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Abstract. Let A,B be polynomial rings over a field k, and I ⊆ A, J ⊆ B

proper homogeneous ideals. We analyze the the associated primes of powers

of I + J ⊆ A ⊗k B given the data on the summands. The associated primes
of large enough powers of I + J are determined. We then answer positively a

question due to I. Swanson and R. Walker about the persistence property of

I + J in many new cases.

1. Introduction

Inspired by work of Ratliff [19], Brodmann [2] proved that in any noetherian ring,
the set of associated primes of powers of an ideal is eventually constant for large
enough power. Subsequent work by many researchers have shown that important
invariants of powers of ideals, for example, the depth, the Castelnuovo–Mumford
regularity, also eventually stabilize in the same manner. For a recent survey on
associated primes of powers and related questions, we refer to Hoa’s paper [12].

Our work is inspired by the afore-mentioned result of Brodmann, and recent
studies about powers of sums of ideals [8, 9, 18]. Let A,B be standard graded poly-
nomial rings over a field k, and I ⊆ A, J ⊆ B proper homogeneous ideals. Denote
R = A⊗kB and I+J the ideal IR+JR. Taking sums of ideals this way corresponds
to the geometric operation of taking fiber products of projective schemes over the
field k. In [8, 9, 18], certain homological invariants of powers of I + J , notably
the depth and regularity, are computed in terms of the corresponding invariants
of powers of I and J . In particular, we have exact formulas for depthR/(I + J)n

and regR/(I + J)n if either char k = 0, or I and J are both monomial ideals. It is
therefore natural to ask:

Question 1.1. Is there an exact formula for Ass(R/(I + J)n) in terms of the
associated primes of powers of I and J?

The case n = 1 is simple and well-known: Using the fact that R/(I + J) ∼=
(A/I)⊗k (B/J), we deduce ([8, Theorem 2.5]):

AssR/(I + J) =
⋃

p∈AssA(A/I)

q∈AssB(B/J)

MinR(R/p + q).

Unexpectedly, in contrast to the case of homological invariants like depth or regu-
larity, we do not have a complete answer to Question 1.1 in characteristic zero yet.
One of our main results is the following partial answer to this question.
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Theorem 1.2 (Theorem 4.1). Let I be a proper homogeneous ideal of A such that
Ass(A/In) = Ass(In−1/In) for all n ≥ 1. Let J be any proper homogeneous ideal
of B. Then for all n ≥ 1, there is an equality

AssR
R

(I + J)n
=

n⋃
i=1

⋃
p∈AssA(A/Ii)

q∈AssB(Jn−i/Jn−i+1)

MinR(R/p + q).

If furthermore Ass(B/Jn) = Ass(Jn−1/Jn) for all n ≥ 1, then for all such n, there
is an equality

AssR
R

(I + J)n
=

n⋃
i=1

⋃
p∈AssA(A/Ii)

q∈AssB(B/Jn−i+1)

MinR(R/p + q).

The proof proceeds by filtering R/(I + J)n using exact sequences with terms of
the form M ⊗k N , where M,N are modules over A,B, respectively, and applying
the formula for AssR(M ⊗k N).

Concerning Theorem 1.2, the hypothesis Ass(A/In) = Ass(In−1/In) for all n ≥ 1
holds in many cases, for example, if I is a monomial ideal of A, or if char k = 0 and
dim(A/I) ≤ 1 (see Theorem 3.2 for more details). We are not aware of any ideal in
a polynomial ring which does not satisfies this condition (over non-regular rings, it
is not hard to find such an ideal). In characteristic zero, we show that the equality
Ass(A/In) = Ass(In−1/In) holds for all I and all n if dimA ≤ 3. If char k 6= 2
and A has Krull dimension four, using the Buchsbaum–Eisenbud structure theory
of perfect Gorenstein ideal of height three and work by Kustin and Ulrich [15], we
establish the equality Ass(A/I2) = Ass(I/I2) for all I ⊆ A (Theorem 3.5).

Another motivation for this work is the so-called persistence property for asso-
ciated primes. The ideal I is said to have the persistence property if Ass(A/In) ⊆
Ass(A/In+1). Ideals with this property abound, including for example complete
intersections. The persistence property was considered by many people; see, e.g.,
[5, 11, 14, 22]. As an application of Theorem 1.2, we prove that if I is a monomial
ideal satisfying the persistence property, and J is any ideal, then I + J also has
the persistence property (Corollary 5.1). Moreover, we generalize previous work
due to I. Swanson and R. Walker [22] on this question: If I is an ideal such that
In+1 : I = In for all n ≥ 1, then for any ideal J of B, I + J has the persistence
property (see Corollary 5.1(ii)). In [22, Corollary 1.7], Swanson and Walker prove
the same result under the stronger condition that I is normal. It remains an open
question whether for any ideal I of A with the persistence property and any ideal
J of B, the sum I + J has same property.

The paper is structured as follows. In Section 3, we provide large classes of
ideals I such that the equality Ass(A/In) = Ass(In−1/In) holds true for all n ≥ 1.
An unexpected outcome of this study is a counterexample to [1, Question 3.6], on

the vanishing of the map TorAi (k, In) → TorAi (k, In−1). Namely in characteristic

2, we construct a quadratic ideal I in A such that the natural map TorA∗ (k, I2)→
TorA∗ (k, I) is not zero (even though A/I is a Gorenstein artinian ring, see Example
3.9). This example might be of independent interest, for example, it gives a negative
answer to a question in [1]. Using the results in Section 3, we give a set-theoretic
upper bound and a lower bound for Ass(R/(I + J)n) (Theorem 4.1). Theorem
4.1 also gives an exact formula for the asymptotic primes of I + J without any
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condition on I and J . In the last section, we apply our results to the question on
the persistence property raised by Swanson and Walker.

2. Preliminaries

For standard notions and results in commutative algebra, we refer to the books
[3, 4].

Throughout the section, let A and B be two commutative Noetherian algebras
over a field k such that R = A ⊗k B is also Noetherian. Let M and N be two
nonzero (not necessarily finitely generated) modules over A and B, resp. Denote
by AssAM and MinAM the set of associated primes and minimal primes of M as
an A-module, resp.

By a filtration of ideals (In)n≥0 in A, we mean the ideals In, n ≥ 0 satisfies
the conditions I0 = A and In+1 ⊆ In for all n ≥ 0. Let (In)n≥1 and (Jn)n≥1
be filtrations of ideals in A and B respectively. Consider the filtration (Wn)n≥0 of
A⊗kB given by Wn =

∑n
i=0 IiJn−i. The following result is useful for the discussion

in Section 4.

Proposition 2.1 ([8, Lemma 3.1, Proposition 3.3]). For arbitrary ideals I ⊆ A
and J ⊆ B, we have I ∩ J = IJ . Moreover with the above notation for filtrations,
for any integer n ≥ 0, there is an isomorphism

Wn/Wn+1
∼=

n⊕
i=0

(
Ii/Ii+1 ⊗k Jn−i/Jn−i+1

)
.

We recall the following description of the associated primes of tensor products;
see also [21, Corollary 3.7].

Theorem 2.2 ([8, Theorem 2.5]). Let M and N be non-zero modules over A and
B, resp. Then there is an equality

AssR(M ⊗k N) =
⋃

p∈AssA(M)
q∈AssB(N)

MinR(R/p + q).

The following simple lemma turns out to be useful in the sequel.

Lemma 2.3. Assume that char k = 0. Let A = k[x1, . . . , xr] be a standard graded
polynomial ring over k, and m its graded maximal ideal. Let I be proper homo-
geneous ideal of A. Denote by ∂(I) the ideal generated by partial derivatives of
elements in I. Then there is a containment I : m ⊆ ∂(I).

In particular, In : m ⊆ In−1 for all n ≥ 1. If for some n ≥ 2, m ∈ Ass(A/In)
then m ∈ Ass(In−1/In).

Proof. Take f ∈ I : m. Then xif ∈ I for every i = 1, . . . , r. Taking partial
derivatives, we get f +xi(∂f/∂xi) ∈ ∂(I). Summing up and using Euler’s formula,
(r + deg f)f ∈ ∂(I). As char k = 0, this yields f ∈ ∂(I), as claimed.

The second assertion holds since by the product rule, ∂(In) ⊆ In−1.
If m ∈ Ass(A/In) then there exists an element a ∈ (In : m) \ In. Thus a ∈

In−1 \ In, so m ∈ Ass(In−1/In). �

The condition on the characteristic is indispensable: The inclusion I2 : m ⊆ I
may fail in positive characteristic; see Example 3.9.

The following lemma will be employed several times in the sequel. Denote by
grI(A) the associated graded ring of A with respect to the I-adic filtration.
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Lemma 2.4. Let A be a noetherian ring, and I an ideal. Then the following are
equivalent:

(i) In+1 : I = In for all n ≥ 1,
(ii) (In+1 : I) ∩ In−1 = In for all n ≥ 1,

(iii) depth grI(A) > 0,

(iv) In = Ĩn for all n ≥ 1, where Ĩ =
⋃
i≥1

(Ii+1 : Ii) denotes the Ratliff-Rush

closure of I.

If one of these equivalent conditions holds, then Ass(A/In) ⊆ Ass(A/In+1) for all
n ≥ 1, namely I has the persistence property.

Proof. Clearly (i) =⇒ (ii). We prove that (ii) =⇒ (i).
Assume that (In+1 : I) ∩ In−1 = In for all n ≥ 1. We prove by induction on

n ≥ 1 that In : I = In−1.
If n = 1, there is nothing to do. Assume that n ≥ 2. By the induction hypothesis,

In : I ⊆ In−1 : I = In−2. Hence In : I = (In : I) ∩ In−2 = In−1, as desired.
That (i) ⇐⇒ (iii) ⇐⇒ (iv) follows from [10, (1.2)] and [20, Remark 1.6].
The last assertion follows from [11, Section 1], where the property In+1 : I = In

for all n ≥ 1, called the strong persistence property of I, was discussed. �

3. Associated primes of quotients of consecutive powers

The following question is quite relevant to the task of finding the associated
primes of powers of sums.

Question 3.1. Let A be a standard graded polynomial ring over a field k (of
characteristic zero), and I a proper homogeneous ideal. Is it true that

Ass(A/In) = Ass(In−1/In) for all n ≥ 1?

We are not aware of any ideal not satisfying the equality in Question 3.1 (even
in positive characteristic). In the first main result of this paper, we provide some
evidence for a positive answer to Question 3.1. Denote by Rees(I) the Rees algebra
of I. The ideal I is said to be unmixed if it has no embedded primes. It is called
normal if all of its powers are integrally closed ideals.

Theorem 3.2. Question 3.1 has a positive answer if either of the following condi-
tions holds:

(1) I is a monomial ideal.
(2) depth grI(A) ≥ 1.
(3) depth Rees(I) ≥ 2.
(4) I is normal.
(5) In is unmixed for all n ≥ 1, e.g. I is generated by a regular sequence.
(6) All the powers of I are primary, e.g. dim(A/I) = 0.
(7) char k = 0 and dim(A/I) ≤ 1.
(8) char k = 0 and dimA ≤ 3.

Proof. (1): See [17, Lemma 4.4].
(2): By Lemma 2.4, since depth grI(A) ≥ 1, In : I = In−1 for all n ≥ 1. Induct

on n ≥ 1 that Ass(A/In) = Ass(In−1/In).
Let I = (f1, . . . , fm). For n ≥ 2, as In : I = In−1, the map

In−2 → In−1 ⊕ · · · ⊕ In−1︸ ︷︷ ︸
m times

, a 7→ (af1, . . . , afm),
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induces an injection

In−2

In−1
↪→
(
In−1

In

)⊕m
.

Hence Ass(A/In−1) = Ass(In−2/In−1) ⊆ Ass(In−1/In). The exact sequence

0→ In−1/In → A/In → A/In−1 → 0

then yields Ass(A/In) ⊆ Ass(In−1/In), which in turn implies the desired equality.
Next we claim that (3) and (4) all imply (2).
(3) =⇒ (2): This follows from a result of Huckaba and Marley [13, Corollary 3.12]

which says that either grI(A) is Cohen-Macaulay (and hence has depth A = dimA),
or depth grI(A) = depth Rees(I)− 1.

(4) =⇒ (2): If I is normal, then In : I = In−1 for all n ≥ 1. Hence we are done
by Lemma 2.4.

(5): Take P ∈ Ass(A/In), we show that P ∈ Ass(In−1/In). Since A/In is
unmixed, P ∈ Min(A/In) = Min(In−1/In).

Observe that (6) =⇒ (5).
(7): Because of (6), we can assume that dim(A/I) = 1. Take P ∈ Ass(A/In),

we need to show that P ∈ Ass(In−1/In).
If dim(A/P ) = 1, then as dim(A/I) = 1, P ∈ Min(A/In). Arguing as for case

(5), we get P ∈ Ass(In−1/In).
If dim(A/P ) = 0, then P = m, the graded maximal ideal of A. Since m ∈

Ass(A/In), by Lemma 2.3, m ∈ Ass(In−1/In).
(8) It is harmless to assume that I 6= 0. If dim(A/I) ≤ 1 then we are done by

(7). Assume that dim(A/I) ≥ 2, then the hypothesis forces dimA = 3 and ht I = 1.
Thus we can write I = xL where x is a form of degree at least 1, and L = R or
htL ≥ 2. The result is clear when L = R, so it remains to assume that L is proper
of height ≥ 2. In particular dim(A/L) ≤ 1, and by (7), for all n ≥ 1,

Ass(A/Ln) = Ass(Ln−1/Ln).

Take p ∈ Ass(A/In). Since A/In and In−1/In have the same minimal primes, we
can assume ht p ≥ 2. From the exact sequence

0→ A/Ln
·xn

−−→ A/In → A/(xn)→ 0

it follows that p ∈ Ass(A/Ln). Thus p ∈ Ass(Ln−1/Ln). There is an exact sequence

0→ Ln−1/Ln
·xn

−−→ In−1/In

so p ∈ Ass(In−1/In), as claimed. This concludes the proof. �

Example 3.3. Here is an example of a ring A and an ideal I not satisfying any of
the conditions (1)–(8) in Theorem 3.2. Let I = (x4+y3z, x3y, x2t2, y4, y2z2) ⊆ A =
k[x, y, z, t]. Then depth grI(A) = 0 as x2y3z ∈ (I2 : I) \ I. So I satisfies neither (1)
nor (2).

Note that
√
I = (x, y), so dim(A/I) = 2. Let m = (x, y, z, t). Since x2y3zt ∈ (I :

m) \ I, depth(A/I) = 0, hence A/I is not unmixed. Thus I satisfies neither (5) nor
(7). By the proof of Theorem 3.2, I satisfies none of the conditions (3), (4), (6).

Unfortunately, experiments with Macaulay2 [6] suggest that I satisfies the con-
clusion of Question 3.1, namely for all n ≥ 1,

Ass(A/In) = Ass(In−1/In) = {(x, y), (x, y, z), (x, y, t), (x, y, z, t)}.
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Remark 3.4. In view of Lemma 2.3 and Question 3.1, one might ask whether if
char k = 0, then Ass(A/I) = Ass(∂(I)/I) for any homogeneous ideal I in a poly-
nomial ring A?

Unfortunately, this has a negative answer. Let A = Q[x, y, z], f = x5 + x4y +
y4z, L = (x, y) and I = fL. Then we can check with Macaulay2 [6] that ∂(I) : f =
L. In particular,

Ass(∂(I)/I) = (f) 6= Ass(A/I) = {(f), (x, y)}.

Indeed, if L = (x, y) ∈ Ass(∂(I)/I) then HomR(R/L, ∂(I)/I) = (∂(I)∩(I : L))/I =
(∂(I) ∩ (f))/I 6= 0, so that ∂(I) : f 6= L, a contradiction.

3.1. Partial answer to Question 3.1 in dimension four. We prove that if
char k 6= 2 and dimA = 4, the equality Ass(A/I2) = Ass(I/I2) always holds, in
support of a positive answer to Question 3.1. The proof requires the structure
theory of perfect Gorenstein ideals of height three and their second powers.

Theorem 3.5. Assume char k 6= 2. Let (A,m) be a four dimensional standard
graded polynomial ring over k. Then for any proper homogeneous ideal I of A,
there is an equality Ass(A/I2) = Ass(I/I2).

Proof. It is harmless to assume I is a proper ideal. If ht I ≥ 3 then dim(A/I) ≤ 1,
and we are done by Theorem 3.2(7).

If ht I = 1, then I = fL, where f ∈ A is a form of positive degree and htL ≥ 2.
The exact sequence

0→ A

L

·f−→ A

I
→ A

(f)
→ 0,

yields Ass(A/I) = Ass(A/L)
⋃

Ass(A/(f)), as Min(I) ⊇ Ass(A/(f)). An analogous
formula holds for Ass(A/I2), as I2 = f2L2. If we can show that Ass(A/L2) ⊆
Ass(L/L2), then from the injection L/L2 ·f

2

−−→ I/I2 we have

Ass(A/I2) = Ass(A/L2)
⋃

Ass(A/(f))

= Ass(L/L2)
⋃

Ass(A/(f)) ⊆ Ass(I/I2).

Hence it suffices to consider the case ht I = 2. Assume that there exists p ∈
Ass(A/I2) \Ass(I/I2). The exact sequence

0→ I/I2 → A/I2 → A/I → 0

implies p ∈ Ass(A/I).
By Lemma 2.3, p 6= m. Since Min(I) = Min(I/I2), p /∈ Min(I), we get ht p = 3.

Localizing yields pAp ∈ Ass(Ap/I
2
p) \ Ass(Ip/I

2
p). Then there exists a ∈ (I2p :

pAp) \ I2p . On the other hand, since Ap is a regular local ring of dimension 3

containing one half, Lemma 3.6 below implies I2p : pAp ⊆ Ip, so a ∈ Ip \ I2p . Hence

pAp ∈ Ass(Ip/I
2
p). This contradiction finishes the proof. �

To finish the proof of Theorem 3.5, we have to show the following

Lemma 3.6. Let (R,m) be a three dimensional regular local ring such that 1/2 ∈ R.
Then for any ideal I of R, there is a containment I2 : m ⊆ I.

We will deduce it from the following result.
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Proposition 3.7. Let (R,m) be a regular local ring such that 1/2 ∈ R. Let J be a
perfect Gorenstein ideal of height 3. Then for all i ≥ 0, the maps

TorRi (J2, k)→ TorRi (J, k)

is zero. In particular, there is a containment J2 : m ⊆ J .

Proof. We note that the second assertion follows from the first. Indeed, the hy-
potheses implies that dim(R) = d ≥ 3. Using the Koszul complex of R, we see
that

TorRd−1(J, k) ∼= TorRd (R/J, k) ∼=
J : m

J
.

Since the map TorRi (J2, k) → TorRi (J, k) is zero for i = d − 1, the conclusion is
J2 : m ⊆ J . Hence it remains to prove the first assertion. We do this by exploiting
the structure of the minimal free resolution of J and J2, and constructing a map
between these complexes.

Since J is Gorenstein of height three, it has a minimal free resolution

P : 0→ R
δ−→ F ∗

ρ−→ F → 0.

Here F = Re1 ⊕ · · · ⊕ Reg is a free R-module of rank g – an odd integer. The
map τ : F → J maps ei to fi, where J = (f1, . . . , fg). The free R-module F ∗ has
basis e∗1, . . . , e

∗
g. The map ρ : F ∗ → F is alternating with matrix (ai,j)g×g, namely

ai,i = 0 for 1 ≤ i ≤ g and ai,j = −aj,i for 1 ≤ i < j ≤ g, and

ρ(e∗i ) =

g∑
j=1

aj,iej for all i.

The map δ : R → F ∗ has the matrix (f1 . . . fg)
T , i.e. it is given by δ(1) = f1e

∗
1 +

· · ·+ fge
∗
g.

It is known that if J is Gorenstein of height three, then J ⊗R J ∼= J2, and
by constructions due to Kustin and Ulrich [15, Definition 5.9, Theorems 6.2 and
6.17], J2 has a minimal free resolution Q as below. Note that in the terminology
of [15] and thanks to the discussion after Theorem 6.22 in that work, J satisfies
SPCg−2, hence Theorem 6.17, parts (c)(i) and (d)(ii) in ibid. are applicable. The
resolution Q given in the following is taken from (2.7) and Definition 2.15 in Kustin
and Ulrich’s paper.

Q : 0→ ∧2F ∗ d2−→ (F ⊗ F ∗)/η d1−→ S2(F )
d0−→ J2 → 0.

Here S2(F ) =
⊕

1≤i≤j≤g R(ei ⊗ ej) is the second symmetric power of F , η =

R(e1 ⊗ e∗1 + · · ·+ eg ⊗ e∗g) ⊆ F ⊗ F ∗, and ∧2F ∗ is the second exterior power of F ∗.

The maps d0 : S2(F )→ J2, d1 : (F ⊗ F ∗)/η → S2(F ), d2 : ∧2F ∗ → (F ⊗ F ∗)/η
are given by:

d0(ei ⊗ ej) = fifj for 1 ≤ i, j ≤ g,

d1(ei ⊗ e∗j + η) =

g∑
l=1

al,j(ei ⊗ el) for 1 ≤ i, j ≤ g,

d2(e∗i ∧ e∗j ) =

g∑
l=1

al,i(el ⊗ e∗j )−
g∑
v=1

av,j(ev ⊗ e∗i ) + η for 1 ≤ i < j ≤ g.
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We construct a lifting α : Q→ P of the natural inclusion map J2 → J such that
α(Q) ⊆ mP .

Q : 0 // ∧2F ∗

α2

��

d2 // (F ⊗ F ∗)/η d1 //

α1

��

S2(F )
d0 //

α0

��

J2 //� _

ι

��

0

P : 0 // R
δ // F ∗

ρ // F
τ // J // 0.

In detail, this lifting is

• α0(ei ⊗ ej) =
fiej + fjei

2
for 1 ≤ i, j ≤ g,

• α1(ei ⊗ e∗j + η) =


fie
∗
j

2
, if (i, j) 6= (g, g),

−
∑g−1
v=1 fve

∗
v

2
, if (i, j) = (g, g),

• α2(e∗i ∧ e∗j ) =

0, if 1 ≤ i < j ≤ g − 1,
−ag,i

2
, if 1 ≤ i ≤ g − 1, j = g.

Note that α1 is well-defined since

α1(e1 ⊗ e∗1 + · · ·+ eg ⊗ e∗g + η) =

∑g−1
v=1 fve

∗
v

2

−
∑g−1
v=1 fve

∗
v

2
= 0.

Observe that α(Q) ⊆ mP since fi, ai,j ∈ m for all i, j. It remains to check that
the map α : Q→ P is a lifting for J2 ↪→ J . For this, we have:

• τ(α0(ei ⊗ ej)) = τ

(
fiej + fjei

2

)
= fifj = ι(d0(ei ⊗ ej)).

Next we compute

α0(d1(ei ⊗ e∗j + η)) = α0

(
g∑
l=1

al,j(ei ⊗ el)

)
=

g∑
l=1

al,j
fiel + flei

2

=
fi (
∑g
l=1 al,jel)

2
(since

g∑
l=1

al,jfl = 0).

• If (i, j) 6= (g, g) then

ρ(α1(ei ⊗ e∗j + η)) = ρ(fie
∗
j/2) =

fi (
∑g
l=1 al,jel)

2
.
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• If (i, j) = (g, g) then

ρ(α1(eg ⊗ e∗g + η)) = ρ

(
−
∑g−1
v=1 fve

∗
v

2

)
=
−
∑g−1
v=1 fv(

∑g
l=1 al,vel)

2

=

g∑
l=1

(
g−1∑
v=1

av,lfv)el

2
(since av,l = −al,v)

=

−
g∑
l=1

(ag,lfg)el

2
(since

g∑
v=1

av,lfv = 0)

=
fg (
∑g
l=1 al,gel)

2
(since ag,l = −al,g)

• Hence in both cases, α0(d1(ei ⊗ e∗j + η)) = ρ(α1(ei ⊗ e∗j + η)).

Next, for 1 ≤ i < j ≤ g − 1, we compute

α1(d2(e∗i ∧ e∗j )) = α1

(
g∑
l=1

al,i(el ⊗ e∗j )−
g∑
v=1

av,j(ev ⊗ e∗i ) + η

)

=
(
∑g
l=1 al,ifl) e

∗
j

2
−

(
∑g
v=1 av,jfv) e

∗
i

2
(since neither (l, j) nor (v, i) is (g, g))

= 0 (since

g∑
v=1

av,lfv = 0)

= δ(α2(e∗i ∧ e∗j )).

Finally, for 1 ≤ i ≤ g − 1, j = g, we have

α1(d2(e∗i ∧ e∗g)) = α1

(
g∑
l=1

al,i(el ⊗ e∗g)−
g∑
v=1

av,g(ev ⊗ e∗i ) + η

)

=

(∑g−1
l=1 al,ifl

)
e∗g

2
−
∑g−1
v=1 ag,ifve

∗
v

2
−

(
∑g
v=1 av,gfv) e

∗
i

2
(the formula for α1(el ⊗ e∗g) depends on whether l = g or not)

=
−ag,ifge∗g

2
−
∑g−1
v=1 ag,ifve

∗
v

2
(since

g∑
v=1

av,lfv = 0)

=
−ag,i (

∑g
v=1 fve

∗
v)

2

We also have

δ(α2(e∗i ∧ e∗g)) = δ(−ag,i/2) =
−ag,i (

∑g
v=1 fve

∗
v)

2
.

Hence α : Q→ P is a lifting of the inclusion map J2 → J .
Since α(Q) ⊆ mP , it follows that α ⊗ (R/m) = 0. Hence TorRi (J2, k) →

TorRi (J, k) is the zero map for all i. The proof is concluded. �
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Proof of Lemma 3.6. It is harmless to assume that I ⊆ m. We can write I as a
finite intersection I1 ∩ · · · ∩ Id of irreducible ideals. If we can show the lemma for
each of the components Ij , then

I2 : m ⊆ (I21 : m) ∩ · · · ∩ (I2d : m) ⊆
d⋂
j=1

Ij = I.

Hence we can assume that I is an irreducible ideal. Being irreducible, I is a primary
ideal. If

√
I 6= m, then I2 : m ⊆ I : m = I. Therefore we assume that I is an m-

primary irreducible ideal. Let k = R/m. It is a folklore and simple result that
any m-primary irreducible ideal must satisfy dimk(I : m)/I = 1. Hence I is a
Gorenstein ideal of height three. It then remains to use the second assertion of
Proposition 3.7. �

In view of Lemma 3.6, it seems natural to ask the following

Question 3.8. Let (R,m) be a three dimensional regular local ring containing 1/2.
Let I be an ideal of R. Is it true that for all n ≥ 2, In : m ⊆ In−1?

For regular local rings of dimension at most two, Ahangari Maleki has proved
that Question 3.8 has a positive answer regardless of the characteristic [1, Proof
of Theorem 3.7]. Nevertheless, if dimA is not fixed, Question 3.8 has a negative
answer in positive characteristic in general. Here is a counterexample in dimension
9(!).

Example 3.9. Choose char k = 2, A = k[x1, x2, x3, . . . , z1, z2, z3] and

M =

x1 x2 x3
y1 y2 y3
z1 z2 z3

 .

Let I2(M) be the ideal generated by the 2-minors of M , and

I = I2(M) +

3∑
i=1

(xi, yi, zi)
2 + (x1, x2, x3)2 + (y1, y2, y3)2 + (z1, z2, z3)2.

Denote m = A+. The Betti table of R/I, computed by Macaulay2 [6], is

0 1 2 3 4 5 6 7 8 9

total: 1 36 160 315 404 404 315 160 36 1

0: 1 . . . . . . . . .

1: . 36 160 315 288 116 . . . .

2: . . . . 116 288 315 160 36 .

3: . . . . . . . . . 1

Therefore I is m-primary, binomial, quadratic, Gorenstein ideal. The relation
x1y2z3 + x2y3z1 + x3y1z2 ∈ (I2 : m) \ I implies I2 : m 6⊆ I. This means that

the maps TorA8 (k, I2)→ TorA8 (k, I) is not zero. In particular, this gives a negative
answer to [1, Question 3.6] in positive characteristic.

4. Powers of sums and associated primes

4.1. Bounds for associated primes. The second main result of this paper is the
following. Its part (3) generalizes [7, Lemma 3.4], which deals only with squarefree
monomial ideals.
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Theorem 4.1. Let A,B be commutative Noetherian algebras over k such that
R = A⊗k B is Noetherian. Let I, J be proper ideals of A,B, resp.

(1) For all n ≥ 1, we have inclusions

n⋃
i=1

⋃
p∈AssA(Ii−1/Ii)

q∈AssB(Jn−i/Jn−i+1)

MinR(R/p + q) ⊆ AssR
R

(I + J)n
,

AssR
R

(I + J)n
⊆

n⋃
i=1

⋃
p∈AssA(A/Ii)

q∈AssB(Jn−i/Jn−i+1)

MinR(R/p + q).

(2) If moreover Ass(A/In) = Ass(In−1/In) for all n ≥ 1, then both inclusions
in (1) are equalities.

(3) In particular, if A and B are polynomial rings and I and J are monomial
ideals, then for all n ≥ 1, we have an equality

AssR
R

(I + J)n
=

n⋃
i=1

⋃
p∈AssA(A/Ii)

q∈AssB(B/Jn−i+1)

{p + q}.

Proof. (1) Denote Q = I + J . By Proposition 2.1, we have

Qn−1/Qn =

n⊕
i=1

(Ii−1/Ii ⊗k Jn−i/Jn−i+1).

Hence

(1)

n⋃
i=1

AssR(Ii−1/Ii ⊗k Jn−i/Jn−i+1) = AssR(Qn−1/Qn) ⊆ AssR(R/Qn).

For each 1 ≤ i ≤ n, we have Jn−iQi ⊆ Jn−i(Ii + J) = Jn−iIi + Jn−i+1. We claim
that (Jn−iIi + Jn−i+1)/Jn−iQi ∼= Jn−i+1/Jn−i+1Qi−1, so that there is an exact
sequence

(2) 0 −→ Jn−i+1

Jn−i+1Qi−1
−→ Jn−i

Jn−iQi
−→ Jn−i

Jn−i+1 + Jn−iIi
∼=
A

Ii
⊗k

Jn−i

Jn−i+1
−→ 0.

For the claim, we have

(Jn−iIi + Jn−i+1)/Jn−iQi =
Jn−iIi + Jn−i+1

Jn−i(Ii + JQi−1)
=

Jn−iIi + Jn−i+1

Jn−iIi + Jn−i+1Qi−1

=
(Jn−iIi + Jn−i+1)/Jn−iIi

(Jn−iIi + Jn−i+1Qi−1)/Jn−iIi

∼=
Jn−i+1/Jn−i+1Ii

Jn−i+1Qi−1/Jn−i+1Ii
∼=

Jn−i+1

Jn−i+1Qi−1
.

In the display, the first isomorphism follows from the fact that

Jn−i+1 ∩ Jn−iIi = Jn−i+1Ii = Jn−iIi ∩ Jn−i+1Qi−1,

which holds since by Proposition 2.1,

Jn−i+1Ii ⊆ Jn−iIi ∩ Jn−i+1Qi−1 ⊆ Jn−iIi ∩ Jn−i+1 ⊆ Ii ∩ Jn−i+1 = Jn−i+1Ii.



12 HOP D. NGUYEN AND QUANG HOA TRAN

Now for i = n, the exact sequence (2) yields

AssR(R/Qn) ⊆ AssR(J/JQn−1) ∪AssR(A/In ⊗k B/J).

Similarly for the cases 2 ≤ i ≤ n− 1 and i = 1. Putting everything together,

(3) AssR(R/Qn) ⊆
n⋃
i=1

AssR(A/Ii ⊗k Jn−i/Jn−i+1).

Combining (1), (3) and Theorem 2.2, we finish the proof of (1).
(2) If A is a polynomial ring, and I is a monomial ideal, by Theorem 3.2,

AssA(A/Ii) = AssA(Ii−1/Ii) for all i ≥ 1. Hence the conclusion follows by ap-
plying part (1).

(3) In this situation, every associated prime of A/Ii is generated by variables.
In particular, p + q is a prime ideal of R for any p ∈ Ass(A/Ii), q ∈ AssB(B/Jj)
and i, j ≥ 1. The conclusion follows from part (2). �

Remark 4.2. If Question 3.1 has a positive answer, then we can strengthen the
conclusion of Theorem 4.1: Let A,B be standard graded polynomial rings over k.
Let I, J be proper homogeneous ideals of A,B, respectively. Then for all n ≥ 1,
there is an equality

AssR
R

(I + J)n
=

n⋃
i=1

⋃
p∈AssA(A/Ii)

q∈AssB(B/Jn−i+1)

Min(R/(p + q)).

Example 4.3. In general, for singular base rings, each of the inclusions of Theorem
4.1 can be strict. First, take A = k[a, b, c]/(a2, ab, ac), I = (b), B = k, J = (0).
Then R = A,Q = I = (b) and I2 = (b2). Let m = (a, b, c). One can check that a ∈
(I2 : m) \ I2 and I/I2 ∼= A/(a, b) ∼= k[c], whence depth(A/I2) = 0 < depth(I/I2).
In particular, m ∈ AssA(A/I2)\AssA(I/I2). Thus the lower bound for AssR(R/Q2)
is strict in this case.

Second, take A, I as above and B = k[x, y, z], J = (x4, x3y, xy3, y4, x2y2z).
In this case Q = (b, x4, x3y, xy3, y4, x2y2z) ⊆ k[a, b, c, x, y, z]/(a2, ab, ac). Then
c + z is (R/Q2)-regular, so depthR/Q2 > 0 = depthA/I2 + depthB/J . Hence
(a, b, c, x, y, z) does not lie in AssR(R/Q2), but it belongs to the upper bound for
AssR(R/Q2) in Theorem 4.1(1).

4.2. Asymptotic primes. Let astab∗(I) denote the minimal integer m ≥ 1 such
that both AssA(A/Ii) and AssA(Ii−1/Ii) are constant sets for all i ≥ m. By a result
due to McAdam and Eakin [16, Corollary 13], for all i ≥ astab∗(I), AssA(A/Ii) \
AssA(Ii−1/Ii) consists only of prime divisors of (0). Hence if grade(I, A) ≥ 1, i.e. I
contains a non-zerodivisor, then AssA(A/Ii) = AssA(Ii−1/Ii) for all i ≥ astab∗(I).

Denote Ass∗A(I) =
⋃
i≥1 AssA(A/Ii) =

⋃astab∗(I)
i=1 AssA(A/Ii) and

Ass∞A (I) = AssA(A/Ii) for any i ≥ astab∗(I).

The following folklore lemma will be useful.

Lemma 4.4. For any n ≥ 1, we have

n⋃
i=1

AssA(A/Ii) =

n⋃
i=1

AssA(Ii−1/Ii).
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In particular, if grade(I, A) ≥ 1 then

Ass∗A(I) =

astab∗(I)⋃
i=1

AssA(Ii−1/Ii) =
⋃
i≥1

AssA(Ii−1/Ii).

Proof. For the first assertion: Clearly the left-hand side contains the right-hand
one. Conversely, we deduce from the inclusion AssA(A/Ii) ⊆ AssA(Ii−1/Ii) ∪
AssA(A/Ii−1) for 2 ≤ i ≤ n that the other containment is valid as well.

The remaining assertion is clear. �

Now we describe the asymptotic associated primes of (I + J)n for n � 0 and
provide an upper bound for astab∗(I + J) under certain conditions on I and J .

Theorem 4.5. Assume that grade(I, A) ≥ 1 and grade(J,B) ≥ 1, e.g. A and B
are domains and I, J are proper ideals. Then for all n ≥ astab∗(I)+astab∗(J)−1,
we have

AssR
R

(I + J)n
= AssR

(I + J)n−1

(I + J)n

=
⋃

p∈Ass∗A(I)

q∈Ass∞B (J)

MinR(R/p + q)
⋃ ⋃

p∈Ass∞A (I)

q∈Ass∗B(J)

MinR(R/p + q).

In particular, astab∗(I + J) ≤ astab∗(I) + astab∗(J)− 1 and

Ass∞R (I + J) =
⋃

p∈Ass∗A(I)

q∈Ass∞B (J)

MinR(R/p + q)
⋃ ⋃

p∈Ass∞A (I)

q∈Ass∗B(J)

MinR(R/p + q).

Proof. Denote Q = I+J . It suffices to prove that for n ≥ astab∗(I)+astab∗(J)−1,
both the lower bound (which is nothing but AssR(Qn−1/Qn)) and upper bound for
AssR(R/Qn) in Theorem 4.1 are equal to⋃

p∈Ass∗A(I)

q∈Ass∞B (J)

MinR(R/p + q)
⋃ ⋃

p∈Ass∞A (I)

q∈Ass∗B(J)

MinR(R/p + q).

First, for the lower bound, we need to show that for n ≥ astab∗(I) + astab∗(J)− 1,

n⋃
i=1

⋃
p∈AssA(Ii−1/Ii)

q∈AssB(Jn−i/Jn−i+1)

MinR(R/p + q)(4)

=
⋃

p∈Ass∗A(I)

q∈Ass∞B (J)

MinR(R/p + q)
⋃ ⋃

p∈Ass∞A (I)

q∈Ass∗B(J)

MinR(R/p + q).
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If i ≤ astab∗(I), n− i+ 1 ≥ astab∗(J), hence AssB(Jn−i/Jn−i+1) = Ass∞B (J). In
particular,

astab∗(I)⋃
i=1

⋃
p∈AssA(Ii−1/Ii)

q∈AssB(Jn−i/Jn−i+1)

MinR(R/p + q)

=

astab∗(I)⋃
i=1

⋃
p∈AssA(Ii−1/Ii)

q∈Ass∞B (J)

MinR(R/p + q) =
⋃

p∈Ass∗A(I)

q∈Ass∞B (J)

MinR(R/p + q),

where the second equality follows from Lemma 4.4.
If i ≥ astab∗(I) then AssA(A/Ii) = Ass∞A (I), 1 ≤ n+ 1− i ≤ n+ 1− astab∗(I).

Hence
n⋃

i=astab∗(I)

⋃
p∈AssA(Ii−1/Ii)

q∈AssB(Jn−i/Jn−i+1)

MinR(R/p + q)

=

n+1−astab∗(I)⋃
i=1

⋃
p∈Ass∞A (I)

q∈AssB(Ji−1/Ji)

MinR(R/p + q) =
⋃

p∈Ass∞A (I)

q∈Ass∗B(J)

MinR(R/p + q).

The second equality follows from the inequality n+ 1− astab∗(I) ≥ astab∗(J) and
Lemma 4.4. Putting everything together, we get (4). The argument for the equality
of the upper bound is entirely similar. The proof is concluded. �

5. The persistence property of sums

Recall that an ideal I in a noetherian ring A has the persistence property if
Ass(A/In) ⊆ Ass(A/In+1) for all n ≥ 1. There exist ideals which fail the persis-
tence property: A well-known example is I = (a4, a3b, ab3, b4, a2b2c) ⊆ k[a, b, c], for
which In = (a, b)4n and (a, b, c) ∈ Ass(A/I) \ Ass(A/In) for all n ≥ 2. However,
it is still challenging to find a homogeneous prime ideal without the persistence
property (if it exists).

Swanson and R. Walker raised the question [22, Question 1.6] whether given
two ideals I and J living in different polynomial rings, if both of them have the
persistence property, so does I + J . The third main result answers in the positive
[22, Question 1.6] in many new cases. In fact, its case (ii) subsumes [22, Corollary
1.7].

Corollary 5.1. Let A and B be standard graded polynomial rings over k, I and J
are proper homogeneous ideals of A and B, resp. Assume that I has the persistence
property, and Ass(A/In) = Ass(In−1/In) for all n ≥ 1. Then I + J has the per-
sistence property. In particular, this is the case if either of the following conditions
holds:

(i) I is a monomial ideal satisfying the persistence property;
(ii) In+1 : I = In for all n ≥ 1.
(iii) In is unmixed for all n ≥ 1.
(iv) char k = 0, dim(A/I) ≤ 1 and I has the persistence property.
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Proof. From Theorem 4.1 and the hypothesis on I, we have for all n ≥ 1 an equality

AssR
R

(I + J)n
=

n⋃
i=1

⋃
p∈AssA(A/Ii)

q∈AssB(Jn−i/Jn−i+1)

MinR(R/p + q).

Since Ass(A/Ii) ⊆ Ass(A/Ii+1) for all i ≥ 1, Ass(R/(I+J)n) ⊆ Ass(R/(I+J)n+1)
for all n ≥ 1, as desired.

The second assertion is a consequence of the first, Theorem 3.2 and Lemma
2.4. �
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