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Abstract6

The traditional approach of designing a screening experiment is to start with7

a regular fractional factorial design (FFD) of resolution III or IV, or a subset of8

columns of a Plackett-Burman design. This experiment is then followed by the9

foldover of the design in stage one or follow-up runs. This paper introduces a class10

of 2-level orthogonal minimally aliased designs (OMADs) for screening experiments.11

These OMADs are constructed by selecting subsets of columns of the Hadamard12

matrices with two circulant cores using the minimum G-aberration criterion (Deng13

& Tang, 1999). Unlike the regular FFDs of resolution III and IV, most of our14
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OMADs do not have fully aliased effects. As such, follow-up runs which are used15

to disentangle theses effects from one another become unnecessary. Our OMADs16

can also be easily divided into two blocks. The OMADs are compared with those of17

Deng & Tang (2002), Schoen & Mee (2012) and Schoen et al. (2017). A catalogue18

of OMADs for 16, 20, 24, 28, 32, 36, 40, 44 and 48 runs is then given.19

Keywords: Circulant matrices; Fractional factorial designs; Foldover designs; Mini-20

mum G-aberration criterion; Screening designs; Interchange algorithm.21

1 Introduction22

Consider an experiment discussed in Section 7.2 “Choosing follow-up runs” of Box23

et al., 2005, hereafter abbreviated as BHH which studied the effects of eight factors on24

percent shrinkage in an injection molding process: A Mold Temperature, B Moisture, C25

Hold Press, D Cavity Thickness, E Booster Pressure, F Cycle Time, G Gate Size and H26

Screw Speed (see also Meyer et al., 1996). The design for this experiment is a 28−4
IV FFD27

(fractional factorial design of resolution IV) in Table 1. It can also be considered as a28

foldover design with the first eight runs in Table 1 forming the first half fraction. In this29

fraction, A, B, C form a factorial; D = AB, E = AC, F = BC, G = ABC and H30

is a column of 1’s. The analysis of the data can be found from the references mentioned31

above.32

The MEs of the 28−4
IV FFD in Table 1 are orthogonal to each other and to the 2FIs.33

However, the following 2FIs are fully aliased with other 2FIs: AB = CG = DH =34

EF, AC = BG = DF = EH, AD = BH = CF = EG, AE = BF = CH =35

DG, AF = BE = CD = GH, AG = BC = DE = FH, AH = BD = CE = FG. It is36

natural to ask whether there is an alternative design, having the same number of factors37
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Table 1: The 28−4
IV FFD for the injection molding experiment from BHH

A B C D E F G H
-1 -1 -1 1 1 1 -1 1
1 -1 -1 -1 -1 1 1 1
-1 1 -1 -1 1 -1 1 1
1 1 -1 1 -1 -1 -1 1
-1 -1 1 1 -1 -1 1 1
1 -1 1 -1 1 -1 -1 1
-1 1 1 -1 -1 1 -1 1
1 1 1 1 1 1 1 1
1 1 1 -1 -1 -1 1 -1
-1 1 1 1 1 -1 -1 -1
1 -1 1 1 -1 1 -1 -1
-1 -1 1 -1 1 1 1 -1
1 1 -1 -1 1 1 -1 -1
-1 1 -1 1 -1 1 1 -1
1 -1 -1 1 1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1

and runs with no 2FI being fully aliased with each other.38

There have been attempts to eliminate the fully aliased effects (Jones & Montgomerry,39

2010; Errore et al., 2017, Nguyen et al. 2021) or to minimise the fully aliased effects40

(Schoen & Mee, 2012; Schoen et al., 2017; Nguyen et al., 2021). This paper is in this41

direction. Hereafter, Schoen & Mee (2012) will be abbreviated as SM and Schoen et al.42

(2017) will be abbreviated as SVG.43

The aims of this paper are: (i) to introduce a class of 2-level orthogonal minimally44

aliased designs (OMADs) constructed from Hadamard matrices with two circulant cores45

using the minimum G-aberration (MIGA) criterion (Deng & Tang, 1999); (ii) to provide46

examples in which our OMADs can be used; (iii) to compare our OMADs with those47

constructed by Deng & Tang (2002), Ingram & Tang (2005), SM and SVG; (iv) to construct48

a catalog of OMADs for 16, 20, 24, 28, 32, 36, 40, 44 and 48 runs.49
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2 Criteria for Ranking 2-level Designs50

In this paper, we use a simplified version of the MIGA criterion to (i) construct the51

Hadamard matrices with two circulant cores; (ii) construct the OMADs from the columns52

of these matrices. As such, it is necessary for us to review this criterion and the related53

criterion, the minimum G2-aberration (Tang & Deng, 1999).54

Consider a 2-level design for m factors in n runs using the model y = Xβ + ε, which55

includes the MEs and 2FIs, constructed from the design matrix Dn×m = (dui), u =56

1, . . . , n; i = 1, . . . ,m. Here, yn×1 is the vector of response; Xn×p is the model matrix57

which contains the intercept column, m MEs columns and (m2 ) 2FI columns; βp×1’s are58

the unknown parameters; and εn×1 is a vector of residuals with E(ε) = 0 and V (ε) =59

σ2I. The uth row of X can be written as (1, du1, . . . , dum, du1du2, . . . , du(m−1)dum).60

The off-diagonal elements of the information matrix X′X contain the following elements:61

(i)
!

di, (i = 1, . . . ,m); (ii)
!

didj, (i < j); (iii)
!

didjdk, (i < j < k); and (iv)62

!
didjdkdl (i < j < k < l), where i, j, k, l = 1, . . . ,m and the summations are taken63

over the n design points. The number of summations of the types (i), (ii), (iii) and (iv)64

are m, (m2 ), (m3 ) and (m4 ), respectively.65

For regular FFDs - i.e. designs constructed by the generators such as the 28−4
IV FFD in66

Table 1 - the summations in (i)-(iv) are either 0 or ±n. For this 28−4
IV FFD, all summations67

of type (i), (ii) and (iii) are 0. However, 14 type (iv) summations involving factorsABCG,68

ABDH, ABEF, ACDF, ACEH, ADEG, AFGH, BCDE, BCFH, BDFG, BEGH,69

CDGH, CEFG, and DEFH are 16. For nonregular designs such as the OMADs in70

this paper, the summations of the types (i)-(iv) could take a value between −n and n.71

This means that, unlike regular FFDs, nonregular designs might possess effects that are72

partially aliased, i.e. they are neither orthogonal nor fully aliased.73
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We use A1, A2, A3 and A4 to denote the sums of squares of the summations of the types74

(i)-(iv) divided by n2, respectively. It can be seen that for the 28−4
IV FFD in Table 1, the75

elements of the quadruple (A1, A2, A3, A4) is (0, 0, 0, 14). For regular FFDs, we call the76

vector (A1, A2, A3, A4, . . .) the word length pattern and use it to rank FFDs. The FFD that77

sequentially minimises the elements of this vector is called the minimum aberration design78

(see e.g. Section 5.2.5 of Mee, 2009). The FFD is said to be of resolution III if A1 = A2 = 079

but A3 ∕= 0; of resolution IV if A1 = A2 = A3 = 0 but A4 ∕= 0; and of resolution V if80

A1 = A2 = A3 = A4 = 0. For nonregular designs, the vector (A1, A2, A3, A4, . . .) is called81

the generalised word length pattern, and a design that sequentially minimise the elements82

of this vector is call the minimum G2-aberration design (Tang & Deng, 1999; Section 6.3.283

of Mee, 2009).84

To calculate the elements of the quadruple (A1, A2, A3, A4), we calculate vector Ju of85

length
!4

i=1(
m
i ) for row u of D (u = 1, . . . , n) as:86

Ju = (du1, . . . , du1du2, . . . , du1du2du3 . . . , du1du2du3du4, . . .). (1)

We then calculate J =
!n

u=1 Ju and set A1, . . . , A4 equal to the sums of squares of the87

first m, and the next (m2 ), (
m
3 ), (

m
4 ) elements of J , divided by n2, respectively.88

Let Mi be the maximums (in terms of the absolute value) and fi (i = 1, . . . , 4) be89

the frequencies of these maximums of the first m, and the next (m2 ), (
m
3 ), (

m
4 ) elements of90

J respectively. In this paper, we call a design that sequentially minimise the elements of91

the octuple (M1, f1, . . . ,M4, f4) a minimum G-aberration design or MIGA. Note that for92

regular FFDs and 2-level orthogonal designs, whose factors are columns of a Hadamard93

matrix like those in this paper, A1 = A2 = 0 and M1 = M2 = 0. Also, for a foldover94

design, i.e. a design whose first half-fraction design matrix is D and the second is -D,95
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A1 = A3 = 0 and similarly M1 = M3 = 0. Also, its A2 and A4 values will be the same as96

those of D.97

The minimum G2-aberration criterion is a handy surrogate criterion for optimality98

criteria such as the D- and A-criteria. If we restrict ourselves to designs with equal-99

occurrence, i.e. with A1 = 0, minimising the remaining A’s are equivalent to minimising100

the off-diagonal of the information matrix X′X. This criterion, however, is not always101

practical for ranking 2-level designs. Both the Plackett-Burman design (Plackett & Bur-102

man, 1946) and a Hadamard design (a Hadamard matrix with the first column of 1’s103

removed) constructed by two circulant cores in the next Section for 15 factors in 16 runs104

have (A3, A4)=(35, 105). However, the M3 and M4 values (and their frequencies) of these105

two designs are 16 (35) and 16 (105) vs 16 (7) and 16 (21). Similarly, for 31 factors in 32106

runs have (A3, A4)= (155, 1085). However, the M3 and M4 values (and their frequencies)107

of these two designs are 32 (155) and 32 (1085) vs 8 (2480) and 8 (17360). Table 5 of SM108

show two strength-3 OAs for 12 factors in 48 runs (designs 12.0-541920 and 12.5-76810).109

The A4 values of these two OAs are 15.33 and 15. However, the M4 values of these two110

OAs are 16 and 48.111

The above examples show that the MIGA criterion appears to be more successful in112

identifying the minimally aliased designs. Therefore, we will use the MIGA criterion as113

our main design selection criterion in this paper. In addition, we will use df(2FI) of the114

designs as the second criterion. This is the rank of X2, the model matrix for 2FIs (see115

SM).116

This paper uses of a quality measure called rworst, the worst correlation among two117

effects in the model matrix X (see SM). For orthogonal designs, rworst is calculated as118

max(M3,M4)/n. Consider two designs for (n,m) = (32, 13) 13.0 in Table 5 of SM and119
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13.1.1 in Table 10 of SVG. The [(M3, f3), (M4, f4)] values of these two designs are [(0,120

286), (32, 10)] and [(8, 144), (8, 396)]. The rworst of these two designs are 1 and 0.25121

respectively and the second design is therefore considered more minimally aliased than122

the first.123

3 Hadamard matrices with two circulant cores124

A ±1 square matrix H of order n is a Hadamard matrix (see Hedayat & Wallis, 1978)125

if H′H = HH′ = nIn where In is the identity matrix of order n. A Hadamard matrix Hl+1126

with a single circulant core can be written as (1 −1′

1 A ) or (1 1′
1 A) where 1 is a vector of 1’s and127

A = (aij) is a circulant matrix of order l, i.e. aij = a1,j−i+1(mod l). Many Plackett-Burman128

designs are of this form. A Hadamard matrix H2l+2 with two circulant cores (Fletcher et129

al., 2001; Kotsireas et al., 2006) can be written as:130

"

##########$

1 1 1′ 1′

1 −1 1′ −1′

1 1 A B′

1 −1 B −A′

%

&&&&&&&&&&'

or

"

##########$

1 1 1′ 1′

1 1 A B′

1 −1 1′ −1′

1 −1 B −A′

%

&&&&&&&&&&'

(2)

where A = (aij) and B = (bij) are two circulant matrices of order l. For H in (2) to be a131

Hadamard matrix, A and B should satisfy the condition A′A + B′B = (2l + 2)Il − 2Jl,132

where J is a square matrix of order l of 1’s. The Hadamard matrix in (2) is equivalent133

to the one in equation (1) of Kotsireas et al. (2006). The following is an example of the134

Hadamard matrix of order 16 in the form of equation (2), without the first column of 1’s:135
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Table 2: Generating vectors for core OMADs in n runs and 1
2
n− 1 (and 1

2
n) factors§

n m M3 M4 M3‡ M4‡ Cyclic generators

8 3 8 (1) 0 (1) 8 (1) 0 (1) +−−
+−−

12 5 4 (10) 4 (5) 4 (20) 4 (15) +−−−+
−+−+−

16† 7 8 (14) 8 (14) 8 (14) 8 (28) −++−−−+
−++−+−−

20 9 12 (9) 12 (9) 12 (9) 12 (12) + +−+−−−+−
−+++−−+−−

24 11 8 (55) 8 (220) 8 (55) 8 (330) +−−−+−−+−++
++−+−−+−−−+

28† 13 4 (286) 12 (950) 4 (364) 12 (273) −+−+−++−−−−++
−−+−−++++−−+−

32 15 8 (260) 8 (780) 8 (320) 8 (1020) −+−−++−+−++−−−+
−−+−−+−−−+++++−

36† 17 4 (680) 12 (952) 4 (816) 12 (1224) −+−++−++−+−−−++−−
+++−+−−−−−+−+++−−

40 19 8 (285) 16 (456) 8 (285) 16 (570) + + +−−+−−++−−−−+−+−+
−−−++−−+−−++++−+−+−

44 21 12 (357) 12 (1533) 12 (399) 12 (1834) + +−−+++−+−−−++−−+−−+−
+−+++−−−−−−−+++−+−++−

48† 23 8 (506) 16 (2530) 8 (506) 16 (3036) −−++++−+−++−−++−−+−+−−−
+−−++−+−++++−−−−−+−+−−+

†Used as core OMADs in this study.
‡M ’s of OMADs for m+ 1 factors formed by adding a column of half − and half + to OMADs for m factors
§The ID of the core OMAD for m factors in n runs in this paper and the supplemental material is tcnxm.

"

#######################$

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 1 1 −1 −1 −1 1 −1 −1 −1 1 −1 1 1
1 1 −1 1 1 −1 −1 −1 1 −1 −1 −1 1 −1 1
1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 −1 1 −1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 −1 1
1 −1 −1 −1 1 −1 1 1 1 −1 1 1 −1 −1 −1
1 1 −1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 −1
1 1 1 −1 −1 −1 1 −1 −1 −1 1 −1 1 1 −1

−1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1
−1 −1 1 1 −1 1 −1 −1 1 −1 1 1 1 −1 −1
−1 −1 −1 1 1 −1 1 −1 −1 1 −1 1 1 1 −1
−1 −1 −1 −1 1 1 −1 1 −1 −1 1 −1 1 1 1
−1 1 −1 −1 −1 1 1 −1 1 −1 −1 1 −1 1 1
−1 −1 1 −1 −1 −1 1 1 1 1 −1 −1 1 −1 1
−1 1 −1 1 −1 −1 −1 1 1 1 1 −1 −1 1 −1
−1 1 1 −1 1 −1 −1 −1 −1 1 1 1 −1 −1 1

%

&&&&&&&&&&&&&&&&&&&&&&&'

. (3)

136

It can be seen that the first rows of the two circulant matrices A and B used in the137

construction of (3) are (−++−−−+) and (−++−+−−).138

Table 2 and Table 3 contain the generators for OMADs for 1
2
n− 1 and n− 2 factors.139

OMADs for 1
2
n and n − 1 factors are constructed by adding a column with half 1’s and140

half -1’s to the OMAD for 1
2
n − 1 and n − 2 factors respectively. Table 2 and Table 3141
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Table 3: Generating vectors for core OMADs in n runs and n− 2 (and n− 1) factors§

n m M3 M4 M3† M4† Cyclic generators

8 6 8 (4) 8 (3) 8 (7) 8 (7) Same as Table 2

12 10 4 (120) 4 (210)) 4 (165) 4 (330) Same as Table 2

16† 14 8 (112) 16 (21) 16 (7) 16 (21) Same as Table 2

20† 18 12 (48) 12 (180) 12 (57) 12 (228) Same as Table 2

24† 22 8 (660) 8 (3135) 8 (759) 8 (3795) −+−+−+−−++−
++−−−−+−−++

28† 26 12 (312) 12 (1794) 12 (351) 12 (2106) +−+−+−++−−−−+
+−++−−+−−−−++

32† 30 8 (2240) 8 (15120) 8 (2480) 8 (17360) Same as Table 2

36 34 12 (1080) 20 (272) 12 (1190) 20 (272) −++−−−+++−+−−+−+−
−−+−−−+++++−+−−−+

40† 38 16 (323) 24 (171) 16 (361) 24 (171) +−+−+−−−−++−++−−++−
−++−−−−++−++++−+−−−

44† 42 12 (2800) 12 (27300) 12 (3010) 12 (30100) Same as Table 2

48† 46 16 (1012) 16 (10879) 16 (1081) 16 (11891) +−+−+−−+−−+−+−+++−−−−++
++−−+++++−+−−+−−−−−++−−

†Used as core OMADs in this study.
‡M ’s of OMADs for m+ 1 factors formed by adding a column of half − and half + to OMADs for m factors
§The ID of the core OMAD for m factors in n runs in this paper and the supplemental material is tcnxm.

also report the values of M3 and M4 and the corresponding frequencies. Most OMADs in142

this paper for m < 1
2
n − 1 factors are projections from core OMADs for 1

2
n factors in 2.143

Similarly, most OMADs for m factors (1
2
n < m < n−2) are projections from core OMADs144

for n− 2 factors in Table 3.145

The algorithm used for generating the vectors in Table 2 and Table 3 are closely aliased146

to the one in Nguyen (1996) in the construction of the supersaturated designs (SSDs). Note147

that for n = 12, 16 and 20, the generators in Table 2 and Table 3 are identical to the148

ones for first three SSDs in Table 1 of Nguyen (1996). For n = 24, 28, 36, 40 and 48, the149

generators in Table 2 and Table 3 are different because the set of generators that produce150

the good OMADs in Table 2 might not do so in Table 3 and vice versa.151

4 The MAD algorithm152

MAD is an algorithm for (i) finding MIGA projections (subsets of columns) from a core153

OMAD or a Hadamard design and (ii) constructing an OMAD from scratch or augment154

a base design with new columns (factors). With (i), MAD picks a random sample of m155

distinct columns from core OMADs constructed in Table 2 or Table 3. Each sample makes156
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up one “try”. The best try is then selected. MAD is closely aliased to the FOLD algorithm157

reported in Nguyen et al. (2021). Unlike FOLD, MAD is not restricted to foldover designs.158

Below are two steps in MAD to construct a design from scratch using the column-wise159

interchange method:160

1. Assign −1 to half of the number of elements of columns j of D (j = 1, . . . ,m),161

and 1 to the remaining. Randomise the positions of ±1’s. If the equal-occurrence162

constraint is not required, randomly assign ±1’s to n elements of column j. Calculate163

vector J (=
!n

u=1 Ju) in (1) and the octuple (M1, f1, . . . ,M4, f4).164

2. For column j of D (j = 1, . . . ,m), search for a pair of elements having different165

values such that swapping them results in the smallest octuple (M1, f1, . . . ,M4, f4).166

If found, swap them and update D and J . This step is repeated until no further167

reduction can be made.168

For each set (m, n), Steps 1-2 make up one “try” . Among a subset S of tries which169

result in a best design with respect to the MIGA criterion, select the one with the maximum170

df(2FI), which is the rank of X2, the model matrix for the 2FIs.171

Remarks172

1. An equal-occurrence design has A1 = 0 and the length of vector Ju in (1) shortened173

to (m2 ) + (m3 ) + (m4 ). A design whose columns are subset of columns of a Hadamard174

design like those in this study has A1 = A2 = 0 and the length of vector Ju shortened175

to (m3 ) + (m4 ) (see e.g. the design in Table 4 (a)).176

2. A foldover design has A1 = A3 = 0 and the length of vector Ju in (1) shortened to177

(m2 ) + (m4 ) (see e.g the designs Table 4 (c) and Table 4 (d)). To construct a foldover178

design, we only need to construct its half fraction.179

3. There are situations when the experimenter wish to eliminate all fully aliased effects.180

For example they may want to eliminate all fully aliased 2FIs in the 28−4
IV FFD181

mentioned in the Introduction or to set the M3 or M4 values to be smaller or equal182

to a specified value (see e.g the designs in Table 4 (b) and Table 4 (d)).183
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Table 4: Four 2-level designs for five factors in 12 runs

A B C D E A B C D E A B C D E A B C D E
1 1 1 1 1 -1 -1 1 1 1 1 1 -1 -1 1 -1 -1 1 -1 -1
1 -1 -1 -1 1 1 1 -1 -1 1 1 1 1 -1 -1 1 -1 1 1 1
1 1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 -1
-1 1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 -1 1 1 -1 -1 -1 -1
-1 -1 1 1 -1 -1 -1 -1 -1 1 1 -1 1 1 1 -1 1 1 1 -1
-1 -1 -1 1 1 -1 1 1 1 -1 -1 1 1 1 1 -1 1 -1 1 1
1 1 1 1 1 -1 1 1 -1 1 -1 -1 1 1 -1 1 1 -1 1 1
-1 1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1 -1
-1 -1 1 -1 1 1 -1 1 -1 1 1 1 1 1 1 1 1 -1 -1 1
1 -1 -1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 1 1
-1 1 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1
1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 -1 1 -1 -1

(a) (b) (c) (d)

Table 5: Quality measures of four 2-level designs for five factors in 12 runs in Table 4

Design A1 A2 A3 A4 M1 M2 M3 M4 df(2FI) rworst D-eff†
4a 0 0 1.11 0.56 0 0 4 (10) 4 (5) 10 0.33 1
4b 0.14 0 0.28 0.56 2 (5) 0 2 (10) 4 (5) 10 0.33 0.97
4c 0 0.44 0 1.22 0 4 (4) 0 8 (2) 6 0.71 0.93
4d 0 1.11 0 0.56 0 4 (10) 0 4 (5) 6 0.5 0.76

† 1
n
|X′

1X1|
1

m+1 where X1 is the model matrix corresponding to the MEs.
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Figure 1: CCPs of four 2-level designs for five factors in 12 runs in Table 4186

Table 4 displays four 2-level designs for five factors in 12 runs. The design tc12x5 in187

Table 4 (a) was constructed by two generating vectors (+ − − − +) and (− + − + −)188

in Table 2. The design in Table 4 (b) was constructed by setting M3 ≤ 2 and relaxing189

the equal-occurrence constraint. The design in Table 4 (c) was constructed as a foldover190

design. The design in Table 4 (d) was constructed as a foldover design with M4 ≤ 4. The191

11



quality measures of these four designs, including their D-efficiencies (D-eff) are displayed192

in Table 5. The quality measures of the first three designs in Table 4 match the ones for193

five factors in 12 runs in Tables 8-10 of Jones & Nachtsheim (2011). Figure 1 displays194

the correlation cell plots (CCPs) of the four designs in Table 4. These plots, proposed195

by Jones & Nachtsheim (2011), display the magnitude of the correlation (in terms of the196

absolute values) between the columns of the model matrix X. The color of each cell ranges197

from white (no correlation) to dark (correlation of 1 or close to 1).198

5 OMADs for 16, 20, 24, 28, 32, 36, 40, 44 and 48199

runs200

Most OMADs in this paper were constructed by using a core OMAD in either Table 2201

or Table 3. The exception is the 36-run OMADs for 19-35 factors, where we have to use202

a Hadamard design generated with a single core. OMADs with a small number of runs or203

factors were constructed from scratch. OMADs from core OMADs with 1
2
n − 1 or n − 2204

factors do not include a column of half −1’s and 1’s. As such, for these OMADs, we can205

use this column as an additional factor or as a blocking factor without increasing rworst.206

As all OMADs are orthogonal designs, their quality measures displayed in the Appendix207

only include A3, A4,M3,M4 and the frequencies M3 and M4 of as well as the df(2FI).208

5.1 16 runs (Appendix A-1)209

All OMADs for 16 runs were constructed from scratch. For 6-8 factors, we have three210

MIGA solutions with rworst = 1 and three minimally aliased solutions with rworst = 0.5211

(=8/16). The latter, like the non-confounding designs of Jones, B. & Montgomery (2010)212

do not totally confound the 2FIs. The quality measures for the solutions for 8 factors213

and for 12-15 factors match the projections from core OMADs for 16 runs in Table 2 and214

Table 3. These designs have also been reported in Table 2 Deng & Tang (2002), who used215

columns of selected Hadamard matrices. Although the OMADs for 9-14 factors and the216

corresponding FFDs of resolution III (Mee, 2009, Table G.2) have the same A3 and A4217

values, none of these OMADs confound the MEs and the 2FIs as the FFDs.218
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5.2 20 runs (Appendix A-2)219

OMADs for 4-10 factors were constructed from scratch. OMADs for 11-13 factors were220

built up from smaller OMADs. The remaining OMADs are MIGA projections from core221

OMADs for 20 runs in Table 3. For 6 and 7 factors, our results slightly improve the ones222

in Table 4 of Deng & Tang (2002) in terms of the MIGA criterion (see also Table 6.32 of223

Mee, 2009).224

5.3 24 runs (Appendix A-3)225

OMADs for 4-12 factors were constructed from scratch. These OMADs are all strength-226

3 OAs and match the ones in Table 1 of Ingram & Tang (2005) and Table 2 of SVG, in227

terms of M3 and M4 and their frequencies. These designs are also foldover. Our OMADs228

for 13-23 factors are projections from core OMADs in Table 3. They are not as good as229

the designs in Table 2 of Ingram & Tang (2005) and Table 3 of SVG in terms of the MIGA230

criterion. However, while the rworst of our OMADs is 0.333 (=8/24), theirs range from231

0.667 (16/24) to 1 (=24/24). Table 6.34 of Mee (2009) displays the best-known 20-factor232

design, which is a projection of Sloan’s Had.24.59 with respect to the MIGA criterion.233

While the M3 and M4 values of this design and their frequencies are 8 (480) and 24 (5),234

the ones of our 20-factor OMADs are 8 (488) and 8 (2077).235

5.4 28 runs (Appendix A-4)236

OMADs for 4-8 factors were constructed from scratch. OMADs for 9 factors were237

constructed by three circulant matrices generated by three vectors (++−++−+−+),238

(− − − + − + + − −), (− − − + − − + + +) and a row of 1’s. The OMADs for 10-14239

factors are projections from the core OMAD for 28 runs in Table 2. The OMADs for 15-27240

factors are projections from core OMADs for 28 runs in Table 3. With the exception of241

the OMAD for 10 factors, ours compare quite well with the 28-run designs in Tables 6-7 of242

SVG with respect to the MIGA criterion. Actually, ur OMADs for 17 and 18 runs slightly243

improve the corresponding designs of these authors with respect to the MIGA criterion.244
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5.5 32 runs (Appendix A-5)245

OMADs for 4-6 factors were constructed from scratch. OMADs for 7-31 factors are246

projections of the core OMADs for 32 factors in Table 3. For 10-11 factors, the 32-run247

designs in Table 10 of SVG slightly improve our OMADs. For 14-15 factors, the reverse248

is true. For 7-16 factors, our OMADs and SVG 32-run designs are not as good as the249

strength-3 OAs in Table 3 of SM (or the FFD of resolution IV in Table G.3 of Mee, 2009)250

with respect to the MIGA criterion. However, while the rworst of the former is 0.25 (8/24),251

the one of the latter is 1 (32/32), meaning some pair of 2FIs of these designs are fully252

aliased. In addition, the df(2FI)’s of OMADs and SVG designs substantially increase the253

ones of the strength-3 OAs. For 17-31 our OMADs and SVG designs do not confound254

MEs and 2FIs and pairs of 2FIs as the FFD of resolution III in Table G.3. of Mee (2009).255

5.6 36 runs (Appendix A-6)256

OMADs for 4-8 factors were constructed from scratch. OMADs for 9-17 are the pro-257

jections of the core OMAD for 36 runs in Table 2. OMADs for 19-35 are projections258

of the Hadamard design generated with a single core. The generator for this matrix is259

(− + − − + + − + + − + − − − + + + − − − − − + − − − + + − + + + + − +). Our260

OMADs from the 7-8 and 12-18 factors are as good as the 36-run designs in Table 12 of261

SVG in terms of the MIGA criterion.262

5.7 40 runs (Appendix A-7)263

OMADs for 4-10 factors were constructed sequentially from scratch (the one for m264

factors was constructed by adding a column to the one with m − 1 factors). The quality265

measures of these OMADs are identical to those of the corresponding strength-3 OAs in266

Table 4 of SM. OMADs for 11-18 factors are projections of the core OMADs for 40 runs in267

Table 2. These OMADs are not strength-3 OAs like those of the designs in Table 4 of SM.268

However, while the rworst of these OMADs is 0.4 (=16/40), the one of the corresponding269

strength-3 OAs is 0.6 (=24/40). The worst correlation between a ME and a 2FI of these270

OMAD is 0.2 (=8/40). OMADs for 20-37 factors are projections of core OMADs for 40271

runs in Table 3. The rworst of these OMADs is 0.6 (=24/40).272
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5.8 44 runs (Appendix A-8)273

OMADs for 4-12 factors were constructed sequentially from scratch. The remaining274

OMADs for 12-42 factors are projections of the core OMADs for 44 runs in Table 3. The275

rworst of these OMADs is 0.272 =(12/44).276

5.9 48 runs (Appendix A-9)277

OMADs for 4-13 factors were constructed sequentially from scratch. The quality mea-278

sures of these OMADs are identical to those of the corresponding strength-3 OAs in Table279

5 of SM. We have three solutions for OMADs for eight factors. OMADs for 14-22 factors280

are projections of the core OMADs for 48 runs in Table 2. Like our OMADs for 40 runs,281

these OMADs are not strength-3 OAs. However, the worst correlation between a MEs and282

a 2FI is 0.167 (=8/48). OMADs for 25-45 factors are projections of the core OMADs for283

48 runs in Table 3. The rworst of these designs is 0.333 (=16/48).284

6 Examples of the use of OMADs285

Let us compare the 28−4
IV FFD for the injection molding of in Table 1 and our correspond-286

ing 16-run OMAD for eight factors generated by two generating vectors (−++−−−+)287

and(−++−+−−) (tc16x8 in Table 2). The M3 and M4 values (and their frequencies)288

are: 0 (56) and 16 (14) vs 8 (14) and 8 (28). The (rworst, df(2FI), PIC5) of these two de-289

signs are: (1, 7, 0) vs (0.5, 13, 0.1928). PIC5, used in SVG, is the projection information290

capacity for five factors. This value is the average D-efficiency with which all interaction291

models in five factors can be estimated. Clearly, for the experimenters who do not wish to292

spend extra time and resources on follow-up runs to disentangle the fully aliased effects,293

the OMAD alternative is a much preferred choice.294

Figure 2 displays the CCPs of two 16-run designs for eight factors discussed in the295

previous paragraph. It can be seen that the MEs in the CCP in Figure 2 (a) are orthogonal296

to the 2FIs. This is not true for the MEs of CCP in Figure 2 (b). At the same time, unlike297

the 2FIs in Figure 2 (a), none of the 2FI in Figure 2 (b) is fully aliased with another 2FI.298

299
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Figure 2: CCPs of two 16-runs design for eight factors in : (a) the 28−4
IV FFD of BHH p.301

296 and (b) our corresponding OMAD302

We now use the experiment requiring a 2-level design for the diamond turning of303

aluminum mirrors reported by SM as a second example. The objective of this experiment304

was to identify factors among 13 factors that affect the smoothness of mirrors produced305

under various conditions. There are two blocking factors (A machine, B operator), four306

rake related factors (C angle, D face orientation in deg, E nose radius in µm, F rake307

sharpness), two workpiece related factors (G material, H shape), two lubricant related308

factors (I amount, J pressure), three factors controlling the mechanical conditions of the309

diamond turning process (K feed rate, L depth of cut in µm, M spindle speed in rpm).310

Suitable designs for this experiment are the strength-3 OAs for 32, 40 and 48 runs (Designs311

13.10, 13.55 and 13.0-594498 in Tables 3-5 of SM) and OMADs for 13 factors in 28, 32312

and 36 runs (see Appendix A-4, A-5 and A-6). The quality measures of these six designs313

are displayed in Table 6. All six are better than the FFD 213−8
IV (see design 13.8.1 in Table314

G.3 of Mee, 2009).315

Let us now compare the strength-3 OA for 32 runs of SM and the 28-run OMAD316

(tc28x13). This OMAD was generated by two generating factors (−+−+−++−−−−++)317

(− − + − − + + + + − − + −) (see Table 2). While the MEs of the strength-3 OA are318

orthogonal to the 2FIs, several 2FIs of this OA are fully aliased with the other 2FIs. The319

MEs of the OMAD are slightly correlated with the 2FIs (r = 0.143)(=4/28) but the 2FIs320

16



Table 6: Six candidate designs for the diamond turning experiment

Design n A3 A4 M3 M4 df(2FI) rworst PIC5
13.10† 32 0 55 0 32 (10) 15 1 0.9174
13.55† 40 0 41.72 0 24 (41) 19 0.6 0.9336
13.0-594498† 48 0 23 0 16 (207) 34 0.33 0.9655
tc28x13 28 5.84 46.43 4 (286) 12 (195) 26 0.43 0.8791
tc32x13 32 8.94 24.88 8 (143) 8 (398) 31 0.25 0.8936
tc36x13 36 3.53 36.88 4 (286) 12 (284) 30 0.33 0.9176
†These strength-3 OAs form from Tables 3-5 of SM.

Table 7: Two halves of the OMAD recommended for the diamond turning of mirrors
experiment

A B C D E F G H I J K L M A B C D E F G H N J K L M

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-1 1 -1 1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 1 1 -1 -1 1 -1

1 -1 1 -1 1 -1 1 1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 1 1 1 -1 -1 1

1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 1 1 1 -1 -1

-1 1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 1 1 1 -1

-1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 1 1 1

-1 -1 -1 1 1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 1 -1 -1 1 1 1

-1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 -1 -1 -1 1 -1 -1 1 1

1 -1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 -1 -1 -1 1 -1 -1 1

1 1 -1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 -1 -1 -1 1 -1 -1

-1 1 1 -1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 -1 -1 -1 1 -1

1 -1 1 1 -1 -1 -1 -1 1 1 -1 1 -1 -1 -1 1 1 1 1 -1 -1 1 -1 -1 -1 1

-1 1 -1 1 1 -1 -1 -1 -1 1 1 -1 1 1 -1 -1 1 1 1 1 -1 -1 1 -1 -1 -1

1 -1 1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 1 1 -1 -1 1 -1 -1

(a) (b)

are not fully aliased with each other. The two halves of this OMAD are displayed in Table321

7. These two halves can be treated as two blocks, and the new design, which include the322

blocking factor, become a 28-run OMAD for 14 factors in Table 2. The CCPs of the two323

mentioned candidate designs are in Figures 3 (a) and 3 (b).324

325
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Figure 3: CCPs of two 2-level designs for 13 factors: (a) the 32-run strength-3 OA 13.1327

in Table 3 of Schoem & Mee (2012) and (b) our corresponding 28-run OMAD328

7 Conclusion329

Several combinatorial structures are related to the balance incomplete block design330

(BIBDs). Hedayat & Wallis (1978) show that the existence of a Hadamard matrix implies331

the existence of five different BIBDs. Several Box-Behnken designs (Box & Behnken332

(1960) are constructed from BIBDs or near-BIBDs. Nguyen (1996) shows that several333

E(s2)-optimal supersaturated designs can be constructed from BIBDs. Identification of334

the simpler structure helps us to reduce computing tasks. Consider the core OMAD for five335

factors in 12 runs in Table 4 (a). If we remove the two rows of 1’s and change the -1’s into336

0’s, we will have the incidence matrix of a 2-resolvable cyclic BIBD with (v, b, r, k,λ)=(5,337

10, 12, 4, 1), where v is the number of varieties, b the number of blocks, r the number of338

replications of each varieties, k the block size and λ the number of blocks containing any339

two distinct varieties. The blocks of this BIBD are (0, 4), (0, 1), (1, 2), (2, 3), (3, 4), (1,340

3), (2, 4), (0,3), (1, 4) and (0, 2). Similarly, the core OMAD in Table 7 is related to the341

6-resolvable cyclic BIBD with (v, b, r, k,λ)=(13, 26, 12, 6, 5). Since the BIBDs, which342

are related to the OMADs in this paper, also have cyclic solutions, instead of generating343

the initial blocks of these cyclic BIBDs and convert the incidence matrices to OMADs, we344

18



can generate the cyclic generators in Table 2 and Table 3, which produce the core OMADs345

directly.346

The OMADs presented in this paper, like the designs of Jones & Montgomery (2010),347

and those of SM and SVG, are considered economic alternatives to resolution IV FFDs.348

The supplemental material includes (i) core OMADs in Table 2 and Table 3 of Section349

3; (ii) the Java program which implements the MAD algorithm in Section 4; (iii) OMADs350

for 16, 20, 24, 28, 32, 36, 40, 44 and 48 runs discussed in Section 5.351
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Appendix A: OMADs with 16, 20, 24, 28, 32, 36, 40, 44 and

48 runs

Appendix A1: n=16

m A3 A4 M3 M4 df(2FI)

4 0 0 0 0 6

5 0 0 0 0 10

6 0 3 0 16 (3) 7

7 0 7 0 16 (7) 7

8 0 14 0 16 (14) 7

6 1 1 8 (4) 8 (4) 14

7 2 3 8 (8) 8 (12) 14

8† 3.5 7 8 (14) 8 (28) 14

9 4 14 8 (16) 16 (14) 15

10 8 18 8 (32) 16 (10) 15

11 12 26 8 (48) 16 (8) 15

12 16 39 8 (64) 16 (15) 15

13 22 55 8 (88) 16 (15) 15

14† 28 77 8 (112) 16 (21) 15

15† 35 105 16 (7) 16 (21) 15

†Core OMAD.

Appendix A2: n=20

m A3 A4 M3 M4 df(2FI)

4 0.16 0.04 4 (4) 4 (1) 6

5 0.4 0.2 4 (10) 4 (5) 10

6 0.8 0.6 4 (20) 4 (15) 15

7 1.4 2.04 4 (35) 12 (2) 19

8 2.24 4.72 4 (56) 12 (6) 19

9 3.36 10.8 4 (84) 12 (18) 18

10 4.8 18 4 (120) 12 (30) 19

11 8.2 22.8 12 (5) 12 (30) 19

12 11.36 32.28 12 (8) 12 (39) 19

13 15.92 43.64 12 (14) 12 (47) 19

14 20.96 59.24 12 (20) 12 (60) 19

15 26.52 80.52 12 (26) 12 (81) 19

16 32.64 107.36 12 (32) 12 (108) 19

17 40 140 12 (40) 12 (140) 19

18† 48 180 12 (48) 12 (180) 19

19† 57 228 12 (57) 12 (228) 19

†Core OMAD.

Appendix A3: n=24

m A3 A4 M3 M4 df(2FI)

4 0 0.11 0 8 (1) 6

5 0 0.56 0 8 (5) 10

6 0 1.67 0 8 (15) 11

7 0 3.89 0 8 (35) 11

Appendix A3: n=24

m A3 A4 M3 M4 df(2FI)

8 0 7.78 0 8 (70) 11

9 0 14 0 8 (126) 11

10 0 23.33 0 8 (210) 11

11 0 36.67 0 8 (330) 11

12 0 55 0 8 (495) 11

13 12.67 34.78 8 (114) 8 (313) 23

14 16.56 48 8 (149) 8 (432) 23

15 21 65.44 8 (189) 8 (589) 23

16 26.11 87 8 (235) 8 (783) 23

17 31.89 113.78 8 (287) 8 (1024) 23

18 38.56 145.89 8 (347) 8 (1313) 23

19 46 184.67 8 (414) 8 (1662) 23

20 54.22 230.78 8 (488) 8 (2077) 23

21 63.33 285 8 (570) 8 (2565) 23

22† 73.33 348.33 8 (660) 8 (3135) 23

23† 84.33 421.67 8 (759) 8 (3795) 23

†Core OMAD.

Appendix A4: n=28

m A3 A4 M3 M4 df(2FI)

4 0.08 0.02 4 (4) 4 (1) 6

5 0.2 0.1 4 (10) 4 (5) 10

6 0.41 0.31 4 (20) 4 (15) 15

7 0.71 0.88 4 (35) 12 (1) 21

8 1.14 2.9 4 (56) 12 (9) 27

9 1.71 5.51 4 (84) 12 (18) 27

10 2.45 13.59 4 (120) 12 (57) 23

11 3.37 21.43 4 (165) 12 (90) 24

12 4.49 32.14 4 (220) 12 (135) 25

13† 5.84 46.43 4 (286) 12 (195) 26

14† 7.43 65 4 (364) 12 (273) 27

15 15.98 57.41 12 (41) 12 (181) 27

16 20.73 74.69 12 (57) 12 (230) 27

17 25.96 96.24 12 (74) 12 (292) 27

18 31.35 124.16 12 (90) 12 (378) 27

19 37.9 156 12 (111) 12 (471) 27

20 44.82 195.04 12 (132) 12 (589) 27

21 52.61 240.18 12 (156) 12 (723) 27

22 61.31 292.8 12 (183) 12 (879) 27

23 70.59 354.43 12 (211) 12 (1064) 27

24 80.82 425.18 12 (242) 12 (1276) 27

25 92 506 12 (276) 12 (1518) 27

26† 104 598 12 (312) 12 (1794) 27

27† 117 702 12 (351) 12 (2106) 27

†Core OMAD.
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Appendix A5: n=32

m A3 A4 M3 M4 df(2FI)

4 0 0 0 0 6

5 0 0 0 0 10

6 0 0 0 0 15

7 0.81 1.12 8 (13) 8 (18) 21

8 1.38 2.5 8 (22) 8 (40) 28

9 2.25 4.75 8 (36) 8 (76) 30

10 3.44 6.81 8 (55) 8 (109) 31

11 4.88 11.5 8 (78) 8 (184) 31

12 6.69 17.31 8 (107) 8 (277) 31

13 8.94 24.88 8 (143) 8 (398) 31

14 11.62 34.38 8 (186) 8 (550) 31

15 14.75 47.88 8 (236) 8 (766) 31

16 18.38 63.12 8 (294) 8 (1010) 31

17 22.5 82.12 8 (360) 8 (1314) 31

18 27.25 105.38 8 (436) 8 (1686) 31

19 32.56 133.38 8 (521) 8 (2134) 31

20 38.44 167.44 8 (615) 8 (2679) 31

21 45 206.62 8 (720) 8 (3306) 31

22 52.31 252.56 8 (837) 8 (4041) 31

23 60.38 305.88 8 (966) 8 (4894) 31

24 69.25 366.88 8 (1108) 8 (5870) 31

25 78.94 436.5 8 (1263) 8 (6984) 31

26 89.38 515.62 8 (1430) 8 (8250) 31

27 100.75 605.25 8 (1612) 8 (9684) 31

28 112.94 706.06 8 (1807) 8 (11297) 31

29 126 819 8 (2016) 8 (13104) 31

30† 140 945 8 (2240) 8 (15120) 31

31† 155 1085 8 (2480) 8 (17360) 31

†Core OMAD.

Appendix A6: n=36

m A3 A4 M3 M4 df(2FI)

4 0.05 0.01 4 (4) 4 (1) 6

5 0.12 0.06 4 (10) 4 (5) 10

6 0.25 0.19 4 (20) 4 (15) 15

7 0.43 0.43 4 (35) 4 (35) 21

8 0.69 1.75 4 (56) 12 (9) 28

9 1.04 6 4 (84) 12 (45) 26

10 1.48 10.4 4 (120) 12 (79) 27

11 2.04 16.72 4 (165) 12 (128) 28

12 2.72 25.07 4 (220) 12 (192) 29

13 3.53 36.88 4 (286) 12 (284) 30

14 4.49 51.86 4 (364) 12 (400) 31

15 5.62 70.78 4 (455) 12 (546) 32

16 6.91 94.37 4 (560) 12 (728) 33

17 8.4 123.41 4 (680) 12 (952) 34

18 10.07 158.67 4 (816) 12 (1224) 35

19 27.77 120.25 12 (160) 12 (733) 35

Appendix A6: n=36

m A3 A4 M3 M4 df(2FI)

20 32.94 148.9 12 (191) 12 (902) 35

21 38.74 182.63 12 (226) 12 (1101) 35

22 45.19 224.04 12 (265) 12 (1354) 35

23 51.99 271.79 12 (305) 12 (1645) 35

24 59.95 323.28 12 (354) 12 (1945) 35

25 68.4 385.01 12 (405) 12 (2317) 36

26 77.53 455.09 12 (460) 12 (2739) 35

27 87.47 533.8 12 (520) 12 (3211) 35

28 98.12 622.46 12 (584) 12 (3743) 35

29 109.8 721.17 12 (655) 12 (4333) 35

30 122.22 831.67 12 (730) 12 (4995) 35

31 135.89 953.89 12 (814) 12 (5725) 35

32 150.22 1089.78 12 (901) 12 (6539) 35

33 165.33 1240 12 (992) 12 (7440) 35

34 181.33 1405.33 12 (1088) 12 (8432) 35

35 198.33 1586.67 12 (1190) 12 (9520) 35

†Core OMAD.

Appendix A7: n=40

m A3 A4 M3 M4 df(2FI)

4 0 0.04 0 (4) 8 (1) 6

5 0 0.2 0 (10) 8 (5) 10

6 0 0.6 0 (20) 8 (15) 15

7 0 1.4 0 (35) 8 (35) 21

8 0 2.8 0 (56) 8 (70) 25

9 0 5.04 0 (84) 8 (126) 27

10 0 8.4 0 (120) 8 (210) 27

11 1.8 15.2 8 (45) 16 (37) 29

12 2.48 23 8 (62) 16 (56) 30

13 3.28 33.4 8 (82) 16 (82) 31

14 4.2 47.12 8 (105) 16 (118) 32

15 5.32 64.12 8 (133) 16 (160) 33

16 6.56 85.6 8 (164) 16 (214) 34

17 8 112 8 (200) 16 (280) 35

18 9.6 144 8 (240) 16 (360) 36

19† 11.4 182.4 8 (285) 16 (456) 37

20† 11.4 228 8 (285) 16 (570) 38

21 35.32 161.96 16 (38) 24 (14) 39

22 40.8 198.2 16 (43) 24 (17) 39

23 47.16 239.08 16 (54) 24 (20) 39

24 53.76 288.64 16 (62) 24 (24) 39

25 61.92 342.48 16 (72) 24 (31) 39

26 70.36 404.04 16 (84) 24 (33) 39

27 79.16 474.72 16 (97) 24 (40) 39

28 88.08 553.72 16 (109) 24 (49) 39

29 98.72 641.32 16 (121) 24 (53) 39

30 109.92 740.52 16 (139) 24 (63) 39

31 121.24 850.52 16 (154) 24 (72) 39

32 134 971.68 16 (173) 24 (82) 39

33 147.36 1105.92 16 (194) 24 (93) 39

†Core OMAD.
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Appendix A7: n=40

m A3 A4 M3 M4 df(2FI)

34 161.64 1253.48 16 (216) 24 (107) 39

35 176.92 1415.12 16 (240) 24 (123) 39

36 192.96 1592.04 16 (266) 24 (137) 39

37 210 1785 16 (294) 24 (153) 39

38† 228 1995 16 (323) 24 (171) 39

39† 247 2223 16 (361) 24 (171) 39

†Core OMAD.

Appendix A8: n=44

m A3 A4 M3 M4 df(2FI)

4 0.03 0.01 4 (4) 4 (1) 6

5 0.08 0.04 4 (10) 4 (5) 10

6 0.17 0.12 4 (20) 4 (15) 15

7 0.29 0.29 4 (35) 4 (35) 21

8 0.46 1.04 4 (56) 12 (7) 28

9 0.69 2.63 4 (84) 12 (24) 36

10 1.12 5.11 12 (2) 12 (51) 43

11 1.89 8.41 12 (8) 12 (86) 43

12 4.2 12.16 12 (36) 12 (122) 43

13 5.67 18.6 12 (50) 12 (192) 43

14 7.5 25.33 12 (68) 12 (258) 43

15 9.58 34.36 12 (88) 12 (349) 43

16 12.1 45.59 12 (113) 12 (462) 43

17 15.01 59.6 12 (142) 12 (604) 43

18 18.38 73.95 12 (176) 12 (736) 43

19 22.29 96.36 12 (216) 12 (973) 43

20 26.21 119.31 12 (254) 12 (1199) 43

21† 30.83 149.23 12 (300) 12 (1509) 43

22† 36.07 180.19 12 (353) 12 (1811) 43

23 41.61 216.59 12 (408) 12 (2169) 43

24 47.8 261.04 12 (470) 12 (2620) 43

25 54.71 309.37 12 (540) 12 (3098) 43

26 62.08 366.07 12 (614) 12 (3668) 43

27 69.86 430.66 12 (691) 12 (4320) 43

28 78.71 500.26 12 (781) 12 (5007) 43

29 87.92 580.75 12 (873) 12 (5815) 43

30 97.95 669.07 12 (974) 12 (6694) 43

31 108.55 768.47 12 (1080) 12 (7690) 43

32 120.07 878.02 12 (1196) 12 (8785) 43

33 132.3 999.27 12 (1319) 12 (9999) 43

34 145.26 1131.83 12 (1449) 12 (11322) 43

35 159.02 1277.69 12 (1587) 12 (12780) 43

36 173.65 1437.17 12 (1734) 12 (14374) 43

37 189.11 1611.35 12 (1889) 12 (16116) 43

38 205.52 1800.52 12 (2054) 12 (18006) 43

39 222.77 2006.24 12 (2227) 12 (20063) 43

40 240.93 2229.07 12 (2409) 12 (22291) 43

41 260 2470 12 (2600) 12 (24700) 43

42† 280 2730 12 (2800) 12 (27300) 43

43† 301 3010 12 (3010) 12 (30100) 43

†Core OMAD.

Appendix A9: n=48

m A3 A4 M3 M4 df(2FI)

4 0 0 0 0 6

5 0 0 0 0 10

6 0 0.11 0 16 (1) 15

7 0 0.33 0 16 (3) 21

8 0 1.22 0 16 (11) 27

9 0 2.44 0 16 (22) 29

10 0 5.33 0 16 (48) 31

11 0 9.11 0 16 (82) 32

12 0 15.33 0 16 (138) 33

13 0 23 0 16 (207) 34

14 2.72 40.06 8 (98) 16 (289) 36

15 3.5 53.72 8 (126) 16 (385) 37

16 4.33 71.94 8 (156) 16 (517) 38

17 5.33 94.06 8 (192) 16 (676) 39

18 6.42 121.31 8 (231) 16 (873) 40

19 7.67 153.67 8 (276) 16 (1106) 41

20 9.03 192.25 8 (325) 16 (1384) 42

21 10.56 237.5 8 (380) 16 (1710) 43

22 12.22 290.28 8 (440) 16 (2090) 44

23† 14.06 351.39 8 (506) 16 (2530) 45

24† 14.06 421.67 8 (506) 16 (3036) 46

25 49.39 281.67 16 (135) 16 (852) 47

26 56.22 334.61 16 (156) 16 (1016) 47

27 63.22 393.5 16 (176) 16 (1201) 47

28 70.78 457.56 16 (197) 16 (1387) 47

29 79.44 530.39 16 (227) 16 (1600) 47

30 88.42 612.36 16 (255) 16 (1852) 47

31 98.5 700.78 16 (285) 16 (2108) 47

32 109.03 800.58 16 (317) 16 (2412) 47

33 119.83 911.33 16 (350) 16 (2743) 47

34 131.58 1032.08 16 (386) 16 (3104) 47

35 144.44 1164.44 16 (425) 16 (3499) 47

36 157.64 1310.08 16 (465) 16 (3938) 47

37 171.81 1468.56 16 (509) 16 (4413) 47

38 186.72 1641 16 (554) 16 (4929) 47

39 202.08 1828.94 16 (602) 16 (5490) 47

40 219.06 2031.28 16 (653) 16 (6098) 47

41 236.47 2250.94 16 (706) 16 (6757) 47

42 254.78 2487.83 16 (762) 16 (7467) 47

43 274.06 2742.61 16 (821) 16 (8229) 47

44 294.22 3016.78 16 (882) 16 (9051) 47

45 315.33 3311 16 (946) 16 (9933) 47

46† 337.33 3626.33 16 (1012) 16 (10879) 47

47† 360.33 3963.67 16 (1081) 16 (11891) 47

†Core OMAD.
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