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Abstract

In this paper we give exact values of the best n-term approximation widths of diagonal op-
erators between `p(N) and `q(N) with 0 < p, q ≤ ∞. The result will be applied to obtain the
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mixed smoothness by trigonometric system.

Keywords and Phrases: diagonal operator, best n-term approximation, mixed smoothness,
asymptotic constant, dimensional dependence

Mathematics Subject Classification 2020: 41A44, 41A45, 41A60, 42A10, 47B06

1 Introduction

Nowadays, it is well understood that nonlinear methods of approximation and numerical methods
derived from them often produce superior performance when compared with linear methods. In the
last three decades there has been a great success in studying nonlinear approximation which was
motivated by numerous applications such as numerical analysis, image processing, statistical learning
as well as in the design of neural networks. We refer the reader to [16, 17, 18] for the development of
nonlinear approximation and its application.

In the present paper we concentrate on a particular nonlinear method, the so-called best n-term
approximation. Our particular interest is exact values of best n-term approximation of diagonal linear
operators from `p(N) to `q(N). The exact values of approximation quantities of diagonal operators
play an important role in high-dimensional approximation and particularly in studying tractability,
see, e.g., [8, 30, 31, 33]. In this paper, the exact values of best n-term approximation of diagonal
operators will be applied to get the asymptotic constants of best n-term approximation of function
spaces with mixed smoothness by trigonometric system.

Let X, Y be Banach spaces and T a continuous linear operator from X to Y . Let D be a given
countable set in Y , called dictionary. For given x ∈ X we consider the algorithm to approximate Tx
by a finite linear combination of elements contained in this dictionary. The error of this approximation
is

σn(Tx;D) := inf
(aj)

n
j=1
⊂C,

(yj)
n
j=1
⊂D

∥∥∥∥∥Tx−
n∑
j=1

ajyj

∥∥∥∥∥
Y

, n ∈ N.
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We wish to approximate Tx for all x in the closed unit ball of X with respect to the dictionary D.
This can be measured by the following benchmark quantity

σn(T ;D) := sup
x∈X, ‖x‖X≤1

σn(Tx;D), n ∈ N.

In what follows, we shall call this quantity the best n-term approximation width.

Let `p(N), 0 < p ≤ ∞, be the classical complex sequence space with the usual (quasi) norm. For
0 < p, q ≤ ∞ and positive non-increasing sequence λ = (λk)k∈N, consider the diagonal linear operator

Tλ : (ξk)k∈N 7→ (λkξk)k∈N (1.1)

from `p(N) to `q(N) and E = {ek : k ∈ N} where ek = (δk,j)j∈N and δk,j denotes the Kronecker delta.
We are concerned with the exact value of σn(Tλ, E). The first result in this direction was given by
Stepanets [42] in the case p = q with the condition limk→∞ λk = 0. Later Stepanets generalized
his result to the case 0 < p ≤ q < ∞ in [43] and 0 < q < p < ∞ in [44, Theorem 6.1], see also
[45]. Under the same condition limk→∞ λk = 0 but by different approach, Gensun and Lixin [20] also
obtained exact value of σn(Tλ, E) in the case p = q. The results of Stepanets were extended to the
Orlicz sequence spaces by Schidlich and Chaichenko [41]. In the case of the finite dimensional sequence
spaces, for all 0 < p, q ≤ ∞, exact values of the quantity σn of the diagonal operator from `Mp to `Mq
with respect to the standard basis of RM were obtained by Gao, see [19]. Analogous results for best
approximation of integrals by integrals of finite rank for functions on Rd were given in [46].

In this paper we give exact values of the best n-term approximation widths σn(Tλ, E), n ∈ N for
all 0 < p, q ≤ ∞. We also show that the condition limk→∞ λk = 0 in the case 0 < p < q < ∞ is
not necessary. The proof is based on the exact values of best n-term approximation widths of the
diagonal operators between finite dimensional sequence spaces obtained by Gao [19]. Our result reads
as follows. If 0 < p < q <∞, then we have

σn(Tλ, E) =
(n∗ − n)1/q(∑n∗

k=1 λ
−p
k

)1/p ,
where n∗ is the smallest integer m > n such that

(m− n)1/q(∑m
k=1 λ

−p
k

)1/p ≥ (m+ 1− n)1/q(∑m+1
k=1 λ

−p
k

)1/p .
In the case 0 < q < p <∞ and the series

∑∞
k=1 λ

pq/(p−q)
k converges, we get

σn(Tλ, E) =

(
(n∗ − n)

p
p−q(∑n∗

k=1 λ
−p
k

) q
p−q

+

∞∑
k=n∗+1

λ
pq
p−q
k

) 1
q
− 1
p

,

where n∗ is the largest integer m > n such that

(m− n)λ−pm ≤
m∑
k=1

λ−pk .

The limiting cases p = q or p =∞ and/or q =∞ are also obtained, see Theorem 2.1.

The above results will be applied to study best n-term approximation of embedding of function
spaces with mixed smoothness by trigonometric system T d := {eikx : k ∈ Zd} on the torus Td
of dimension d. Our motivation comes from high-dimensional approximation which has been the
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object of an intensive study recently. In many high-dimensional approximation problems when the
high-dimensional signals or functions have appropriate mixed smoothness, one can apply efficiently
approximation methods and sampling algorithms constructed on sparse grids to obtain tractability
for algorithms or numerical methods. We refer the reader to the monographs [34, 35] for concepts
of computation complexity and results on high dimensional problems. Survey on various aspects of
high-dimensional approximation of functions having mixed smoothness can be found in the recent
book [15].

The original justification for considering the d-dependence of approximative characteristics stems
from certain needs of numerical analysis on high-dimensional approximation. Concerning the asymp-
totic constants as well as the preasymptotic bounds explicitly in d of the approximation numbers,
we refer the reader to Dinh Dũng, Ullrich [12], Chernov, Dinh Dũng [7]; Cobos, Kühn, Sickel [8, 9];
Krieg [27]; Kühn [28]; Kühn, Mayer, Ullrich [29]; and Kühn, Sickel, Ullrich [30, 31, 32]. In all these
quoted papers, the embedding of a weighted Hilbert space Fω(Td) either into L2(Td) or into L∞(Td)
were considered. In a recent preprint [33] asymptotic constants of approximation numbers as well as
Bernstein, Kolmogorov and Weyl numbers of embeddings of a weighted Wiener algebra either into
Wiener algebra A(Td) or L2(Td) has been investigated.

There has been a numerous papers working on best n-term approximation of embeddings of func-
tion spaces with mixed smoothness by different dictionaries. For instance, Bazarkhanov [2], Dinh
Dũng [10, 13, 14], Kashin and Temlyakov [26], Romanyuk [38, 39], Romanyuk and Romanyuk [40],
Temlyakov [47, 49, 48, 50] worked on trigonometric system; Hansen and Sickel [22, 23], Balgimbayeva
and Smirnow [1], Dinh Dũng [11] on wavelet system. For some recent contributions in this direction
we refer to [3, 5, 51, 53]. Historical comments and further references for studies of best n-term approx-
imation of function spaces with mixed smoothness can be found in the two recent books [15, Chapter
7] and [52, Chapter 9].

Let 0 < s <∞ and 0 < r ≤ ∞. This paper considers the best n-term approximation of embedding
of Sobolev space with mixed smoothness Hs,r

mix(Td) on the torus Td into either L2(Td) or Wiener space
A(Td). In this context we will not only investigate the optimal order of the decay of the best n-term
approximation widths but we will determine the asymptotic constant as well. This sheds some light
not only on the dependence on n, but also on the dependence on s, r and in particular on d. We have

lim
n→∞

σn
(
id : Hs,r

mix(Td)→ L2(Td), T d
)

n−s(lnn)s(d−1)
=

ss

(s+ 1
2)s

(
2d

(d− 1)!

)s
and if s > 1/2

lim
n→∞

σn
(
id : Hs,r

mix(Td)→ A(Td), T d
)

n−s+
1
2 (lnn)s(d−1)

=

(
s

s+ 1
2

)s( 1

s− 1
2

) 1
2
(

2d

(d− 1)!

)s
.

In this paper we also obtain the asymptotic constants of best n-term approximation widths of
embeddings of Sobolev spaces with mixed smoothness Hs,2

mix(Td) into the energy norm space H1(Td).
Those embeddings are of particular importance with respect to the numerical solution of the Poisson
equation, see [4]. In this case, with s > 1 we get

lim
n→∞

σn
(
id : Hs,2

mix(Td)→ H1(Td), T d
)

n−s+1
=

(s− 1)s−1

(s− 1
2)s−1

(2d)s−1(2S + 1)(s−1)(d−1),

where

S :=

+∞∑
k=1

1

(k2 + 1)
s

2(s−1)

.
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The paper is organized as follows. In Section 2 we collect some properties of best n-term approxi-
mation widths and give exact values of best n-term approximation widths of diagonal operators. The
next Section 3 is devoted to the study of asymptotic constants of best n-term approximation widths of
embeddings of weighted classes Fω,p(Td). These results will be used in final Section 4, where we deal
with the particular family of weights associated to function spaces of dominating mixed smoothness.

Notation. As usual, N denotes the natural numbers, N0 the non-negative integers, Z the integers, R
the real numbers, and C the complex numbers. We denote by T the torus, represented by the interval
[0, 2π], where the end points of the interval are identified. For a real number a we denote by bac the
greatest integer not larger than a. The letter d is always reserved for the dimension in Nd, Zd, Rd,
Cd, and Td. For two Banach spaces X and Y , L(X,Y ) denotes the set of continuous linear operators
from X to Y . If (an)n∈N and (bn)n∈N are two sequences, the symbol an ∼ bn, n → ∞, indicates that
limn→∞

an
bn

= 1. The equivalence an � bn means that there are constants 0 < c1 ≤ c2 <∞ such that
c1 an ≤ bn ≤ c2 an for all n ∈ N.

2 Best n-term approximation widths of diagonal operators

This section is devoted to give exact values of the best n-term approximation widths of the diagonal
operator defined in (1.1). Let X,Y be Banach spaces, T ∈ L(X,Y ), and D ⊂ Y a dictionary. By
definition, it is clear that (σn(T,D))n∈N is a non-increasing sequence. If W,Z are Banach spaces and
A ∈ L(W,X), B ∈ L(Y,Z) then we have

σn(BTA,B(D)) ≤ ‖B‖ · σn(T,D) · ‖A‖. (2.1)

A proof of this fact can be found in [5, Lemma 6.1]. For further properties of the best n-term
approximation widths such as additivity, interpolation we refer the reader to [21, 5, 53]. In fact the
best n-term approximation widths belong to the notion of pseudo s-numbers introduced by Pietsch,
see [53].

Let Tλ be the diagonal operator from `p(N) to `q(N) defined in (1.1). By definition we have

σn(Tλ, E) =


sup

(ξk)k∈N∈Bp
inf
Γn

( ∑
k 6∈Γn

|λkξk|q
)1/q

if 0 < q <∞

sup
(ξk)k∈N∈Bp

inf
Γn

sup
k 6∈Γn

|λkξk| if q =∞,
(2.2)

where Bp is the closed unit ball of `p(N) and Γn is an arbitrary subset of N with n elements. In the
following we give exact value of σn(Tλ, E) with 0 < p, q ≤ ∞. The proof is mainly based on the exact
values of n-term approximation widths of the diagonal operators from `Mp to `Mq obtained by Gao in

[19]. Here `Mp stands for CM equipped with the usual norm ‖ · ‖`Mp . For a vector λ = (λj)
M
j=1 with

λ1 ≥ λ2 ≥ . . . ≥ λM > 0 the diagonal operator TMλ from `Mp to `Mq is defined by (ξj)
M
j=1 7→ (λjξj)

M
j=1.

Let EM = {e1, . . . , eM} be the standard basis of RM . If n ∈ N and n ≤M we have

σn(TMλ , EM ) = sup
(ξk)Mk=1∈BMp

inf
ΓMn

( ∑
k 6∈ΓMn

|λkξk|q
)1/q

, 0 < q <∞, (2.3)

where BM
p is the closed unit ball of `Mp and ΓMn is an arbitrary subset of {1, . . . ,M} with n elements.

For λ = (λj)j∈N we define TMλ := TM
λ̃

where λ̃ = (λj)
M
j=1. When q = ∞ the summation in (2.3) is

replaced by supremum.
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Note that if λ = (λj)j∈N satisfying λ1 ≥ λ2 ≥ . . . ≥ λM > 0 and λj = 0 for j ≥M + 1, then

σn(Tλ, E) = σn(TMλ , EM ), n ∈ N

which were obtained in [19]. Therefore, we only consider the operator Tλ where λ = (λj)j∈N is a
positive sequence. Our main result in this section reads as follows.

Theorem 2.1. Let 0 < p, q ≤ ∞ and λ = (λk)k∈N be a positive non-increasing sequence. Let Tλ be
defined in (1.1) and n ∈ N.

(i) If 0 < p ≤ q <∞ we have

σn(Tλ, E) = sup
m>n

(m− n)1/q(∑m
k=1 λ

−p
k

)1/p .
Moreover, if either 0 < p < q <∞ or lim

k→∞
λk = 0 then

σn(Tλ, E) =
(n∗ − n)1/q(∑n∗

k=1 λ
−p
k

)1/p ,
where n∗ is the smallest integer m > n such that

(m− n)1/q(∑m
k=1 λ

−p
k

)1/p ≥ (m+ 1− n)1/q(∑m+1
k=1 λ

−p
k

)1/p .
(ii) If 0 < q < p <∞ and the series

∑∞
k=1 λ

pq/(p−q)
k converges, then we have

σn(Tλ, E) =

(
(n∗ − n)

p
p−q(∑n∗

k=1 λ
−p
k

) q
p−q

+

∞∑
k=n∗+1

λ
pq
p−q
k

) 1
q
− 1
p

, (2.4)

where n∗ is the largest integer m > n such that

(m− n)λ−pm ≤
m∑
k=1

λ−pk . (2.5)

(iii) If 0 < p < q =∞ then

σn(Tλ, E) =

( n+1∑
k=1

λ−pk

)−1/p

.

(iv) If 0 < q < p =∞ and the series
∑∞

k=1 λ
q
k converges then

σn(Tλ, E) =

( ∞∑
k=n+1

λqk

)1/q

.

(v) If p = q =∞ then
σn(Tλ, E) = λn+1.

As mentioned in Introduction, the exact values of σn(Tλ, E), n ∈ N, in the case 0 < p ≤ q ≤ ∞
were obtained in [42, 43, 20] under the condition limk→∞ λk = 0. To prove the above theorem, we
need some auxiliary results.
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Lemma 2.2. Let 0 < p < q <∞ and (λk)
∞
k=1 be a positive non-increasing sequence. Then for n ∈ N,

there is n∗ = n∗(n) ∈ N such that

sup
m>n

(m− n)1/q(∑m
k=1 λ

−p
k

)1/p =
(n∗ − n)1/q(∑n∗

k=1 λ
−p
k

)1/p . (2.6)

Moreover, n∗ can be chosen as the smallest integer m > n such that

(m− n)1/q(∑m
k=1 λ

−p
k

)1/p ≥ (m+ 1− n)1/q(∑m+1
k=1 λ

−p
k

)1/p .
Proof. We first show that n∗ exists. The case limk→∞ λk = 0 was already considered in [43]. We prove
the case limk→∞ λk = K > 0. We will show that there exists n0 ∈ N such that

(m− n)1/q(∑m
k=1 λ

−p
k

)1/p < (2n− n)1/q(∑2n
k=1 λ

−p
k

)1/p (2.7)

for m > n0 and as a consequence we obtain (2.6) for some n∗ ∈ {n + 1, . . . , n0}. Observe that if
m ∈ {jn+ 1, . . . , (j + 1)n} for some j ∈ N we have

(m− n)1/q(∑m
k=1 λ

−p
k

)1/p < (jn)1/q(∑jn
k=1 λ

−p
k

)1/p ≤ (jn)1/q

λ−1
1 (jn)1/p

.

We also have
n1/q

K−1(2n)1/p
≤ (2n− n)1/q(∑2n

k=1 λ
−p
k

)1/p .
Therefore

sup
m∈{jn+1,...,(j+1)n}

(m− n)1/q(∑m
k=1 λ

−p
k

)1/p < (2n− n)1/q(∑2n
k=1 λ

−p
k

)1/p
if

(jn)1/q

λ−1
1 (jn)1/p

<
n1/q

K−1(2n)1/p
⇐⇒ j >

(
λ121/p

K

) pq
q−p

.

Denoting n0 =
⌈(

λ121/p

K

) pq
q−p
⌉
n we obtain (2.7) for m > n0 and (2.6) follows.

We turn to the second statement. Assume

m0 − n(∑m0
k=1 λ

−p
k

)q/p ≥ m0 + 1− n(∑m0+1
k=1 λ−pk

)q/p (2.8)

for some m0 > n, m0 ∈ N. Such m0 exists by the first statement. We will prove

m0 + 1− n(∑m0+1
k=1 λ−pk

)q/p ≥ m0 + 2− n(∑m0+2
k=1 λ−pk

)q/p (2.9)

by showing that
m0 + 1− n(∑m0+1
k=1 λ−pk

)q/p ≥ m0 + 2− n(∑m0+1
k=1 λ−pk + λ−pm0+1

)q/p . (2.10)

Putting A =
∑m0

k=1 λ
−p
k and a = λ−pm0+1 we consider the function g(h) = m0−n+h

(A+ha)q/p
. We have

g′(h) =
(A+ ha)− q

pa(m0 − n+ h)

(A+ ha)
q
p

+1
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and g′(h) ≤ 0 if

(A+ ha)− q

p
a(m0 − n+ h) ≤ 0 ⇐⇒ h ≥

A− q
pa(m0 − n)

a( qp − 1)
.

Assume
A− q

pa(m0 − n)

a( qp − 1)
≥ 1 ⇐⇒ a

A
≤ 1

q
p(m0 − n) + q

p − 1
. (2.11)

Observe that the condition (2.8) implies
(
1 + a

A

)q/p ≥ 1 + 1
m0−n . From this and (2.11) we get(

1 +
1

q
p(m0 − n) + q

p − 1

)q/p
≥ 1 +

1

m0 − n
.

But this is a contradiction since ϕ(t) = (1 + 1
t(m0−n)+t−1)t is a strictly decreasing function on [1,+∞)

and ϕ(1) = 1 + 1
m0−n . Consequently, g is decreasing on [1,+∞). This proves (2.10) and (2.9)

follows.

Lemma 2.3. Let (δk)k∈N be a positive increasing sequence and lim
k→∞

δk = +∞. Let n ∈ N and

n∗ = n∗(n) be the largest integer m > n such that

(m− n)δm ≤
m∑
k=1

δk. (2.12)

Then n∗ is finite and for any m ∈ {n+ 1, . . . , n∗} the inequality (2.12) holds true.

Proof. First of all, observe that m = n+ 1 satisfies (2.12). If m ≥ n+ 1 and m satisfies (2.12) we can
write

m ≤ n+
δ1 + . . .+ δn+1

δm
+
δn+2 + . . .+ δm

δm

≤ n+
δ1 + . . .+ δn+1

δm
+m− n− 1 = m− 1 +

δ1 + . . .+ δn+1

δm
.

Observe that the term δ1+...+δn+1

δm
tends to zero when m→∞. Consequently n∗ is finite. Assume

(m0 − n)δm0 >

m0∑
k=1

δk (2.13)

for some m0 ∈ N, m0 > n. Then we have

m0 + 1 >
1

δm0

m0∑
k=1

δk + n+ 1 >
1

δm0+1

m0∑
k=1

δk + 1 + n =
1

δm0+1

m0+1∑
k=1

δk + n.

This shows that the inequality (2.13) is satisfied with m0 being replaced by m0 + 1 and therefore is
satisfied with any m > m0, m ∈ N. As a consequence we conclude that for any m ∈ {n + 1, . . . , n∗}
the inequality (2.12) holds true.

We are now in position to prove Theorem 2.1.
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Proof. Step 1. Proof of (i). Given ε > 0. For any (ξk)k∈N ∈ Bp we take M ∈ N (depending on (ξk)k∈N)
such that

∞∑
k=M+1

|ξk|p < ε.

Then we have

inf
Γn

( ∑
k 6∈Γn

|λkξk|q
)
≤ inf

ΓMn

( ∑
k 6∈ΓMn

|λkξk|q
)

= inf
ΓMn

( ∑
k∈{1,...,M}\ΓMn

|λkξk|q
)

+
∞∑

k=M+1

|λkξk|q. (2.14)

The first term on the right side can be estimated as follows

inf
ΓMn

( ∑
k∈{1,...,M}\ΓMn

|λkξk|q
)
≤ sup

(γk)Mk=1∈BMp
inf
ΓMn

( ∑
k∈{1,...,M}\ΓMn

|λkγk|q
)

= σn(TMλ , EM )q, (2.15)

see (2.3). It has been proved in [19] that

σn(TMλ , EM ) = sup
n<m≤M

(m− n)1/q(∑m
k=1 λ

−p
k

)1/p . (2.16)

Hence we get

inf
ΓMn

( ∑
k∈{1,...,M}\ΓMn

|λkξk|q
)
≤ sup

n<m≤M

m− n(∑m
k=1 λ

−p
k

)q/p ≤ sup
n<m

m− n(∑m
k=1 λ

−p
k

)q/p .
Since 0 < p ≤ q ≤ ∞, for the second term we have

∞∑
k=M+1

|λkξk|q ≤
( ∞∑
k=M+1

|λkξk|p
)q/p

≤ sup
k>M

|λk|q
( ∞∑
k=M+1

|ξk|p
)q/p

≤ λq1ε
q/p.

Consequently we obtain

inf
Γn

( ∑
k 6∈Γn

|λkξk|q
)
≤ sup

m>n

m− n(∑m
k=1 λ

−p
k

)q/p + λq1ε
q/p.

Observe that the right-hand side is independent of (ξk)k∈N ∈ Bp and ε > 0 is arbitrarily small. In
view of (2.2) we obtain the upper bound.

We now give a proof for the lower bound. Take M ∈ N arbitrarily large and consider the following
diagram

`Mp
TMλ−−−−→ `MqyJ xQ

`p(N)
Tλ−−−−→ `q(N) ,

where
J(ξ1, . . . , ξM ) = (ξ1, . . . , ξM , 0, 0, . . .)

Q(ξ1, . . . , ξM , ξM+1, . . .) = (ξ1, . . . , ξM ).

We have TMλ = QTλJ and ‖J‖ = ‖Q‖ = 1 which by property (2.1) implies

σn(TMλ , EM ) ≤ ‖J‖ · σn(Tλ, E) · ‖Q‖ = σn(Tλ, E).
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Using (2.16) again we deduce

sup
n<m≤M

(m− n)1/q(∑m
k=1 λ

−p
k

)1/p ≤ σn(Tλ, E).

Since M is arbitrarily large, we obtain the lower bound. The second statement follows from Lemma
2.2.
Step 2. Proof of (ii). First note that n∗ is finite by Lemma 2.3. Let ε > 0. We choose M > n∗ such
that ( ∞∑

k=M+1

λ
pq
p−q
k

) p−q
p

< ε.

For (ξk)k∈N ∈ Bp, we use the estimate (2.14). Applying Hölder’s inequality we get

∞∑
k=M+1

|λkξk|q ≤
( ∞∑
k=M+1

λ
pq
p−q
k

) p−q
p
( ∞∑
k=M+1

|ξk|p
) q
p

< ε

which by (2.14) implies

inf
Γn

( ∑
k 6∈Γn

|λkξk|q
)
≤ inf

ΓMn

( ∑
k∈{1,...,M}\ΓMn

|λkξk|q
)

+ ε = σn(TMλ , EM )q + ε,

see (2.15). Using the result in [19] for the case 0 < q < p <∞

σn(TMλ , EM ) =

(
(n∗ − n)

p
p−q(∑n∗

k=1 λ
−p
k

) q
p−q

+
M∑

k=n∗+1

λ
pq
p−q
k

) p−q
pq

≤

(
(n∗ − n)

p
p−q(∑n∗

k=1 λ
−p
k

) q
p−q

+
∞∑

k=n∗+1

λ
pq
p−q
k

) p−q
pq

and following the argument as in Step 1 we obtain the upper bound. The lower bound is carried out
similarly as Step 1 with M > n∗. The other cases are proved similarly with a slight modification.

3 Best n-term approximation of function classes Fω,p(Td)

Let Td be the d−dimensional torus. We equip Td with the probability measure (2π)−ddx. In this
section we study the asymptotic constants of best n-term approximation widths of embeddings of the
weighted function classes Fω,p(Td) by trigonometric system T d. For a function f ∈ L1(Td), its Fourier
coefficients are defined as

f̂(k) := (2π)−d
∫
Td
f(x)e−ikxdx, k ∈ Zd.

Hence, it holds for any f ∈ L2(Td) that

‖f‖2L2(Td) = (2π)−d
∫
Td
|f(x)|2dx =

∑
k∈Zd
|f̂(k)|2 .

Let ω = (ω(k))k∈Zd be a sequence of positive numbers. Those sequences we will call a weight
in what follows. For 0 < p ≤ ∞ we introduce the class Fω,p(Td) as the collection of all functions
f ∈ L1(Td) such that

‖f‖Fω,p(Td) :=

( ∑
k∈Zd
|ω(k)f̂(k)|p

)1/p

<∞ .
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When ω(k) = 1 for all k ∈ Zd we use the notation Fp(Td) instead of Fω,p(Td). In this case we get back
the space L2(Td) when p = 2 and the classical Wiener algebra A(Td) when p = 1.

We suppose that
lim

|k1|+...+|kd|→∞
ω(k) = +∞, k = (k1, . . . , kd). (3.1)

In what follows we denote the non-increasing rearrangement of the sequence (1/ω(k))k∈Zd by λ =
(λn)n∈N. Observe that id : Fω,2(Td) → L2(Td) is compact if and only if limn→∞ λn = 0. In fact we
have

λn = an(id : Fω,2(Td)→ L2(Td)),

where an(id : Fω,2(Td) → L2(Td)) is the n-th approximation number (linear width) of the operator
id : Fω,2(Td)→ L2(Td), see [31]. Recall that for two Banach spaces X, Y and T ∈ L(X,Y ), the n-th
approximation number of T is defined as

an(T ) := inf
{
‖T −A : X → Y ‖ : A ∈ L(X,Y ), rank(A) < n

}
, n ∈ N .

Basic properties of this quantity can be found in [36, 37].

We have the following embedding property of the class Fω,p(Td).

Lemma 3.1. Let 0 < p, q ≤ ∞ and ω = (ω(k))k∈Zd be a weight satisfying (3.1). Then the operator

id : Fω,p(Td) ↪→ Fq(Td) is continuous if either p ≤ q or q < p and the series
∑

k∈Zd ω(k)
− pq
p−q converges.

Proof. If q < p and f ∈ Fω,p(Td), applying Hölder’s inequality we get( ∑
k∈Zd
|f̂(k)|q

) 1
q

≤
( ∑
k∈Zd

ω(k)
− pq
p−q

) p−q
pq
( ∑
k∈Zd
|ω(k)f̂(k)|p

) 1
p

.

This proves the case q < p. The case p ≤ q is obvious.

Our result for the best n-term approximation of the embedding Fω,p(Td)→ Fq(Td) by the trigono-
metric system T d reads as follows.

Theorem 3.2. Let 0 < p, q ≤ ∞ and ω = (ω(k))k∈Zd be a weight satisfying conditions in Lemma 3.1.
Then we have

σn
(
id : Fω,p(Td)→ Fq(Td), T d

)
= σn

(
Tλ : `p(N)→ `q(N), E

)
, n ∈ N,

where the value of σn(Tλ, E) is given as in Theorem 2.1.

Proof. We consider the following commutative diagram

Fω,p(Td)
id−−−−→ Fq(Td)yA xB

`p(Zd)
Dω−−−−→ `q(Zd) ,

where the linear operators A, B and Dω are defined as

Af := (ω(k)f̂(k))k∈Zd ,

Dωξ := (ξ(k)/ω(k))k∈Zd , ξ = (ξ(k))k∈Zd

(Bξ)(x) :=
∑
k∈Zd

ξk e
ikx , x ∈ Td .

10



It is obvious that ‖A‖ = ‖B‖ = 1. Let Ed := {ek : k ∈ Zd} where ek = (δk,l)l∈Zd . By the property
(2.1) and the identity id = BDω A it follows

σn
(
id : Fω,p(Td)→ Fq(Td), T d

)
≤ σn

(
Dω : `p(Zd)→ `q(Zd), Ed

)
, n ∈ N .

From the fact that

σn
(
Dω : `p(Zd)→ `q(Zd), Ed

)
= σn

(
Tλ : `p(N)→ `q(N), E

)
(3.2)

we obtain the estimate from above. Now we employ the same type of arguments with respect to the
diagram

`p(Zd)
Dω−−−−→ `q(Zd)yA−1

xB−1

Fω,p(Td)
id−−−−→ Fq(Td) .

It is easy to see that the operators A and B are invertible and that ‖A−1‖ = ‖B−1‖ = 1. As above
we conclude

σn
(
Dω : `p(Zd)→ `q(Zd), Ed

)
≤ σn

(
id : Fω,p(Td)→ Fq(Td), T d

)
, n ∈ N .

Now the estimate from below follows from (3.2).

We need following auxiliary results.

Lemma 3.3. (i) Let s > 0, a > 1, and β ≥ 0. Then we have

lim
n→∞

∫ 1

a
n

ys
(

lnn

ln(yn)

)β
dy =

1

s+ 1
.

(ii) Let s > 1, β ≥ 0. Then we have

lim
n→∞

∫ +∞

1

1

ts

(
ln(nt)

lnn

)β
dt =

1

s− 1
.

Proof. The first statement was proved in [33]. We prove the second one with concentration on the
case β > 0 since the case β = 0 is obvious. We consider the sequence of functions

fn(t) =
1

ts

(
ln(nt)

lnn

)β
, t ≥ 1, n ∈ N.

Clearly, this sequence converges pointwise to f(t) = 1
ts . For n ≥ 3, from the inequality (x + y)β ≤

Cβ(xβ + yβ), for some Cβ > 0, we derive:

fn(t) =
1

ts

(
1 +

ln t

lnn

)β
<

1

ts
(
1 + ln t

)β ≤ Cβ 1

ts
(
1 + (ln t)β

)
:= g(t).

Since g(t) is integrable on [1,+∞), the desired result follows from Lebesgue’s dominated convergence
theorem.

The asymptotic constants of best n-term approximation widths of embeddings of the classes
Fω,p(Td) in Fq(Td) are given in the following theorem.
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Theorem 3.4. Let s > 0, β ≥ 0 and let ω be a given weight. Assume that there exists C > 0 such
that

lim
n→∞

λn
n−s(lnn)β

= lim
n→∞

an
(
id : Fω,2(Td)→ L2(Td)

)
n−s(lnn)β

= C . (3.3)

(i) If 0 < p ≤ q ≤ ∞ we have

lim
n→∞

σn
(
id : Fω,p(Td)→ Fq(Td), T d

)
n
−s− 1

p
+ 1
q (lnn)β

=
(s+ 1

p −
1
q )
s+ 1

p
− 1
q

(s+ 1
p)s

p
1
p

q
1
q

C .

If q = ∞ and/or p = ∞, the asymptotic constant is understood as the limit of the right-hand
side when q →∞ and/or p→∞.

(ii) If 0 < q < p <∞ and s > 1
q −

1
p we have

lim
n→∞

σn
(
id : Fω,p(Td)→ Fq(Td), T d

)
n
−s− 1

p
+ 1
q (lnn)β

=

(
s

s+ 1
p

)s( 1
q

s+ 1
p −

1
q

) 1
q
− 1
p

C.

Proof. We prove the case 0 < p, q < ∞. The cases p = ∞ and/or q = ∞ are carried out similarly
with slight modification. In this proof, for simplicity we denote

σn := σn
(
id : Fω,p(Td)→ Fq(Td), T d

)
.

Step 1. We need some preparations. Assumption (3.3) indicates that for any ε > 0 there exists
n1 := n1(ε) ∈ N such that for k > n1 we have∣∣∣∣ λk

k−s(ln k)β
− C

∣∣∣∣ ≤ ε ⇐⇒ C − ε ≤ λk
k−s(ln k)β

≤ ε+ C. (3.4)

Since the function ψ(t) = tps(ln t)−pβ is increasing when t ≥ n2 := eβ/s, for m > n0 := max{n1, n2}
we have

m∑
k=1

λ−pk =

n0∑
k=1

λ−pk +
m∑

k=n0+1

λ−pk ≤
n0∑
k=1

λ−pk +
1

(C − ε)p
m∑

k=n0+1

kps(ln k)−pβ .

Estimating the summation by an integral and afterwards changing variable y = t
m+1 we find

m∑
k=n0+1

kps(ln k)−pβ ≤
∫ m+1

n0+1
tps(ln t)−pβdt =

(m+ 1)ps+1

(ln(m+ 1))pβ

∫ 1

n0+1
m+1

yps
(

ln(m+ 1)

ln(y(m+ 1))

)pβ
dy .

By Lemma 3.3 (i) we can choose n3 > n0 such that for m ≥ n3 we have∫ 1

n0+1
m+1

yps
(

ln(m+ 1)

ln(ym+ y)

)pβ
dy ≤ 1 + ε

ps+ 1
and

(ln(m+ 1))pβ

(m+ 1)ps+1

n0∑
k=1

λ−pk ≤ ε

which leads to
m∑
k=1

λ−pk ≤
(m+ 1)ps+1

(ln(m+ 1))pβ

(
ε+

1 + ε

(C − ε)p(ps+ 1)

)
(3.5)

for m ≥ n3. Similarly we have

m∑
k=n0+1

kps(ln k)−pβ ≥
∫ m

n0

tps

(ln t)pβ
dt ≥ mps+1

(lnm)pβ

∫ 1

n0
m

yps
(

lnm

ln(ym)

)pβ
dy ≥ mps+1

(lnm)pβ
1− ε
ps+ 1

,
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which implies

m∑
k=1

λ−pk ≥
m∑

k=n0+1

λ−pk ≥
1

(C + ε)p

m∑
k=n0+1

kps(ln k)−pβ ≥ mps+1

(lnm)pβ
· 1− ε

(C + ε)p(ps+ 1)
. (3.6)

Step 2. Proof of the case 0 < p ≤ q <∞. From (3.6) we get

m− n(∑m
k=1 λ

−p
k

) q
p

≤ (m− n)(lnm)qβ

m
qs+ q

p

(
(C + ε)p(ps+ 1)

1− ε

) q
p

.

Considering the function g(t) := t−n
t
qs+

q
p

(ln t)qβ, t ∈ [n,∞) , we have

g′(t) =

(−t(qs+ q
p − 1

)
+ n

(
qs+ q

p

)
t
qs+ q

p
+1

)
(ln t)qβ +

(
t− n
t
qs+ q

p
+1

)
qβ(ln t)qβ−1 .

We put

f(t) :=

[
− t
(
qs+

q

p
− 1

)
+ n

(
qs+

q

p

)]
ln t+

(
t− n

)
qβ , t ∈ [n,∞).

Then g′(t) = 0 is equivalent to f(t) = 0. We have

f ′(t) = −
(
qs+

q

p
− 1
)

(ln t+ 1) +
n(qs+ q

p)

t
+ qβ < −

(
qs+

q

p
− 1
)

ln t+ 1 + qβ .

This implies f ′(t) < 0 if t > e(1+qβ)/(qs+q/p−1). Observe that

f

(
n+

n

qs+ q
p − 1

)
> 0, f

(
n+

2n

qs+ q
p − 1

)
< 0 and

for n ≥ n4 depending only on p, q, s and β. Consequently the equation f(t) = 0 (or g′(t) = 0) has a
unique solution belonging to the interval In :=

[
n+ n

qs+ q
p
−1
, n+ 2n

qs+ q
p
−1

]
. From this we deduce

σqn = sup
m≥n

(
m− n(∑m
k=1 λ

−p
k

) q
p

)
≤ sup

t∈In

(
(t− n)(ln t)qβ

t
qs+ q

p

)(
(C + ε)p(ps+ 1)

1− ε

) q
p

which leads to

σqn

n
1−qs− q

p (lnn)qβ
≤ sup

t∈In

(
(t− n)(ln t)qβ

n(tn−1)
qs+ q

p (lnn)qβ

)(
(C + ε)p(ps+ 1)

1− ε

) q
p

≤ sup
t∈R, t≥n

(
t− n

n(tn−1)
qs+ q

p

)(
(C + ε)p(ps+ 1)

(1− ε)2

) q
p

if n is large enough. It is easy to see that the function h(t) := t−n
tqs+q/p

, t ∈ [n,∞), attains its maximum

at t0 =
(
1 + 1

qs+q/p−1

)
n. Hence, we find

(
σn

n
−s− 1

p
+ 1
q (lnn)β

)q
≤ 1

(qs+ q
p − 1)

(
1 + 1

qs+q/p−1

)qs+q/p((C + ε)p(ps+ 1)

(1− ε)2

) q
p

(3.7)

if n is large enough. Taking the limits n → ∞ and afterwards ε ↓ 0 in (3.7) we obtain the upper
bound. In view of Theorem 2.1 (i), by choosing m ∼

(
1 + 1

qs+q/p−1

)
n we also obtain the lower bound
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in this case.
Step 3. Proof of the case 0 < q < p <∞. Firstly, we estimate n∗ in (2.4). From (2.5) we have

(n∗ − n)λ−pn∗ ≤
n∗∑
k=1

λ−pk .

In view of (3.4) and (3.5) we get for n ≥ n3

(n∗ − n)(C + ε)−p
nps∗

(lnn∗)pβ
≤ (n∗ + 1)ps+1

(ln(n∗ + 1))pβ

(
ε+

1 + ε

(C − ε)p(ps+ 1)

)
which implies

n∗ − n
n∗

≤
(

1 +
1

n∗

)ps+1(
ε(C + ε)p +

(1 + ε)(C + ε)p

(C − ε)p(ps+ 1)

)
.

Therefore, for any ε > 0, exist N1 > 0 such that for n > N1 we have

n∗ − n
n∗

≤ 1

ps+ 1
+ ε or n∗ ≤

n
ps
ps+1 − ε

. (3.8)

Using (3.4) and (3.6) the condition (m− n)λ−pm ≤
∑m

k=1 λ
−p
k is satisfied if

mps+1

(lnm)pβ
· 1− ε

(C + ε)p(ps+ 1)
≥ (m− n)(C − ε)−pmps

(lnm)pβ

which is equivalent to
m− n
m

≤ (1− ε)(C − ε)p

(C + ε)p(ps+ 1)
.

Hence, for any ε > 0, there exists N2 ∈ N such that for n > N2 we have

(1− ε)(C − ε)p

(C + ε)p(ps+ 1)
≥ 1

ps+ 1
− ε.

Therefore, the condition (m− n)λ−pm ≤
∑m

k=1 λ
−p
k is satisfied if

m− n
m

≤ 1

ps+ 1
− ε or m ≤ n

ps
ps+1 + ε

.

This leads to n∗ ≥ n
ps
ps+1

+ε
. From this and (3.8) we deduce

n∗ ∼
(

1 +
1

ps

)
n, n→ +∞ .

Denoting α = pq
p−q , from (2.4) we have

σαn =

(
(n∗ − n)1/q(∑n∗
k=1 λ

−p
k

)1/p
)α

+
∞∑

k=n∗+1

λαk . (3.9)

Using (3.5) and (3.6) again we get

n∗∑
k=1

λ−pk ∼
1

Cp(ps+ 1)

nps+1
∗

(lnn∗)pβ
∼ 1

Cp(ps+ 1)

(1 + 1
ps)

ps+1nps+1

(lnn)pβ
, n→ +∞.
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Therefore, the first term in (3.9) can be estimated:(
(n∗ − n)

1
q(∑n∗

k=1 λ
−p
k

) 1
p

)α
n→+∞∼

(
C(ps+ 1)

1
p (lnn)β

(1 + 1
ps)

s+ 1
pn

s+ 1
p

( n
ps

) 1
q

)α
=
Cα

ps

(
ps

1 + ps

)sα (lnn)αβ

n
α(s+ 1

p
− 1
q

)
. (3.10)

Now, we estimate the second term in (3.9). Observe that ϕ(t) = t−sα(ln t)αβ is a decreasing function
when t ≥ t0 for some t0 > 0. Hence, when n is large enough, in view of (3.4) we can bound

∞∑
k=n∗+1

λαk ≤ (C + ε)α
∞∑

k=n∗+1

(ln k)αβ

ksα
≤ (C + ε)α

∫ +∞

n∗

(ln t)αβ

tsα
dt

= (C + ε)α
(lnn∗)

αβ

nsα−1
∗

∫ +∞

1

1

tsα

(
lnn∗t

lnn∗

)αβ
dt. (3.11)

Similarly, we also have the estimate

∞∑
k=n∗+1

λαk ≥ (C − ε)α
∞∑

k=n∗+1

(ln k)αβ

ksα
≥ (C − ε)α

∫ +∞

n∗+1

(ln t)αβ

tsα
dt

= (C − ε)α (ln(n∗ + 1))αβ

(n∗ + 1)sα−1

∫ +∞

1

1

tsα

(
ln(n∗ + 1)t

ln(n∗ + 1)

)αβ
dt. (3.12)

Note that the condition s > 1
q −

1
p implies sα > 1. Using Lemma 3.3 (ii), from (3.11) and (3.12) we

get

∞∑
k=n∗+1

λαk
n→+∞∼ 1

sα− 1
Cα
(

1 +
1

ps

)1−sα (lnn)αβ

nsα−1

=
p− q

spq − p+ q

(
1 +

1

ps

)
Cα
(

ps

ps+ 1

)αs (lnn)αβ

n
α(s+ 1

p
− 1
q

)
.

From this and (3.10) we finally obtain

σαn
n→+∞∼

[
1

ps
+

p− q
spq − p+ q

(
1 +

1

ps

)]
Cα
(

ps

ps+ 1

)sα (lnn)αβ

n
α(s+ 1

p
− 1
q

)

=
p

spq − p+ q
Cα
(

ps

ps+ 1

)sα (lnn)αβ

n
α(s+ 1

p
− 1
q

)

which proves the second statement.

4 Best n-term approximation of function spaces with mixed smooth-
ness

In this section we shall apply the result in Section 3 to the family of weights

ωs,r(k) :=

d∏
i=1

(
1 + |ki|r

)s/r
, 0 < r <∞ ,

ωs,r(k) :=
d∏
i=1

max(1, |ki|)s , r =∞ ,

15



k ∈ Zd, where the parameter s satisfies 0 < s <∞. We shall use the notation Hs,r
mix(Td) := Fωs,r,2(Td)

and As,rmix(Td) := Fωs,r,1(Td), respectively. The classes Hs,r
mix(Td) are called periodic Sobolev spaces

with mixed smoothness and well-known in approximation theory, see, e.g., [34, 35, 15]. The classes
As,rmix(Td) are the weighted Wiener algebras. These spaces have been studied extensively recently in
[24, 6, 25, 33]. In both spaces Hs,r

mix(Td) and As,rmix(Td), for different r, we obtain the same sets of
functions. A change of the parameter r leads to a change of the quasinorm only.

Let m ∈ N. We define the space Hm
mix(Td) to be the collection of all functions f ∈ L2(Td) such

that all distributional derivatives Dαf with α = (α1, . . . , αd), maxj=1,...,d αj ≤ m belong to L2(Td).
The space Hm

mix(Td) is equipped with the norm

∥∥ f ∥∥
Hm

mix(Td)
:=

( ∑
α=(α1,...,αd)∈N

d
0

αj≤m, j=1,...,d

∥∥Dαf
∥∥2

L2(Td)

)1/2

.

Then Hm
mix(Td) = Hm,r

mix (Td) for all r in the sense of equivalent quasinorms. If m = 1, then we have
‖ · ‖

H1,2
mix(Td)

= ‖ · ‖H1
mix(Td). If m ≥ 2, then the norm ‖ · ‖Hm

mix(Td) itself does not belong to the family

of norms ‖ · ‖Hm,r
mix (Td), 0 < r ≤ ∞. But the choice r = 2m leads to the following standard norm

∥∥ f ∥∥
Hm,2m

mix (Td)
=

( ∑
α∈{0,m}d

∥∥Dαf
∥∥2

L2(Td)

)1/2

,

see [31].

Let λ = (λn)n∈N denote the non-increasing rearrangement of the sequence (1/ωs,r(k))k∈Zd . That
leads to λn = an

(
id : Hs,r

mix(Td)→ L2(Td)
)
. We recall a result obtained in [31].

Proposition 4.1. Let 0 < s <∞ and 0 < r ≤ ∞. Then it holds

lim
n→∞

λn

n−s(lnn)s(d−1)
= lim

n→∞

an
(
id : Hs,r

mix(Td)→ L2(Td)
)

n−s(lnn)s(d−1)
=

(
2d

(d− 1)!

)s
.

From this and Theorem 3.4 we get the following.

Theorem 4.2. Let 0 < s <∞ and 0 < r ≤ ∞. Then it holds

lim
n→∞

σn
(
id : Hs,r

mix(Td)→ L2(Td), T d
)

n−s(lnn)s(d−1)
=

ss

(s+ 1
2)s

(
2d

(d− 1)!

)s
and if s > 1/2

lim
n→∞

σn
(
id : Hs,r

mix(Td)→ A(Td), T d
)

n−s+
1
2 (lnn)s(d−1)

=

(
s

s+ 1
2

)s( 1

s− 1
2

) 1
2
(

2d

(d− 1)!

)s
.

The asymptotic constants for embeddings of best n-term approximation widths of embedding of
weighted Wiener classes As,rmix(Td) are also obtained from Theorem 3.4.

Theorem 4.3. Let 0 < s <∞ and 0 < r ≤ ∞. Then it holds

lim
n→∞

σn
(
id : As,rmix(Td)→ L2(Td), T d

)
n−s−

1
2 (lnn)s(d−1)

=
(s+ 1

2)s+
1
2

√
2(s+ 1)s

(
2d

(d− 1)!

)s
and

lim
n→∞

σn
(
id : As,rmix(Td)→ A(Td), T d

)
n−s(lnn)s(d−1)

=
ss

(s+ 1)s

(
2d

(d− 1)!

)s
.
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Remark 4.4. Let us compare the asymptotic decay of an and σn. The equivalence

an
(
id : Hs,r

mix(Td)→ L2(Td)
)
� σn

(
id : Hs,r

mix(Td)→ L2(Td), T d
)

has been known with a long history, see, e.g., [15, Chapters 4 and 7] for comments. From Theorem
4.2 and [33] we also have

an
(
id : Hs,r

mix(Td)→ A(Td), T d
)
� σn

(
id : Hs,r

mix(Td)→ A(Td), T d
)
.

However, by Theorem 4.3 and [33] we find

an
(
id : As,rmix(Td)→ L2(Td)

)
� n

1
2σn
(
id : As,rmix(Td)→ L2(Td), T d

)
.

This indicates that approximating functions in the class As,rmix(Td) by n-term improves the convergence
rate 1/2 compared to linear method.

We are also interested in asymptotic constants of best n-term approximation of embeddings of
function spaces with mixed smoothness into H1(Td). Here H1(Td) is equipped with the norm

‖ f ‖H1(Td) : =

( ∑
k∈Zd

(
1 +

d∑
j=1

|kj |2
)
|f̂(k)|2

)1/2

=

(
‖ f ‖2L2(Td) +

d∑
j=1

∥∥∥ ∂f

∂xj

∥∥∥2

L2(Td)

)1/2

.

I.e., H1(Td) is the standard isotropic periodic Sobolev space with smoothness 1. We define a weight
ω̃ by

ω̃(k) :=

∏d
j=1(1 + |kj |2)s/2(

1 +
∑d

j=1 |kj |2
)1/2 , k = (k1, . . . , kd) ∈ Zd . (4.1)

Rearranging non-increasingly the sequence (1/ω̃(k))k∈Zd with the outcome denoted by (λ̃n)n∈N, we

obtain λ̃n = an
(
id : Hs,2

mix(Td) → H1(Td)
)
. The asymptotic constant of an

(
id : Hs,2

mix(Td) → H1(Td)
)

was obtained recently in [33].

Proposition 4.5. Let d ∈ N, s > 1 and

S :=

+∞∑
k=1

1

(k2 + 1)
s

2(s−1)

. (4.2)

Then we have

lim
n→+∞

λ̃n
n1−s = lim

n→+∞

an
(
id : Hs,2

mix(Td)→ H1(Td)
)

n1−s = (2d)s−1(2S + 1)(s−1)(d−1).

From this and Theorem 3.4 we obtain the following.

Theorem 4.6. Let d ∈ N, s > 1 and S be given in (4.2). Then it holds

lim
n→∞

σn
(
id : Hs,2

mix(Td)→ H1(Td), T d
)

n−s+1
=

(
s− 1

s− 1
2

)s−1

(2d)s−1(2S + 1)(s−1)(d−1)

and

lim
n→∞

σn
(
id : As,2mix(Td)→ H1(Td), T d

)
n−s+

1
2

=
(s− 1

2)s−
1
2

√
2 ss−1

(2d)s−1(2S + 1)(s−1)(d−1).
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Proof. Let ω̃ be given in (4.1). We will show that

σn
(
id : Hs,2

mix(Td)→ H1(Td), T d
)

= σn
(
id : Fω̃,2(Td)→ F2(Td), T d

)
(4.3)

and
σn
(
id : As,2mix(Td)→ H1(Td), T d

)
= σn

(
id : Fω̃,1(Td)→ F2(Td), T d

)
, (4.4)

by using standard lifting arguments. We consider the diagram

Hs,2
mix(Td) id−−−−→ H1(Td)yA xB

Fω̃,2(Td) id−−−−→ F2(Td)

where the linear operators A and B are defined for f ∈ Hs,2
mix(Td) and g ∈ F2(Td) respectively by

Âf(k) :=

(
1 +

d∑
j=1

|kj |2
)1/2

f̂(k), B̂g(k) :=

(
1 +

d∑
j=1

|kj |2
)−1/2

ĝ(k), k = (k1, . . . , kd) ∈ Zd.

It is obvious that ‖A‖ = ‖B‖ = 1. Now by the property (2.1), we obtain

σn
(
id : Hs,2

mix(Td)→ H1(Td), T d
)
≤ σn

(
id : Fω̃,2(Td)→ F2(Td), T d

)
.

The reverse inequality follows from the modified diagram

Hs,2
mix(Td) id−−−−→ H1(Td)xA−1

yB−1

Fω̃,2(Td) id−−−−→ F2(Td) .

Hence (4.3) is proved. Proof of (4.4) is carried out similarly. Now the assertion follows from Proposition
4.5 and Theorem 3.4.
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