN’s, they have smaller rave and rmax. For (m, n)= (9, 11), (10,163

11) and (11, 11), the r2FIs
max of our EFD*’s is 0.47 while EJCN’s is 1. For (m, n)=(7, 7) and164

(13, 15), the r2FIs
max of our EFD*’s is 1, while EJCN’s are 0.75 and 0.875, respectively. Like165

other EFD*’s in Table 1 with n = 4t−1, these five EFD*’s were constructed from the core166

of a normalized Hadamard matrix of order n+ 1. If the ±1 maximal-determinant matrices167

of order n are used as input matrices instead, EFDs similar to EJCN’s will be obtained.168

Figure 2 shows two HFMs of two EFDs for (m, n) =(11, 11): one constructed from169

a ±1 maximal-determinant of order 11 (Figure 2a) and one from a circulant matrix of170

order 11 (which forms a core of a Hadamard matrix of order 12) generated by the following171

generator (-1, -1, 1, -1, -1, -1, 1, 1, 1, -1, 1) (Figure 2b). Figure 3 shows the correlation172

cell plots (CCPs) of the two EFDs whose HFMs are in Figure 2. These plots, proposed173

by Jones & Nachtsheim (2011), display the magnitude of the correlation (in terms of the174

absolute values) between main effects and 2-factor interactions in screening designs. The175

color of each cell in these plots goes from white (no correlation) to dark (correlation of176

1 or close to 1). As expected, both CCPs in Figures 3a and 3b show that the MEs are177

orthogonal to the 2FIs. Figure 3b shows that the correlation among MEs is constant and178

none of the 2FIs are fully aliased with the other 2FIs.179
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180

Figure 2: Two HFMs of two EFDs for (m, n) =(11, 11): (a) is a ±1181

maximal-determinant matrix of order 11; (b) is a core of a normalized matrix of order 12.182
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Figure 3: CCPs of the two EFDs whose HFMs are in Figure 2.185

EFDs in Table 1 with r2FIs
max = 1 have at least one pair of 2FIs being fully aliased186

with each other. Table 2 shows alternative EFDs for selected cases with fully aliased187
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2FIs eliminated. The HFMs of the EFDs with m = n were either obtained from http:188

//www.indiana.edu/~maxdet/ (e.g. EFDs with m = n = 15) or constructed from scratch189

by FOLD 1 using a threshold of 0.9. For m = n = 8, we constructed an additional HMF190

using a threshold of 0.7. The remaining HFMs of EFDs with m < n were constructed by191

FOLD 1 (using the HFMs of the EFDs with m = n as inputs) in less than 10 seconds on192

the same laptop with CORETMi7 (each EFD was given 100 tries).193

Note that the three sets of parameters (m, n)= (6, 8), (7, 8) and (8, 8) in Table 2194

have two solutions. The one matching EJCN’s has lower r2FIs
max but higher rmax (and higher195

rave). Figure 4 shows two HFMs of two EFDs for (m, n) =(8, 8): one was constructed by196

setting a threshold of 0.7 (Figure 4a) and the other a threshold of 0.9 (Figure 4b). The197

CCPs of these two EFDs are in Figure 5. These EFDs can be used as candidate designs198

for the injection molding experiment in Box et al. (2005) mentioned in the Introduction.199

200

Figure 4: Two HFMs of two EFDs for (m, n) =(8, 8): (a) uses a threshold value of 0.7;201

(b) uses a threshold value of 0.9.202

203
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Figure 5: CCPs of the two EFDs whose HFMs are in Figure 4.205

Let us return to the problem of augmenting the four columns A, C, E and H in the206

Introduction with four follow-up runs. While our purpose of choosing follow-up runs is to207

dealias the interactions associated with the interaction AE, the one of BHH is to allow208

maximum discrimination among the plausible model. Details about the model discrimi-209

nation (MD) method and the MD criterion can be found in BHH. The four designs runs210

found by BHH are: (-1, -1, -1, +1), (-1, -1, -1, +1), (-1, +1, +1, +1) and (+1, +1, -1, +1).211

The foldover pairs obtained by FOLD 2 are: (1, 1, -1, 1) and (1, -1, 1, 1). It is interesting212

to compare the CCP of the 20-run design obtained by BHH (Figure 6a) and the one of our213

20-run design (Figure 6b). It can be seen that neither augmented designs have 2FIs fully214

aliased with another 2FIs. However, unlike the FOLD design, the MEs of the BHH one215

are not orthogonal to the 2FIs.216

217
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Figure 6: CCPs of the (a) augmented design of BHH, (b) augmented design constructed219

by FOLD 2.220

5 Conclusion221

Most popular designs for screening experiments up to this point are still regular FFDs222

of various resolutions. These designs have been popular because they are simple to analyze:223

the MEs are orthogonal to each other and the MEs and 2FIs are either orthogonal or fully224

aliased with other 2FIs. The cost of a regular FFD in a multifactor experiment is a huge225

number of runs if a resolution V design is used, or a follow-up experiment is required to226

disentangle the MEs from 2FIs or 2FIs from other 2FIs. Like the EFDs of EJLN, ours offer227

additional choices for experiments in terms of the flexible number of design runs. Some228

EFDs expect the practitioners to accept certain mild non-orthogonality among MEs to229

avoid any 2FI fully aliased. 48 of the new EFDs are the EFD*’s, meaning EFDs having230
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any 2 MEs with the correlation 0 (when A2 = 0) or ± 1
n

(when A2 = 1). This desirable231

property will certainly helps the practitioners in the interpretation of the results and make232

EFD*’s particularly those with r2FIs
max < 1 popular.233

The HFMs of the 63 EFDs in Table 1 and 23 designs in Table 2, as well as the Java234

program implementing the two FOLD algorithms in Section 3, and the corresponding input235

matrices for these two tables, are in the supplemental material.236
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Table 1: Goodness statistics of constructed EFDs.

m n 2n§ Deff rave rmax f(rmax) r2FIs
max

3 3 6 0.877 0.33 0.33† 3 0.50

3 4 8 1.000 0.00 0.00† 3 0.00

4 4 8 1.000 0.00 0.00† 6 1.00

5 5 10 0.950 0.20 0.20† 10 0.67

5 6 12 0.933 0.13 0.33 4 0.71

5 7 14 0.949 0.14 0.14† 10 1.00

5 8 16 1.000 0.00 0.00† 10 1.00

6 6 12 0.918 0.13 0.33 6 0.71

6 7 14 0.920 0.14 0.14† 15 1.00

6 8 16 1.000 0.00 0.00† 15 1.00

7‡ 7 14 0.893 0.18 0.43 3 0.75

7 7 14 0.867 0.14 0.14† 21 1.00

7 8 16 1.000 0.00 0.00† 21 1.00

8 8 16 1.000 0.00 0.00† 28 1.00

9 9 18 0.939 0.12 0.56 1 1.00

9 10 20 0.951 0.09 0.20 16 1.00

9‡ 11 22 0.946 0.11 0.27 3 1.00

9 11 22 0.941 0.09 0.09† 36 0.47

9 12 24 1.000 0.00 0.00† 36 0.33

10 10 20 0.946 0.09 0.20 20 1.00

10‡ 11 22 0.938 0.11 0.27 4 1.00

10 11 22 0.920 0.09 0.09† 45 0.47

10 12 24 1.000 0.00 0.00† 45 0.33

11‡ 11 22 0.922 0.12 0.27 8 1.00

11 11 22 0.880 0.09 0.09† 55 0.47

11 12 24 1.000 0.00 0.00† 55 0.33

12 12 24 1.000 0.00 0.00† 66 0.33

13 13 26 0.978 0.08 0.08† 78 0.86

13 14 28 0.962 0.07 0.14 36 0.87

13‡ 15 30 0.952 0.09 0.20 11 0.88

13 15 30 0.942 0.07 0.07† 78 1.00

13 16 32 1.000 0.00 0.00† 78 1.00

14 14 28 0.960 0.07 0.14 42 0.87

14 15 30 0.925 0.07 0.07† 91 1.00

14 16 32 1.000 0.00 0.00† 91 1.00

15 15 30 0.893 0.07 0.07† 105 1.00

15 16 32 1.000 0.00 0.00† 105 1.00

16 16 32 1.000 0.00 0.00† 120 1.00

§run size.

‡EFDs from Table 1 of EJCN.

†rmax of EFD*’s.

271

16



Table 1: Goodness statistics of constructed EFDs

(cont.)

m n 2n§ Deff rave rmax f(rmax) r2FIs
max

17 17 34 0.968 0.07 0.18 16 1.00

17 18 36 0.970 0.05 0.11 64 1.00

17 19 38 0.945 0.05 0.05† 136 0.69

17 20 40 1.000 0.00 0.00† 136 0.60

18 18 36 0.968 0.05 0.11 72 1.00

18 19 38 0.930 0.05 0.05† 153 0.69

18 20 40 1.000 0.00 0.00† 153 0.60

19 19 38 0.904 0.05 0.05† 171 0.69

19 20 40 1.000 0.00 0.00† 171 0.60

20 20 40 1.000 0.00 0.00† 190 0.60

21 21 42 0.977 0.05 0.24 4 0.91

21 22 44 0.972 0.04 0.09 100 0.64

21 23 46 0.948 0.04 0.04† 210 0.39

21 24 48 1.000 0.00 0.00† 210 0.33

22 22 44 0.970 0.04 0.09 111 0.83

22 23 46 0.935 0.04 0.04† 231 0.39

22 24 48 1.000 0.00 0.00† 231 0.33

23 23 46 0.912 0.04 0.04† 253 0.39

23 24 48 1.000 0.00 0.00† 253 0.33

24 24 48 1.000 0.00 0.00† 276 0.33

25 25 50 0.988 0.04 0.04† 300 1.00

25 26 52 0.978 0.04 0.08 144 0.62

25 27 54 0.950 0.04 0.04† 300 0.78

25 28 56 1.000 0.00 0.00† 300 0.71

26 26 52 0.978 0.04 0.08 156 0.62

26 27 54 0.939 0.04 0.04† 325 0.78

26 28 56 1.000 0.00 0.00† 325 0.71

27 27 54 0.919 0.04 0.04† 351 0.78

27 28 56 1.000 0.00 0.00† 351 0.71

28 28 56 1.000 0.00 0.00† 378 0.71

§run size.

†rmax of EFD*’s.
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Table 2: Some constructed EFDs with fully alised

2FIs eliminated

m n 2n§ Deff rave rmax f(rmax) r2FIs
max

5 7 14 0.935 0.17 0.43 1 0.75

6 7 14 0.911 0.18 0.43 2 0.75

7 7 14 0.893 0.18 0.43 3 0.75

6‡ 8 16 0.921 0.07 0.50 2 0.58

7‡ 8 16 0.898 0.07 0.50 3 0.58

8‡ 8 16 0.880 0.07 0.50 4 0.58

6 8 16 0.917 0.13 0.25 8 0.78

7 8 16 0.891 0.14 0.25 12 0.78

8 8 16 0.869 0.14 0.25 16 0.78

9 10 20 0.931 0.09 0.20 16 0.82

10 10 20 0.922 0.09 0.20 20 0.82

9 9 18 0.898 0.14 0.33 4 0.80

9 10 20 0.931 0.09 0.20 16 0.82

10 10 20 0.922 0.09 0.20 20 0.82

13 15 30 0.951 0.09 0.20 15 0.88

13 16 32 0.957 0.06 0.12 36 0.63

14 15 30 0.947 0.09 0.20 18 0.88

14 16 32 0.949 0.06 0.12 45 0.78

15 15 30 0.944 0.09 0.20 21 0.88

15 16 32 0.941 0.06 0.12 54 0.78

16 16 32 0.935 0.07 0.12 63 0.78

17 18 36 0.945 0.06 0.11 70 0.67

18 18 36 0.935 0.06 0.11 81 0.67

§run size.

‡Compound EFDs from Table 3 of EJCN.
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