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Dinh Dũng *a, Van Kien Nguyenb, and Duong Thanh Phamc

aInformation Technology Institute, Vietnam National University, Hanoi
144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Email: dinhzung@gmail.com
bFaculty of Basic Sciences, University of Transport and Communications

No.3 Cau Giay Street, Lang Thuong Ward, Dong Da District, Hanoi, Vietnam
Email: kiennv@utc.edu.vn

cVietnamese German University,
Le Lai street, Binh Duong New City, Binh Duong Province, Vietnam

Email: duong.pt@vgu.edu.vn

January 25, 2022

Abstract

We investigate non-adaptive methods of deep ReLU neural network approximation of
the solution u to parametric and stochastic elliptic PDEs with lognormal inputs on non-
compact set R∞. The approximation error is measured in the norm of the Bochner space
L2(R∞, V, γ), where γ is the tensor product standard Gaussian probability on R∞ and V
is the energy space. The approximation is based on an m-term truncation of the Hermite
generalized polynomial chaos expansion (gpc) of u. Under a certain assumption on `q-
summability condition for lognormal inputs (0 < q < ∞), we proved that for every integer
n > 1, one can construct a non-adaptive compactly supported deep ReLU neural network
φn of size not greater than n on Rm with m = O(n/ log n), having m outputs so that the
summation constituted by replacing polynomials in the m-term truncation of Hermite gpc

expansion by these m outputs approximates u with an error bound O
(

(n/ log n)
−1/q

)
. This

error bound is comparable to the error bound of the best approximation of u by n-term
truncations of Hermite gpc expansion which is O(n−1/q). We also obtained some results on
similar problems for parametric and stochastic elliptic PDEs with affine inputs, based on the
Jacobi and Taylor gpc expansions.
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Parametric and stochastic elliptic PDEs; Lognormal inputs.
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1 Introduction

The aim of the present paper is to construct deep ReLU neural networks for approximation of
parametric and stochastic elliptic PDEs with lognormal or affine inputs. We investigate the
convergence rate of this approximation in terms of the size of the approximating deep ReLU
neural networks.

The universal approximation capacity of neural networks has been known since the 1980’s
([13, 35, 23, 6]). In recent years, deep neural networks have been rapidly developed and suc-
cessfully applied to a wide range of fields. The main advantage of deep neural networks over
shallow ones is that they can output compositions of functions cheaply. Since their application
range is getting wider, theoretical analysis revealing reasons of these significant practical im-
provements attracts substantial attention [2, 18, 40, 49, 50]. In the last several years, there has
been a number of interesting papers that addressed the role of depth and architecture of deep
neural networks in approximating functions that possess special regularity properties such as
analytic functions [20, 38], differentiable functions [45, 52], oscillatory functions [29], functions
in Sobolev or Besov spaces [1, 27, 30, 53]. High-dimensional approximations by deep neural net-
works have been studied in [39, 48, 16, 17], and their applications to high-dimensional PDEs in
[47, 21, 43, 31, 25, 26, 28]. Most of these papers used deep ReLU (Rectified Linear Unit) neural
networks since the rectified linear unit is a simple and preferable activation function in many
applications. The output of such a neural network is a continuous piece-wise linear function
which is easily and cheaply computed. We refer the reader to the recent surveys [19, 44] for
various problems and aspects of neural network approximation and bibliography.

In computational uncertainty quantification, the problem of efficient (non-neural-network)
numerical approximation for parametric and stochastic partial differential equations (PDEs) has
been of great interest and achieved significant progress in recent years. There is a vast number
of works on this topic to mention all of them. We point out just some works [3, 5, 4, 8, 10, 11,
12, 7, 9, 15, 14, 22, 34, 54, 55] which are directly related to our paper.

Recently, a number of works have been devoted to various problems and methods of deep
neural network approximation for parametric and stochastic PDEs such as dimensionality re-
duction [51], deep neural network expression rates for the Taylor generalized polynomial chaos
expansion (gpc) of solutions to parametric elliptic PDEs [46], reduced basis methods [36] the
problem of learning the discretized parameter-to-solution map in practice [24], Bayesian PDE
inversion [42, 32, 31], etc. In particular, in [46] the authors proved dimension-independent
deep neural network expression rate bounds of the uniform approximation of solution to para-
metric elliptic PDE with affine inputs on I∞ := [−1, 1]∞ based on n-term truncations of the
non-orthogonal Taylor gpc expansion. The construction of approximating deep neural networks
relies on weighted summability of the Taylor gpc expansion coefficients of the solution which is
derived from its analyticity.

Let D ⊂ Rd be a bounded Lipschitz domain. Consider the diffusion elliptic equation

− div(a∇u) = f in D, u|∂D = 0, (1.1)

for a given fixed right-hand side f and a spatially variable scalar diffusion coefficient a. Denote
by V := H1

0 (D) the energy space and H−1(D) the dual space of V . Assume that f ∈ H−1(D)
(in what follows this preliminary assumption always holds without mention). If a ∈ L∞(D)
satisfies the ellipticity assumption

0 < amin ≤ a ≤ amax <∞,
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by the well-known Lax-Milgram lemma, there exists a unique solution u ∈ V to the equation (1.1)
in the weak form ∫

D
a∇u · ∇v dx = 〈f, v〉, ∀v ∈ V.

We consider diffusion coefficients having a parametrized form a = a(y), where y = (yj)j∈N
is a sequence of real-valued parameters ranging in the set U∞ which is either R∞ or I∞. Denote
by u(y) the solution to the parametrized diffusion elliptic equation

− div(a(y)∇u(y)) = f in D, u(y)|∂D = 0. (1.2)

The resulting solution operator maps y ∈ U∞ 7→ u(y) ∈ V . The objective is to achieve a nu-
merical approximation of this complex map by a small number of parameters with a guaranteed
error in a given norm. Depending on the nature of the modeled object, the parameter y may be
either deterministic or random. In the present paper, we consider the so-called lognormal case
when U∞ = R∞ and the diffusion coefficient a is of the form

a(y) = exp(b(y)), with b(y) =
∞∑
j=1

yjψj , (1.3)

where the yj are i.i.d. standard Gaussian random variables and ψj ∈ L∞(D). We also consider
the affine case when U∞ = I∞ and the diffusion coefficient a is of the form

a(y) = ā+
∞∑
j=1

yjψj . (1.4)

Let us briefly describe the main contribution of the present paper. We investigate non-
adaptive methods of deep ReLU neural network approximation of the solution u(y) to parametric
and stochastic elliptic PDEs (1.2) with lognormal inputs (1.3) on non-compact set R∞. The
approximation is based on truncations of the orthonormal Hermite gpc expansion of u(y):

u(y) =
∑
s∈F

usHs(y), us ∈ V.

The approximation error is measured in the norm of the Bochner space L2(R∞, V, γ), where γ is
the tensor product standard Gaussian probability measure on R∞. By using the results on some
weighted `2-summability of the energy norm of V of the Hermite gpc expansion coefficients of
u(y) obtained in [4], we prove the following. Assume that there exists a sequence of positive
numbers (ρj)j∈N such that for some 0 < q <∞,∥∥∥∥∥∥

∑
j∈N

ρj |ψj |

∥∥∥∥∥∥
L∞(D)

<∞ and
(
ρ−1
j

)
j∈N
∈ `q(N).

Let δ be an arbitrary positive number. Then for every integer n > 1, we can construct an index
sequence Λn :=

(
sj
)m
j=1
⊂ F with m = O(n/ log n), and a compactly supported deep ReLU

neural network φn :=
(
φj
)m
j=1

of size at most n on Rm so that

(i) The index sequence Λn and deep ReLU neural network φn are independent of u;
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(ii) The input and output dimensions of φn are at most m;

(iii) The depth of φn is O
(
nδ
)
;

(iv) The support of φn is contained in the cube [−T, T ]m with T = O(n/ log n);

(v) If Φj is the extension of φj to the whole R∞ by Φj(y) = φj

(
(yj)

m
j=1

)
for y = (yj)j∈N,

then ∥∥∥∥∥u−
m∑
j=1

usjΦj

∥∥∥∥
L2(R∞,V,γ)

= O
(

(n/ log n)−1/q
)
.

Notice that the error bound of this approximation is comparable to the error bound of the
best approximation of u by n-term truncations of the Hermite gpc expansion as well as of the
approximation by the particular truncation Snu :=

∑n
j=1 usjHsj which is O(n−1/q). We also

obtained some results in manner of the items (i)–(v) on similar problems for parametric and
stochastic elliptic PDEs (1.2) with affine inputs (1.4). The proofs of these results rely on the
Jacobi and Taylor gpc expansions of u(y).

The paper is organized as follows. In Section 2, we present a necessary knowledge about
deep ReLU neural networks. Section 3 is devoted to the investigation of non-adaptive methods
of deep ReLU neural network approximation of the solution u to the parameterized diffusion
elliptic equation (1.2) with lognormal inputs (1.3) on R∞. In Section 4, we extend the theory
presented in Section 3 to the parameterized diffusion elliptic equation (1.2) with the affine inputs
(1.4). Some concluding remarks are presented in Section 5.

Notation As usual, N denotes the natural numbers, Z the integers, R the real numbers and
N0 := {s ∈ Z : s ≥ 0}. We denote R∞ the set of all sequences y = (yj)j∈N with yj ∈ R.
Denote by F the set of all sequences of non-negative integers s = (sj)j∈N such that their support
νs := supp(s) := {j ∈ N : sj > 0} is a finite set. We use (ej)j∈N for the standard basis of `2(N).
For a set G, we denote by |G| the cardinality of G. We use letters C and K to denote general
positive constants which may take different values, and Cα,β,... and Kα,β,... when we want to
emphasize the dependence of these constants on α, β, . . ., or when this dependence is important
in a particular situation.

2 Deep ReLU neural networks

In this section, we present some necessary definitions and elementary facts on deep ReLU neural
networks. There is a wide variety of neural network architectures and each of them is adapted
to specific tasks. We will consider a general type of deep feed-forward neural networks that also
allows connections of neurons in non-neighboring layers. In deep neural network approximation,
we will employ the ReLU activation function that is defined by σ(t) := max{t, 0}, t ∈ R. We
will use the notation σ(x) := (σ(x1), . . . , σ(xd)) for x = (x1, . . . , xd) ∈ Rd.

Definition 2.1 Let d, L ∈ N, L ≥ 2, N0 = d, and N1, . . . , NL ∈ N. Let W ` =
(
w`i,j

)
∈

RN`×(
∑`−1
i=1 Ni), ` = 1, . . . , L, be N` ×

(∑`−1
i=1 Ni

)
matrices, and b` = (b`j) ∈ RN`. A ReLU

neural network Φ with input dimension d, output dimension NL and L layers is a sequence of
matrix-vector tuples

Φ =
(
(W 1, b1), . . . , (W L, bL)

)
,
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in which the following computation scheme is implemented

z0 := x ∈ Rd;

z` := σ

(
W `

(
z0, . . . ,z`−1

)T
+ b`

)
, ` = 1, . . . , L− 1;

zL := W L
(
z0, . . . ,zL−1

)T
+ bL.

We call z0 the input and with an ambiguity denote Φ(x) := zL the output of Φ and in some places
we identify a deep ReLU neural network with its output. We will use the following terminology.

� The number of layers L(Φ) = L is the depth of Φ;

� The number of nonzero w`i,j and b`j is the size of Φ and denoted by W (Φ);

� When L(Φ) ≥ 3, Φ is called a deep neural network, and otherwise, a shallow neural
network.

The following two results is easy to verify from the definition above. We also refer the reader
to [30, Remark 2.9 and Lemma 2.11] for further remarks and comments.

Lemma 2.2 (Parallelization) Let N ∈ N, λj ∈ R, j = 1, . . . , N . Let Φj, j = 1, . . . , N be
deep ReLU neural networks with input dimension d. Then we can explicitly construct a deep
ReLU neural network denoted by Φ so that

Φ(x) =
N∑
j=1

λjΦj(x), x ∈ Rd.

Moreover, we have

W (Φ)≤
N∑
j=1

Wj and L(Φ) = max
j=1,...,N

Lj .

The network Φ is called the parallelization network of Φj, j = 1, . . . , N .

Lemma 2.3 (Concatenation) Let Φ1 and Φ2 be two ReLU neural networks such that output
layer of Φ1 has the same dimension as input layer of Φ2. Then, we can explicitly construct a
ReLU neural network Φ such that Φ(x) = Φ2(Φ1(x)) for x ∈ Rd. Moreover we have

W (Φ) ≤ 2W (Φ1) + 2W (Φ2) and L(Φ) = L(Φ1) + L(Φ2).

The network Φ is called the concatenation network of Φ1 and Φ2.

We recall the following result, see [46, Proposition 3.3].

Lemma 2.4 For every δ ∈ (0, 1), d ∈ N, d ≥ 2, we can explicitly construct a deep ReLU neural
network ΦP so that

sup
x∈[−1,1]d

∣∣∣∣∣
d∏
j=1

xj − ΦP (x)

∣∣∣∣∣ ≤ δ.
Furthermore, if xj = 0 for some j ∈ {1, . . . , d} then ΦP (x) = 0 and there exists a constant
C > 0 independent of δ and d such that

W (ΦP ) ≤ Cd log(dδ−1) and L(ΦP ) ≤ C log d log(dδ−1) .
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The statement ΦP (x) = 0 (d = 2) when x1 · x2 = 0 was proved in [46, Proposition 3.1], see
also [30, Proposition C.2] and [41, Proposition 4.1]. But this implies that the statement also
holds for general d since the network ΦP is constructed as an binary tree of the network ΦP

when d = 2.

Let ϕ1 be the continuous piece-wise function with break points {−2,−1, 1, 2} such that
ϕ1(x) = x if x ∈ [−1, 1] and supp(ϕ1) ⊂ [−2, 2]. By this definition, we find that ϕ can be
realized exactly by a deep neural network (still denoted by ϕ1) with size W (ϕ1) ≤ C for some
positive constant C. Similarly, let ϕ0 be the neural network that realizes the continuous piece-
wise function with break points {−2,−1, 1, 2} and ϕ0(x) = 1 if x ∈ [−1, 1], supp(ϕ0) ⊂ [−2, 2].
Clearly W (φ) ≤ C for some positive constant C.

From Lemma 2.4 we obtain

Lemma 2.5 Let ϕ be either ϕ0 or ϕ1. For every δ ∈ (0, 1), d ∈ N, we can explicitly construct
a deep ReLU neural network Φ so that

sup
x∈[−2,2]d

∣∣∣∣∣
d∏
j=1

ϕ(xj)− Φ(x)

∣∣∣∣∣ ≤ δ.
Furthermore, supp(Φ) ⊂ [−2, 2]d and there exists a constant C > 0 independent of δ and d such
that

W (Φ) ≤ C
(
1 + d log(dδ−1)

)
and L(Φ) ≤ C

(
1 + log d log(dδ−1)) . (2.1)

Proof. The network Φ is constructed as a concatenation of {ϕ(xj)}dj=1 and ΦP . The estimate
(2.1) follows directly from Lemmas 2.3 and 2.4.

3 Parametrized elliptic PDEs with lognormal inputs

In this section, we investigate non-adaptive methods of deep ReLU neural network approximation
of the solution u(y) to parametrized elliptic PDEs (1.2) with lognormal inputs (1.3) on R∞. We
construct such methods and prove convergence rates of the approximation by them. The results
are derived from a general theory on deep ReLU neural network approximation in Bochner
space L2(R∞, X, γ) of functions v on R∞ taking values in a Hilbert space X and satisfying some
weighted `2-summability conditions of the Hermite gpc expansion coefficients of v.

3.1 Approximation by truncations of the Hermite gpc expansion

We first recall a concept of infinite tensor product of probability measures. Let µ(y) be a
probability measure on U. We introduce the probability measure µ(y) on U∞ as the infinite
tensor product of the probability measures µ(yi):

µ(y) :=
⊗
j∈N

µ(yj), y = (yj)j∈N ∈ U∞.

The sigma algebra for µ(y) is generated by the set of cylinders A :=
∏
j∈NAj , where Aj ⊂ U

are univariate µ-measurable sets and only a finite number of Ai are different from U. For such
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a set A, we have µ(A) =
∏
j∈N µ(Aj). If %(y) is the density of µ(y), i.e., dµ(y) = %(y)dy, then

we write
dµ(y) :=

⊗
j∈N

%(yj)d(yj), y = (yj)j∈N ∈ U∞.

(For details on infinite tensor product of probability measures, see, e.g., [33, pp. 429–435].)

Let X be a Hilbert space. The probability measure µ(y) induces the Bochner space
L2(U∞, X, µ) of µ-measurable mappings v from U∞ to X for which the norm

‖v‖L2(U∞,X,µ) :=

(∫
U∞
‖v(·,y)‖2X dµ(y)

)1/2

< ∞.

In this section, we consider the lognormal case with U∞ = R∞ and µ(y) = γ(y), the
infinite tensor product standard Gaussian probability measure. More precisely, let γ(y) be the
probability measure on R with the standard Gaussian density:

dγ(y) := g(y) dy, g(y) :=
1√
2π
e−y

2/2.

Then the infinite tensor product standard Gaussian probability measure γ(y) on R∞ can be
defined by

dγ(y) :=
⊗
j∈N

g(yj)d(yj).

In this section, we make use of the abbreviation L2(X) := L2(R∞, X, γ). Denote by F the
set of all sequences of non-negative integers s = (sj)j∈N such that their support νs := {j ∈ N :
sj > 0} is a finite set. A powerful strategy for approximation of functions v ∈ L2(X) is based
on truncations of the Hermite gpc expansion

v(y) =
∑
s∈F

vsHs(y), vs ∈ X, (3.1)

where

Hs(y) =
⊗
j∈N

Hsj (yj), vs :=

∫
R∞

v(y)Hs(y) dγ(y), s ∈ F,

with (Hk)k∈N0 being the Hermite polynomials normalized according to
∫
R |Hk(y)|2 g(y) dy = 1.

Notice that (Hs)s∈F is an orthonormal basis of L2(R∞, γ) := L2(R∞,R, γ). Moreover, for every
v ∈ L2(X) represented by the series (3.1), the Parseval’s identity holds

‖v‖2L2(X) =
∑
s∈F
‖vs‖2X .

For s, s′ ∈ F, the inequality s′ ≤ s means that s′j ≤ sj for j ∈ N. A set Λ ⊂ F is called
downward closed if the inclusion s ∈ F yields the inclusion s′ ∈ F for every s′ ∈ F such that
s′ ≤ s. A sequence (σs)s∈F is called increasing if σs′ ≤ σs when s′ ≤ s.

Assumption A For v ∈ L2(X) represented by the series (3.1), there exists an increasing
sequence σ = (σs)s∈F of positive numbers such that (σ−1

s )s∈F ∈ `q(F) for some q with 0 < q <∞
and (∑

s∈F
(σs‖vs‖X)2

)1/2

≤M <∞.
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Assume that 0 < q <∞ and σ = (σs)s∈F is an increasing sequence of positive numbers. For
ξ > 0, we introduce the set

Λ(ξ) :=
{
s ∈ F : σqs ≤ ξ

}
, (3.2)

and the following numbers (when Λ(ξ) is finite):

m1(ξ) := max
s∈Λ(ξ)

|s|1, (3.3)

and
m(ξ) := max

{
j ∈ N : ∃s ∈ Λ(ξ) such that sj > 0

}
. (3.4)

Sometimes in this paper, without ambiguity we will use m and m1 instead of m(ξ) and m1(ξ).
Observe that under Assumption A, the set Λ(ξ) is finite and downward closed.

For a function v ∈ L2(X) represented by the series (3.1), we define the truncation

SΛ(ξ)v :=
∑

s∈Λ(ξ)

vsHs. (3.5)

Notice that if Assumption A holds, then m is finite and, therefore, the truncation SΛ(ξ)v of the
series (3.1) can be seen as a function on Rm.

Lemma 3.1 For v ∈ L2(X) satisfying Assumption A and for every ξ > 1, there holds

‖v − SΛ(ξ)v‖L2(X) ≤ Cξ−1/q.

Proof. Applying the Parseval’s identity, noting (3.5), (3.2) and Assumption A, we obtain

‖v − SΛ(ξ)‖2L2(X) =
∑

σs>ξ1/q

‖vs‖2X =
∑

σs>ξ1/q

(σs‖vs‖X)2σ−2
s

≤ ξ−2/q
∑
s∈F

(σs‖vs‖X)2 = M2ξ−2/q.

3.2 Approximation by deep ReLU neural networks

In this section, we construct a deep ReLU neural network which can be used to approximate
v ∈ L2(X). We primarily approximate v by the truncation SΛ(ξ)v (see (3.5)) of the series (3.1).
Under the assumptions of Lemma A.2 in Appendix, SΛ(ξ)v can be seen as a function on Rm,
where we recall that m := m(ξ). Then we approximate SΛ(ξ)v by its truncation SωΛ(ξ)v on a
sufficiently large cube

Bm
ω := [−2

√
ω, 2
√
ω]m ⊂ Rm,

where the parameter ω depending on ξ is chosen in an appropriate way.

In what follows, for convenience we consider Rm as the subset of all y ∈ R∞ such that yj = 0
for j = m + 1, . . .. If g is a function on Rm taking values in a Hilbert space X, then g has

an extension to the whole R∞ which is denoted again by g, by the formula g(y) = g
(

(yj)
m
j=0

)
8



for y = (yj)j∈N. The tensor product of standard Gaussian probability measures γ(y) on Rm is
defined by

dγ(y) :=
m⊗
j=1

g(yj)d(yj).

For a γ-measurable subset Ω in Rm, the spaces L2(Ω, X, γ) and L2(Ω, γ) are defined in the usual
way.

Our next task is to construct deep ReLU neural networks φs on the cube Bm
ω to approximate

Hs, s ∈ Λ(ξ). The network φΛ(ξ) := (φs)s∈Λ(ξ) on Bm
ω with |Λ(ξ)| outputs which is constructed

by parallelization is used to construct an approximation of SωΛ(ξ)v and hence of v. Namely, we
approximate v by

ΦΛ(ξ)v(y) :=
∑

s∈Λ(ξ)

vsφs(y). (3.6)

For θ, λ ≥ 0, we define the sequence

ps(θ, λ) :=
∏
j∈N

(1 + λsj)
θ, s ∈ F, (3.7)

with abbreviation ps(θ) := ps(θ, 1).

Our result in this section is read as follows.

Theorem 3.2 Let v ∈ L2(X) satisfy Assumption A. Let θ be any number such that θ ≥ 4/q. As-
sume that the sequence (σs)s∈F in Assumption A satisfies σei′ ≤ σei if i′ < i and (ps(θ)σ−1

s )s∈F ∈
`q(F). Let Kq and Kq,θ be the constants defined in Lemma A.1 in Appendix. Then for every
ξ > 1, we can construct a deep ReLU neural network φΛ(ξ) := (φs)s∈Λ(ξ) on Rm, m ≤ bKqξc,
having the following properties.

(i) The deep ReLU neural network φΛ(ξ) is independent of v;

(ii) The input and output dimensions of φΛ(ξ) are at most m;

(iii) W
(
φΛ(ξ)

)
≤ Cξ log ξ;

(iv) L
(
φΛ(ξ)

)
≤ Cξ1/θq;

(v) supp
(
φΛ(ξ)

)
⊂ [−T, T ]m, where T := 4

√
bKq,θξc;

(vi) The approximation of v by ΦΛ(ξ)v gives the error estimate

‖v − ΦΛ(ξ)v‖L2(X) ≤ Cξ−1/q. (3.8)

Here the constants Care independent of v and ξ.

Let us first introduce the above mentioned function SωΛ(ξ)v with a special choice of ω. In this
section, for ξ > 1, we use the letter ω only for the notation

ω := bKq,θξc, (3.9)
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where Kq,θ is the constant defined in Lemma A.1 in Appendix. For a function ϕ defined on R,
we denote by ϕω the truncation of ϕ on B1

ω, i.e.,

ϕω(y) :=

{
ϕ(y) if y ∈ B1

ω

0 otherwise.

If νs ⊂ {1, . . . ,m}, we put

Hω
s (y) :=

m∏
j=1

Hω
sj (yj), y ∈ Rm.

We have Hω
s (y) =

∏m
j=1Hsj (yj) if y ∈ Bm

ω and Hω
s (y) = 0 otherwise.

For a function v ∈ L2(X) represented by the series (3.1), noting the truncation SΛ(ξ)v given
by (3.5) and (3.2), we define

SωΛ(ξ)v :=
∑

s∈Λ(ξ)

vsH
ω
s .

From Lemma A.2 in Appendix one can see that for every s ∈ Λ(ξ), Hs and Hω
s and there-

fore, SΛ(ξ)v and SωΛ(ξ)v can be considered as functions on Rm. For g ∈ L2(Rm, X, γ), we have

‖g‖L2(Rm,X,γ) = ‖g‖L2(R∞,X,γ) in the sense of extension of g. We will make use of these facts
without mention.

To prove Theorem 3.2 we will employ a so-called technique of intermediate approximation for
estimation of the approximation error in Theorem 3.2 which in our case is as follows. Suppose
that the function ΦΛ(ξ) is already constructed. Due to the inequality

‖v − ΦΛ(ξ)v‖L2(X) ≤ ‖v − SΛ(ξ)v‖L2(X) + ‖SΛ(ξ)v − SωΛ(ξ)v‖L2(Rm\Bmω ,X,γ)

+ ‖SωΛ(ξ)v − ΦΛ(ξ)v‖L2(Bmω ,X,γ) + ‖ΦΛ(ξ)v‖L2(Rm\Bmω ,X,γ),
(3.10)

the estimate (3.8) will be done via estimates of the four terms in the right-hand side. The first
term is already estimated as in Lemma 3.1. The estimates for the others will be carried out in
the below corresponding lemmas (Lemmas 3.4–3.6). In order to do this we need an auxiliary
lemma on estimation of the L2(Rm\Bm

ω , γ)-norm of a polynomial on Rm.

Lemma 3.3 Let ϕ(y) =
∏m
j=1 ϕj(yj) for y ∈ Rm, where ϕj is a polynomial in the variable yj

of degree not greater than ω for j = 1, . . . ,m. Then there holds

‖ϕ‖L2(Rm\Bmω ,γ) ≤ Cm exp (−Kω) ‖ϕ‖L2(Rm,γ) ,

where the constants C and K are independent of ω, m and ϕ.

Proof. The proof of the lemma relies on the following inequality which is an immediate conse-
quence of [37, Theorem 6.3]. Let ψ be a polynomial of degree at most `. Applying [37, Theorem
6.3] for polynomial ψ(

√
2t) with weight exp(−t2) (in this case a` =

√
`, see [37, Page 41]) and

κ =
√

2− 1 we get

‖ψ‖L2(R\[−2
√
`,2
√
` ],γ) ≤ C exp(−K`)‖ψ‖L2([−

√
2`,
√

2` ],γ) (3.11)

for some positive number C and K independent of ` and ψ. We denote

Ij := R× . . .×

jth

↓(
R\[−2

√
ω, 2
√
ω ]
)
× . . .× R ⊂ Rm.

10



Since Rm\Bm
ω =

⋃m
j=1 Ij , we have

‖ϕ‖L2(Rm\Bmω ,γ) ≤
m∑
j=1

‖ϕ‖L2(Ij ,γ) =

m∑
j=1

(
‖ϕj‖L2(R\B1

ω ,γ)

∏
i 6=j
‖ϕi‖L2(R,γ)

)
. (3.12)

Applying (3.11) for the polynomials ϕj , for j = 1, . . . ,m, whose degree is not greater than ω we
obtain

‖ϕj‖L2(R\B1
ω ,γ) ≤ C exp (−Kω) ‖ϕj‖L2(R,γ)

with some constants C and K independent of ω, m and ϕ. This together with (3.12) yields

‖ϕ‖L2(Rm\Bmω ,γ) ≤ C exp (−Kω)m

m∏
i=1

‖ϕi‖L2(R,γ) = Cm exp (−Kω) ‖ϕ‖L2(Rm,γ) .

Lemma 3.4 Let the assumptions of Theorem 3.2 be satisfied. Then for every ξ > 1, we have
that

‖SΛ(ξ)v − SωΛ(ξ)v‖L2(Rm\Bmω ,X,γ) ≤ Cξ−1/q,

where the constant C independent of v and ξ.

Proof. By the equality

‖Hs −Hω
s ‖L2(Rm,γ) = ‖Hs‖L2(Rm\Bmω ,γ) , s ∈ Λ(ξ),

and the triangle inequality we obtain

‖SΛ(ξ)v − SωΛ(ξ)v‖L2(Rm\Bmω ,X,γ) ≤
∑

s∈Λ(ξ)

‖vs‖X ‖Hs −Hω
s ‖L2(R∞,γ)

=
∑

s∈Λ(ξ)

‖vs‖X ‖Hs‖L2(Rm\Bmω ,γ) . (3.13)

Notice that for every s ∈ Λ(ξ), Hs(y) =
∏m
j=1Hsj (yj), y ∈ Rm, where Hsj is a polynomial in

variable yj , of degree not greater than m1(ξ) ≤ ω. Applying Lemma 3.3 gives

‖Hs‖L2(Rm\Bmω ,γ) ≤ Cm exp (−Kω) ‖Hs‖L2(Rm,γ) ≤ Cm exp (−Kω) ,

where the constants C and K are independent of ω, m and s. This together with (3.13), (3.9)
and the Caushy–Schwarz inequality yields that

‖SΛ(ξ)v − SωΛ(ξ)v‖L2(Rm\Bmω ,X,γ) ≤ Cm exp (−Kω)
∑

s∈Λ(ξ)

‖vs‖X

≤ Cm exp (−Kω) |Λ(ξ)|1/2
( ∑

s∈Λ(ξ)

‖vs‖2X
)1/2

≤ Cξ3/2 exp (−Kξ) ≤ Cξ−1/q,

where in the last estimate we used Lemmas A.1 and A.2 in Appendix.
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We will now construct a deep ReLU neural network φΛ(ξ) := (φs)s∈Λ(ξ) on Rm for approxi-
mating SωΛ(ξ)v by the function ΦΛ(ξ)v defined as in (3.6).

It is well-known that for each s ∈ N0, the univariate Hermite polynomial Hs can be written
as

Hs(x) = s!

b s2c∑
`=0

(−1)`

`!(s− 2`)!

xs−2`

2`
:=

s∑
`=0

as,`x
`. (3.14)

From (3.14) for each s ∈ Λ(ξ) we have

Hs(y) =
m∏
j=1

Hsj (yj) =
s∑

`=0

 m∏
j=1

asj ,`j

y` =
s∑

`=0

a`y
`,

where we put a` :=
∏m
j=1 asj ,`j and y` :=

∏m
j=1 y

`j
j . Hence, we get for every y ∈ Bm

ω ,

SωΛ(ξ)v(y) =
∑

s∈Λ(ξ)

vs

s∑
`=0

a`

(
y`
)ω

=
∑

s∈Λ(ξ)

vs

s∑
`=0

a`
(
2
√
ω
)|`|1 m∏

j=1

(
yj

2
√
ω

)`j
. (3.15)

Let ` ∈ F be such that 0 ≤ ` ≤ s. For ` 6= 0, with an appropriate change of variables,

the term
∏m
j=1

( yj
2
√
ω

)`j can be represented in the form
∏|`|1
j=1 ϕ1(xj), where ϕ1 is defined before

Lemma 2.5. Hence by Lemma 2.5, for every ` satisfying 0 < ` ≤ s, with

δ−1
s := ξ1/q+1/2ps(1)

(
2
√
ω
)|s|1 max

0≤`≤s
{|a`|}, (3.16)

there exists a deep ReLU neural network φs,` on Rm such that

sup
y∈Bmω

∣∣∣∣∣∣
m∏
j=1

(
yj

2
√
ω

)`j
− φs,`

(
y

2
√
ω

)∣∣∣∣∣∣ ≤ δs, (3.17)

and

supp

(
φs,`

( ·
2
√
ω

))
⊂ B|ν`|4ω . (3.18)

In the case when ` = 0, we fix an index j ∈ νs and define the deep ReLU neural network
φs,0(y) := a0ϕ0(

yj
2
√
ω

) for y ∈ Rm, where ϕ0 is defined before Lemma 2.5. Then |a0−φs,0(y)| = 0

for y ∈ Bm
ω . Observe that the size and depth of φs,0 are bounded by a constant. For ` 6= 0, the

size and the depth of φs,` are bounded as

W (φs,`) ≤ C
(
1 + |`|1

(
log |`|1 + log δ−1

s

))
≤ C

(
1 + |`|1 log δ−1

s

)
(3.19)

and

L (φs,`) ≤ C
(
1 + log |`|1

(
log |`|1 + log δ−1

s

))
≤ C

(
1 + log |`|1 log δ−1

s

)
(3.20)

due to the inequality |`|1 ≤ δ−1
s . In the following we will use the convention |0|1 = 1. Then the

estimates (3.19) and (3.20) holds true for all ` with 0 ≤ ` ≤ s.

12



We define the deep ReLU neural network φs on Rm by

φs(y) :=
∑

0≤`≤s
a`
(
2
√
ω
)|`|1 φs,`( y

2
√
ω

)
, y ∈ Rm, (3.21)

which is a parallelization of the component deep ReLU neural networks φs,`

(
·

2
√
ω

)
. From (3.18)

it follows

supp(φs) ⊂ B|νs|4ω . (3.22)

We define φΛ(ξ) := (φs)s∈Λ(ξ) as the deep ReLU neural network realized by parallelization φs,
s ∈ Λ(ξ). Consider the approximation of SωΛ(ξ)v by ΦΛ(ξ)v.

Lemma 3.5 Under the assumptions of Theorem 3.2, we have

‖SωΛ(ξ)v − ΦΛ(ξ)v‖L2(Bmω ,X,γ) ≤ Cξ−1/q,

where the constants C is independent of v and ξ.

Proof. From (3.15), (3.17) and (3.21) we have that

‖SωΛ(ξ)v − ΦΛ(ξ)v‖L2(Bmω ,X,γ) =

∥∥∥∥∥∥
∑

s∈Λ(ξ)

vsH
ω
s −

∑
s∈Λ(ξ)

vsφs(y)

∥∥∥∥∥∥
L2(Bmω ,X,γ)

≤
∑

s∈Λ(ξ)

‖vs‖X
s∑

`=0

|a`|
(
2
√
ω
)|s|1 δs ≤ ξ−1/q−1/2

∑
s∈Λ(ξ)

‖vs‖X

≤ ξ−1/q−1/2|Λ(ξ)|1/2
( ∑

s∈Λ(ξ)

‖vs‖2X
)1/2

≤ Cξ−1/q,

where in the last estimate we used Lemma A.1 in Appendix.

Lemma 3.6 Under the assumptions of Theorem 3.2, we have

‖ΦΛ(ξ)v‖L2(Rm\Bmω ,X,γ) ≤ Cξ−1/q, (3.23)

where the constant C is independent of v and ξ.

Proof. By (3.17) we have
∣∣φs,` ( y

2
√
ω

) ∣∣ ≤ 2, ∀y ∈ Rm. Hence, by (3.21) we have that

∥∥ΦΛ(ξ)v
∥∥
L2(Rm\Bmω ,X,γ)

≤
∑

s∈Λ(ξ)

‖vs‖X
s∑

`=0

∣∣∣a` (2√ω)|s|1 ∣∣∣ ∥∥∥∥φs,`( ·
2
√
ω

)∥∥∥∥
L2(Rm\Bmω ,γ)

≤ 2
∑

s∈Λ(ξ)

‖vs‖X
s∑

`=0

∣∣∣a` (2√ω)|s|1 ∣∣∣ ‖1‖L2(Rm\Bmω ,γ) .
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Applying Lemma 3.3 to the polynomial ϕ(y) = 1, we get

∥∥ΦΛ(ξ)v
∥∥
L2(Rm\Bmω ,X,γ)

≤ Cm
∑

s∈Λ(ξ)

‖vs‖X
s∑

`=0

(4ω)|s|1/2 exp(−Kω)
∣∣a`∣∣

≤ Cm
∑

s∈Λ(ξ)

‖vs‖X(4ω)|s|1/2 exp(−Kω)
s∑

`=0

∣∣a`∣∣.
In order to estimate the sum

∑s
`=0

∣∣a`∣∣, we need an inequality for the coefficients of Hermite
polynomials. By the representation (3.14) of Hs, s ∈ N0, there holds

s∑
`=0

|as,`| ≤ s!. (3.24)

Indeed, this inequality is obvious with s = 0, 1, 2, 3. When s ≥ 4 we have 1
`!(s−2`)! ≤

1
2 for all

` = 0, . . . , bs/2c. Therefore,

s∑
`=0

|as,`| ≤ s!
b s2c∑
`=0

2−`

`!(s− 2`)!
≤ s!

2

b s2c∑
`=0

2−` ≤ s!.

It follows from (3.24) that

s∑
`=0

∣∣a`∣∣ =

s∑
`=0

m∏
j=1

∣∣asj ,`j ∣∣ ≤ m∏
j=1

sj∑
`j=0

|asj ,`j | ≤
m∏
j=1

sj !, (3.25)

and hence,
s∑

`=0

∣∣a`∣∣ ≤ m∏
j=1

sj ! ≤
m∏
j=1

|s|sj1 ≤ |s|
|s|1
1 . (3.26)

By using this estimate and Lemma A.1 in Appendix, we can continue the estimation of∥∥ΦΛ(ξ)v
∥∥
L2(Rm\Bmω ,X,γ)

as∥∥ΦΛ(ξ)v
∥∥
L2(Rm\Bmω ,X,γ)

≤ Cm
∑

s∈Λ(ξ)

‖vs‖X(4ω)
m1
2 exp (−4ω)mm1

1

≤ Cm|Λ(ξ)|1/2
( ∑

s∈Λ(ξ)

‖vs‖2X
)1/2

(4ω)
m1
2 exp (−Kω)mm1

1

≤ Cmξ1/2(4ω)
m1
2 exp (−Kω)mm1

1 .

We have from the inequality 1
θq ≤

1
4 and Lemma A.1 in Appendix that m1 ≤ Kq,θξ

1/4, and
from Lemma A.2 in Appendix that m ≤ Kqξ. Taking account of the choice of ω, we derive the
estimate

‖ΦΛ(ξ)v‖L2(Rm\Bmω ,X,γ) ≤ Cξ3/2(4Kq,θξ)
Kq,θξ

1/4/2(Kq,θξ
1/4)Kq,θξ

1/4
exp(−KKq,θξ),

which implies (3.23).

Denote
Λ∗(ξ) := {(s, `) ∈ F× F : s ∈ Λ(ξ) and 0 ≤ ` ≤ s} . (3.27)

Now we estimate the size and depth of the deep ReLU neural network φΛ(ξ).
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Lemma 3.7 Under the assumptions of Theorem 3.2, the input and output dimensions of φΛ(ξ)

are at most bKqξc,

W
(
φΛ(ξ)

)
≤ Cξ log ξ, (3.28)

and

L
(
φΛ(ξ)

)
≤ Cξ1/θq log ξ, (3.29)

where the constants C are independent of v and ξ.

Proof. The input dimension of φΛ(ξ) is not greater than m(ξ) which is at most bKqξc by
Lemma A.2 in Appendix. The output dimension of φΛ(ξ) is the number |Λ(ξ)| which is at most
bKqξc by Lemma A.1(i) in Appendix.

By Lemma 2.2 and (3.19) the size of φΛ(ξ) is estimated as

W
(
φΛ(ξ)

)
=

∑
(s,`)∈Λ∗(ξ)

L(φs,`) ≤ C
∑

(s,`)∈Λ∗(ξ)

(
1 + |`|1 log δ−1

s

)
. (3.30)

From (3.16) we have

log(δ−1
s ) ≤ C

(
log ξ + log ps(1) + |s|1 log(4ω) + log

(
max
0≤`≤s

|a`|
))

. (3.31)

Noting that |`|1 ≤ |s|1 for all (s, `) ∈ Λ∗(ξ), we obtain∑
(s,`)∈Λ∗(ξ)

(
1 + |`|1 log δ−1

s

)
≤ C

(
log ξ

∑
(s,`)∈Λ∗(ξ)

|s|1 +
∑

(s,`)∈Λ∗(ξ)

|s|1 log ps(1)

+ log(2ω)
∑

(s,`)∈Λ∗(ξ)

|s|21 +
∑

(s,`)∈Λ∗(ξ)

|s|1 log

(
max
0≤`≤s

|a`|
))

≤ C

(
log ξ

∑
(s,`)∈Λ∗(ξ)

|s|1 log ps(1)

+ log(2ω)
∑

(s,`)∈Λ∗(ξ)

|s|21 +
∑

(s,`)∈Λ∗(ξ)

|s|1 log

(
max
0≤`≤s

|a`|
))

.

(3.32)

For the first and second terms on the right-hand side, since
(
ps
(

4
q , 1
)
σ−1
s

)
s∈F
∈ `q(F) from

Lemma A.3 in Appendix we have

log ξ
∑

(s,`)∈Λ∗(ξ)

|s|1 log ps(1) ≤ log ξ
∑

(s,`)∈Λ∗(ξ)

ps(2) ≤ Cξ log ξ (3.33)

and
log(2ω)

∑
(s,`)∈Λ∗(ξ)

|s|21 ≤ log(2ω)
∑

(s,`)∈Λ∗(ξ)

ps(2) ≤ Cξ log(2ω) ≤ Cξ log ξ, (3.34)

where in last inequality we note that ω = bKq,θξc, see (3.9). Now we turn to the third term in
(3.32). The inequalities (3.25) imply

log

(
max
0≤`≤s

|a`|
)
≤ log

(
m∏
j=1

sj !

)
≤

m∑
j=1

log(sj !) ≤
m∑
j=1

s2
j ≤ ps(2).
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Using Lemma A.3 in Appendix again we also obtain∑
(s,`)∈Λ∗(ξ)

|s|1 ps(2) ≤
∑

(s,`)∈Λ∗(ξ)

ps(3) ≤ Cξ,

since
(
ps
(

4
q , 1
)
σ−1
s

)
s∈F
∈ `q(F). This together with (3.33) and (3.34) yields∑

(s,`)∈Λ∗(ξ)

(
1 + |`|1 log δ−1

s

)
≤ Cξ log ξ,

which combined with (3.30) gives (3.28).

By Lemma 2.2 and (3.20) the depth of φΛ(ξ) is bounded as

L
(
φΛ(ξ)

)
= max

(s,`)∈Λ∗(ξ)
L(φs,`) ≤ C max

(s,`)∈Λ∗(ξ)

(
1 + log |`|1 log δ−1

s

)
.

Due to (3.31), this inequality can be modified as

L
(
φΛ(ξ)

)
≤ C max

s∈Λ(ξ)
(log |s|1) max

(s,`)∈Λ∗(ξ)

(
log δ−1

s

)
. (3.35)

From Lemma A.1 in Appendix we obtain

max
s∈Λ(ξ)

(log |s|1) ≤ C log ξ.

We have by (3.31) that

max
(s,`)∈Λ∗(ξ)

(
δ−1
s

)
≤ C

(
log ξ + max

s∈Λ(ξ)
log ps(1) + log(2ω) max

s∈Λ(ξ)
|s|1 + max

s∈Λ(ξ)
log

(
max
0≤`≤s

|a`|
))

.

(3.36)
For the second and third terms on the right-hand side, we have by the well-known inequality
log ps(1) ≤ |s|1 and Lemma A.1 in Appendix,

max
s∈Λ(ξ)

log ps(1) ≤ max
s∈Λ(ξ)

|s|1 ≤ Cξ
1/θq

and
log(2ω) max

s∈Λ(ξ)
|s|1 ≤ Cξ

1/θq log ξ.

Now we turn to the fourth term in (3.36). From (3.26) it follows that

log

(
max
0≤`≤s

|a`|
)
≤ log

(
|s||s|11

)
= |s|1 log |s|1.

Hence,

max
(s,`)∈Λ∗(ξ)

log

(
max
0≤`≤s

|a`|
)
≤ max

s∈Λ(ξ)
(|s|1 log |s|1) ≤ Cξ1/θq log ξ.

This together with (3.35)–(3.2) yields (3.29).

We are now in a position to prove Theorem 3.2 .

Proof. [Proofs of Theorem 3.2]. By (3.10) and Lemmas 3.1 and 3.4–3.6 we deduce that∥∥v − ΦΛ(ξ)v
∥∥
L2(X)

≤ Cξ−1/q.

The claim (v) is proven. The claims (i)–(iii) follow from Lemma 3.7 and the claim (iv) from
Lemma A.2 in Appendix and (3.22).
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3.3 Application to parameterized elliptic PDEs with lognormal inputs

In this section, we apply the results in the previous section to deep ReLU neural network
approximation of the solution u(y) to the parametrized elliptic PDEs (1.1) with lognormal
inputs (1.3). This is based on a weighted `2-summability of the series (‖us‖V )s∈F in following
lemma which has been proven in [4, Theorems 3.3 and 4.2].

Lemma 3.8 Assume that there exist a number 0 < q < ∞ and an increasing sequence ρ =
(ρj)j∈N of numbers such that (ρ−1

j )j∈N ∈ `q(N) and∥∥∥∥∥∥
∑
j∈N

ρj |ψj |

∥∥∥∥∥∥
L∞(D)

<∞ .

Then we have that for any η ∈ N,∑
s∈F

(σs‖us‖V )2 <∞ with σ2
s :=

∑
‖s′‖`∞(N)≤η

(
s

s′

)∏
j∈N

ρ
2s′j
j . (3.37)

The following lemma is proven in [14, Lemma 5.3].

Lemma 3.9 Let 0 < q < ∞, (ρj)j∈N be a sequence of positive numbers such that the sequence
(ρ−1
j )j∈N belongs to `q(N). Let θ be an arbitrary nonnegative number and (ps(θ))s∈F the sequence

given in (3.7). Let for η ∈ N the sequence (σs)s∈F be defined as in (3.37). Then for any

η > 2(θ+1)
q , we have ∑

s∈F
ps(θ)σ−qs <∞.

Our result for the solution u to the parametrized elliptic PDEs (1.1) with lognormal inputs (1.3)
is read as follows.

Theorem 3.10 Under the assumptions of Lemma 3.8, let 0 < q < ∞ and δ be arbitrary
positive number. Then for every integer n > 1, we can construct a deep ReLU neural network

φΛ(ξn) := (φs)s∈Λ(ξn) on Rm with m :=
⌊
K n

logn

⌋
, having the following properties.

(i) The deep ReLU neural network φΛ(ξn) is independent of u;

(ii) The input and output dimensions of φΛ(ξn) are at most m;

(iii) W
(
φΛ(ξn)

)
≤ n;

(iv) L
(
φΛ(ξn)

)
≤ Cδnδ;

(v) supp
(
φΛ(ξn)

)
⊂ [−T, T ]m, where T := C ′δ

√
n

logn ;

(vi) The approximation of u by ΦΛ(ξn)u defined as in (3.6), gives the error estimate

‖u− ΦΛ(ξn)u‖L2(V ) ≤ C
(

n

log n

)−1/q

.
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Here the constants C, K, Cδ and C ′δ are independent of u and n.

Proof. To prove the theorem we apply Theorem 3.2 to the solution u. Without loss of generality
we can assume that δ ≤ 1/4. We take first the number θ := 1/δq satisfying the inequality

θ ≥ 4/q , and then choose a number η ∈ N satisfying the inequality η > 2(θ+1)
q . By using

Lemmas 3.8 and 3.9 one can check that for X = V and the sequence (σs)s∈F defined as in
(3.37), u ∈ L2(V ) satisfies the assumptions of Theorem 3.2. For a given integer n > 1, we
choose ξn > 1 as the maximal number satisfying the inequality Cξn log ξn ≤ n, where C is the
constant in the claim (ii) of Theorem 3.2. It is easy to verify that there exist positive constants
C1 and C2 independent of n such that C1

n
logn ≤ ξn ≤ C2

n
logn . From Theorem 3.2 with ξ = ξn

we deduce the desired results.

4 Parametrized elliptic PDEs with affine inputs

The theory of non-adaptive deep ReLU neural network approximation of functions in Bochner
spaces with the infinite tensor product Gaussian measure, which has been discussed in Section 3
can be generalized and extended to other situations. In this section, we present some results on
similar problems for the parametrized elliptic equation (1.2) with the affine inputs (1.4). The
Jacobi and Taylor gpc expansions of the solution play a basic role in the proofs of these results.

4.1 Approximation by deep ReLU neural networks

For given a, b > −1, we consider the infinite tensor product of the Jacobi probability measures
on I∞

dνa,b(y) :=
⊗
j∈N

δa,b(yj) dyj ,

where

δa,b(y) := ca,b(1− y)a(1 + y)b, ca,b :=
Γ(a+ b+ 2)

2a+b+1Γ(a+ 1)Γ(b+ 1)
.

If v ∈ L2(X) := L2(I∞, X, νa,b) for a Hilbert space X, we consider the orthonormal Jacobi gpc
expansion of v of the form

v =
∑
s∈F

vsJs(y), (4.1)

where

Js(y) =
⊗
j∈N

Jsj (yj), vs :=

∫
I∞
v(y)Js(y)dνa,b(y),

and (Jk)k≥0 is the sequence of Jacobi polynomials on I := [−1, 1] normalized with respect to the
Jacobi probability measure, i.e.,

∫
I |Jk(y)|2δa,b(y)dy = 1. One has the Rodrigues’ formula

Jk(y) =
ca,bk
k!2k

(1− y)−a(1 + y)−b
dk

dyk

(
(y2 − 1)k(1− y)a(1 + y)b

)
,

where ca,b0 := 1 and

ca,bk :=

√
(2k + a+ b+ 1)k!Γ(k + a+ b+ 1)Γ(a+ 1)Γ(b+ 1)

Γ(k + a+ 1)Γ(k + b+ 1)Γ(a+ b+ 2)
, k ∈ N. (4.2)
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Examples corresponding to the values a = b = 0 are the family of the Legendre polynomials,
and to the values a = b = −1/2 the family of the Chebyshev polynomials.

Assumption B Let 0 < q < ∞, ca,bk be defined as in (4.2) and let (δj)j∈N be a sequence of
numbers strictly larger than 1 such that (δ−1

j )j∈N ∈ `q(N). For v ∈ L2(X) represented by the

series (4.1), there exists a sequence of positive numbers (ρj)j∈N such that ca,bk ρ−kj ≤ δ−kj for
k, j ∈ N and (∑

s∈F
(σs‖vs‖X)2

)1/2

≤M <∞,

where
σs := c−1

s

∏
j∈N

ρ
sj
j , cs :=

∏
j∈N

ca,bsj . (4.3)

Theorem 4.1 Let v ∈ L2(X) satisfy Assumption B. Then for every integer n > 1, we can
construct a deep ReLU neural network φΛ(ξn) := (φs)s∈Λ(ξn) on Rm with m := bK n

lognc, having
the following properties.

(i) The deep ReLU neural network φΛ(ξn) is independent of u;

(ii) The input and output dimensions of φΛ(ξn) are at most m;

(iii) W
(
φΛ(ξn)

)
≤ n;

(iv) L
(
φΛ(ξn)

)
≤ C(log n)2;

(v) Let ΦΛ(ξn)v be defined by the formula (3.6) with replacing R∞ by I∞. Then the approxi-
mation of v by ΦΛ(ξn)v gives the error estimate

‖v − ΦΛ(ξn)v‖L2(X) ≤ C
(

n

log n

)−1/q

.

Here the constants C and K are independent of v and n.

The proof of Theorem 4.1 is similar to the proof of Theorem 3.2, but simpler due to As-
sumption B and the compact property of I∞.

We now are in position to prove Theorem 4.1.

Proof. [A sketch of proof of Theorem 4.1] Similar to the proof of Theorem 3.2, this theorem is
deduced from a counterpart of Theorem 3.2 for the case I∞. It states that for every ξ > 1, we
can construct a deep ReLU neural network φΛ(ξ) := (φs)s∈Λ(ξ) on Im with m ≤ bKqξc, having
the following properties.

(i) The input and output dimensions of φΛ(ξ) are at most m;

(ii) W
(
φΛ(ξ)

)
≤ Cξ log ξ;

(iii) L
(
φΛ(ξ)

)
≤ C(log ξ)2;
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(iv) The approximation of v by ΦΛ(ξ)v =
∑

s∈Λ(ξ) vsφs gives the error estimate

‖v − ΦΛ(ξ)v‖L2(X) ≤ Cξ−1/q.

Here the constants C are independent of v and ξ.

Let us give a brief proof of these claims. For the function v ∈ L2(X) represented by the
series (4.1) and the sequence (σs)s∈F given as in (4.3), we define

SΛ(ξ)v :=
∑

s∈Λ(ξ)

vsJs,

where Λ(ξ) is defined by the formula (3.2) for the sequence (σs)s∈F given as in (4.3). Then in
the same way as the proof of Lemma 3.1, we prove the estimate

‖v − SΛ(ξ)v‖L2(X) ≤ Cξ−1/q. (4.4)

By Lemma A.2 in Appendix for every s ∈ Λ(ξ), Js and SΛ(ξ)v can be considered as functions
on Im. As the next step, we will construct a deep ReLU neural network φΛ(ξ) := (φs)s∈Λ(ξ) on
Im for approximating SΛ(ξ)v by ΦΛ(ξ). From (A.4) for each s ∈ F we have

Js(y) =

s∑
`=0

a`y
`,

where a` :=
∏m
j=1 asj ,`j and y` :=

∏m
j=1 y

`j
j . Hence, we get for every y ∈ Im,

SΛ(ξ)v(y) :=
∑

s∈Λ(ξ)

vsJs(y) =
∑

s∈Λ(ξ)

vs

s∑
`=0

a`y
`.

By Lemma 2.5, for every ` with 0 ≤ ` ≤ s, with

δ−1
s := ξ1/qps(1) max

0≤`≤s
{|a`|},

there exists a deep ReLU neural network φs,` on Im such that

sup
y∈Im

∣∣∣y` − φs,`(y)
∣∣∣ ≤ δs,

and the size and depth of φs,` are bounded as

W (φs,`) ≤ C
(
1 + |`|1 log δ−1

s

)
and

L (φs,`) ≤ C
(
1 + log |`|1 log δ−1

s

)
.

We define the deep ReLU neural network φs on Im by

φs :=
∑

0≤`≤s
a`φs,`,
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which is a parallelization of component networks φs,`. We define φΛ(ξ) := (φs)s∈Λ(ξ) as the deep
ReLU neural network realized by parallelization φs, s ∈ Λ(ξ). Consider the approximation of
SωΛ(ξ)v by ΦΛ(ξ)v. By the same way as the proof of Lemma 3.5, we can prove∥∥SΛ(ξ)v − ΦΛ(ξ)v

∥∥
L2(X)

≤ Cξ−1/q, (4.5)

where the constant C is independent of v and ξ.

Let us check the claims (i)–(iv) formulated at the begining of the proof. From (4.4) and
(4.5) we deduce the claim (iv). The proof of the claim (i)–(iii) repeates the proof of Lemma 3.7
in Appendix with a slight modification. We indicate some particular differences in the proofs.
There are no longer the fourth term in the right-hand side of (3.31) and the third term in the
right-hand side of (3.36). Lemma A.3 in Appendix which is used in the proof follows from
Lemma A.4 in Appendix. Lemma A.1(ii) in Appendix and the inequality (3.24) are replaced
by the stronger Lemma A.5 and inequality (A.5) in Appendix. This helps us to receive the
improved bound L(φv) ≤ C(log ξ)2.

4.2 Application to parameterized elliptic PDEs with affine inputs

We now apply Theorem 4.1 to the solution u(y) to the parameterized elliptic PDEs (1.1) with
affine inputs (1.4).

Theorem 4.2 Let 0 < q <∞, ca,bk be defined as in (4.2) and let (δj)j∈N be a sequence of numbers
strictly larger than 1 such that (δ−1

j )j∈N ∈ `q(N). Let ā ∈ L∞(D) and ess inf ā > 0. Assume that

there exists a sequence of positive numbers (ρj)j∈N such that ca,bk ρ−kj < δ−kj , k, j ∈ N, and∥∥∥∥
∑

j∈N ρj |ψj |
ā

∥∥∥∥
L∞(D)

< 1 . (4.6)

Then for every integer n > 1, we can construct a deep ReLU neural network φΛ(ξn) := (φs)s∈Λ(ξn)

on Rm with m := bK n
lognc, having the following properties.

(i) The deep ReLU neural network φΛ(ξn) is independent of u;

(ii) The input and output dimensions of φΛ(ξn) are at most m;

(iii) W
(
φΛ(ξn)

)
≤ n;

(iv) L
(
φΛ(ξn)

)
≤ C(log n)2;

(v) The approximation of u by ΦΛ(ξn)u =
∑

s∈Λ(ξn) usφs, where us, s ∈ F, are the Jacobi gpc
expansion coefficients of u ∈ L2(V ), gives the error estimate

‖u− ΦΛ(ξn)u‖L2(V ) ≤ C
(

n

log n

)−1/q

.

Here the constants C and K are independent of u and n.
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Proof. It has been proven in [5] that under the assumptions of the theorem, for the sequence
(σs)s∈F given as in (4.3), ∑

s∈F
(σs‖us‖V )2 <∞.

This means that Assumption B holds for v = u with X = V . Hence, applying Theorem 4.1 to
u, we prove the theorem.

We next discuss the approximation by deep ReLU neural networks for parameterized elliptic
PDEs with affine inputs and error measured in the uniform norm of L∞(I∞, V ) by using m-term
truncations of the Taylor gpc expansion of u.

If for the sequence (ρj)j∈N of numbers strictly larger than 1 we have the condition 4.6 and
if (ρ−1

j )j∈N ∈ `q(N) for some 0 < q < 2, then the solution u to the parameterized elliptic PDEs
(1.1) with affine inputs (1.4) can be decomposed in the Taylor gpc expansion

u =
∑
s∈F

tsy
s, ts =

1

s!
∂su(0)

with (∑
s∈F

(σs‖ts‖V )2

)1/2

≤ C <∞,

where
σs :=

∏
j∈N

ρ
sj
j ,

see [5, Theorem 2.1]. Moreover, the sequence (‖ts‖V )s∈F is `p-summable with p = 2q
2+q < 1. We

define
SΛ(ξ)v :=

∑
s∈Λ(ξ)

tsys,

where Λ(ξ) is given by the formula (3.2). The following theorem is an improvement of [46,
Theorem 3.9].

Theorem 4.3 Let ā ∈ L∞(D) and ess inf ā > 0. Assume that there exists an increasing se-
quence (ρj)j∈N of numbers strictly larger than 1 such that the sequence (ρ−1

j )j∈N ∈ `q(N) for
some q with 0 < q < 2, and there holds the condition (4.6). Then for every integer n > 1, we

can construct a deep ReLU neural network φΛ(ξn) := (φs)s∈Λ(ξn) on Rm with m :=
⌊
K n

logn

⌋
,

having the following properties.

(i) The deep ReLU neural network φΛ(ξn) is independent of u;

(ii) The input and output dimensions of φΛ(ξn) are at most m;

(iii) W
(
φΛ(ξn)

)
≤ n;

(iv) L
(
φΛ(ξn)

)
≤ C log n log logn;

(v) The approximation of u by ΦΛ(ξn)u :=
∑

s∈Λ(ξn) tsφs gives the error estimate

‖u− ΦΛ(ξn)u‖L∞(I∞,V ) ≤ C
(

n

log n

)−(1/q−1/2)

.
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Here the constants C and K are independent of u and n.

Proof. This theorem can be proven in a way similar to the proof of Theorem 4.2. Let us give a
brief proof. Given ξ ≥ 3, we have the Caushy-Schwarz inequality and Lemma A.4 in Appendix
that

‖u− SΛ(ξ)u‖L∞(I∞,V ) ≤
∑

s 6∈Λ(ξ)

‖ts‖V ≤

 ∑
σs>ξ1/q

(σs ‖ts‖V )2

1/2 ∑
σs>ξ1/q

σ−2
s

1/2

(4.7)

≤ C

 ∑
σs>ξ1/q

σ−qs σ
−(2−q)
s

1/2

≤ Cξ−(1/q−1/2)

∑
s∈Nm0

σ−qs

1/2

≤ Cξ−(1/q−1/2).

Put δ := ξ−(1/q−1/2). For every s ∈ Λ(ξ), by Lemma 2.5 there exists a deep ReLU neural
network φs on Im such that

sup
y∈Im

|ys − φs(y)| ≤ δ,

and the size and depth of φs are bounded as

W (φs) ≤ C
(
1 + |s|1 log δ−1

)
≤ C

(
1 + |s|1 log ξ

)
and

L (φs) ≤ C
(
1 + log |s|1 log δ−1

)
≤ C

(
1 + log |s|1 log ξ

)
.

We define φΛ(ξ) := (φs)s∈Λ(ξ) as the deep ReLU neural network realized by parallelization of
φs, s ∈ Λ(ξ). Consider the approximation of u by

ΦΛ(ξ)u :=
∑

s∈Λ(ξ)

tsφs(y).

Then by the inclusion (‖ts‖V )s∈F ∈ `p(F), p ∈ (0, 1) and (4.7), we have

‖u− ΦΛ(ξ)u‖L∞(I∞,V ) ≤ ‖u− SΛ(ξ)u‖L∞(I∞,V ) +
∥∥SΛ(ξ)u− ΦΛ(ξ)u

∥∥
L∞(I∞,V )

≤ Cξ−(1/q−1/2) +
∑

s∈Λ(ξ)

‖ts‖V ‖ys − φs‖L∞(I∞,V )

≤ Cξ−(1/q−1/2) + Cξ−(1/q−1/2)
∑

s∈Λ(ξ)

‖ts‖V ≤ Cξ−(1/q−1/2),

where the constants C may be different and are independent of u and ξ. By the construction of
φΛ(ξ) we have

W (φΛ(ξ)) ≤
∑

s∈Λ(ξ)

≤W (φs) ≤
∑

s∈Λ(ξ)

C
(
1 + |s|1 log ξ

)
≤ C

(
|Λ(ξ)|+ log ξ

∑
σqs≤ξ

ps(1)

)

≤ C
(
|Λ(ξ)|+ log ξ

∑
σqs≤ξ

ps(1)σ−qs σqs

)
≤ Cξ log ξ
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where in the last estimate we used Lemmas A.1(i) and A.4 in Appendix. Similarly, we have

L(φΛ(ξ)) ≤ max
s∈Λ(ξ)

L (φs) ≤ C max
s∈Λ(ξ)

(
1 + log |s|1 log ξ

)
≤ C log ξ log log ξ,

see Lemma A.5 in Appendix. Now following argument at the end of the proof of Theorem 3.10,
we obtain the existence of ξn for a given n > 1.

5 Concluding remarks

We have established bounds in terms of the size n of deep ReLU neural networks for error
of approximation of the solution u to parametric and stochastic elliptic PDEs with lognormal
inputs by them. The method of this approximation is as follows. For given n ∈ N, n > 1 we
construct a compactly supported deep ReLU neural network φn := (φj)

m
j=1 of the size ≤ n on

Rm, m = O(n/ log n), with m outputs to approximate the m-term truncation of the Hermite gpc
expansion

∑m
j=1 usjHsj of u by un :=

∑m
j=1 usjφj . We proved that the extension of un to R∞

approximates u with the error bound O
(
(n/ log n)−1/q

)
, and that the depth of φn is O

(
nδ
)

for
any δ > 0. We also obtained similar results for approximation by deep ReLU neural networks
of solution to parametric and stochastic elliptic PDEs with affine inputs. These results based
on an m-term truncation of the Jacobi and Taylor gpc expansions of the solution.

In the present paper, we have been concerned about the parametric approximability for para-
metric and stochastic elliptic PDEs. Therefore, the results themselves do not yield a practically
realizable approximation since they do not cover the approximation of the gpc expansion coeffi-
cients which are functions of the spatial variable. Naturally, it would be desirable to study the
problem of fully discrete approximation of the solution u to parametric and stochastic elliptic
PDEs as in [3, 14] by deep ReLU neural networks. We will discuss this problem in a forthcoming
paper.

A Appendix: Auxiliary results

Lemma A.1 Let θ > 0, ξ > 1 and (σs)s∈F be a sequence of numbers strictly larger than 1.
Then we have the following.

(i) Assume that
(
σ−1
s

)
s∈F ∈ `q(F). The set Λ(ξ) is finite and it holds

|Λ(ξ)| ≤ Kqξ,

where Kq :=
∑

s∈F σ
−q
s <∞.

(ii) Assume that
(
ps(θ)σ−1

s

)
s∈F ∈ `q(F) for some θ > 0. There holds

m1(ξ) ≤ Kq,θξ
1
θq ,

where Kq,θ :=
(∑

s∈F ps(θ)qσ−qs

) 1
θq
<∞.
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Proof. Notice that 1 ≤ σ−qs ξ for every s ∈ Λ(ξ). This implies (i):

|Λ(ξ)| =
∑

s∈Λ(ξ)

1 ≤
∑

s∈Λ(ξ)

ξσ−qs ≤ Kqξ

Moreover, we have that 1 ≤ sj for every j ∈ νs. Hence, we derive the inequality

max
s∈Λ(ξ)

|s|θq1 ≤
∑

s∈Λ(ξ)

∏
j∈νs

(1 + sj)

θq

≤
∑

s∈Λ(ξ)

ps(θ)qξσ−qs ≤ K
θq
q,θξ

which prove (ii).

By this definition we have ⋃
s∈Λ(ξ)

νs ⊂ {1, 2, . . . ,m(ξ)} (A.1)

Lemma A.2 Let θ > 0, 0 < q < ∞ and (σs)s∈F be an increasing sequence of numbers strictly
larger than 1. Assume that

(
σ−1
s

)
s∈F ∈ `q(F) and σei′ ≤ σei if i′ < i . Then there holds

m(ξ) ≤ Kqξ, (A.2)

where Kq is the constant given in Lemma A.1(i).

Proof. Noting (3.4), there is a s ∈ Λ(ξ) such that sm(ξ) > 0. Then we have em(ξ) ≤ s. Since Λ(ξ)

is downward closed, we have em(ξ) ∈ Λ(ξ). From the definition (3.2) of Λ(ξ) and the assumption
in the lemma, we obtain

σq
e1
≤ σq

e2
≤ . . . ≤ σq

em(ξ) ≤ ξ.

Thus, e1, . . . , em(ξ) belong to Λ(ξ). This yields the inequality |Λ(ξ)| ≥ m(ξ) which together
with the inequality |Λ(ξ)| ≤ Kqξ in Lemma A.1(i) proves (A.2). The inclusion (A.1) can then
be obtained directly from (3.4).

Lemma A.3 Let θ ≥ 0, 0 < q < ∞, and Λ∗(ξ) be defined in (3.27). Assume that(
ps

(
θ+1
q , 1

)
σ−1
s

)
s∈F
∈ `q(F). There holds∑

(s,`)∈Λ∗(ξ)

ps(θ) ≤ Cξ.

Proof. We have

∑
(s,`)∈Λ∗(ξ)

ps(θ) =
∑

s∈Λ(ξ)

s∑
`=0

ps(θ) ≤ ξ
∑

σ−qs ξ≥1

s∑
`=0

ps(θ)σ−qs

= ξ
∑

σ−qs ξ≥1

 m∏
j=1

(1 + sj)

 ps(θ)σ−qs ≤ ξ
∑
s∈F

ps(θ + 1)σ−qs ≤ Cξ.

The following lemma is a direct consequence of [14, Lemma 6.2].
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Lemma A.4 Let 0 < q <∞ and θ and λ be arbitrary nonnegative real numbers. Assume that
ρ = (ρj)j∈N be a sequence of numbers strictly larger than 1 such that (ρ−1

j )j∈N ∈ `q(N). Then
for the sequences (σs)s∈F and (ps(θ, λ))s∈F given as in (4.3) and (3.7), respectively, we have∑

s∈F
ps(θ, λ)σ−qs <∞.

Proof. Notice that ca,bs ≤ (1 + λ′s)θ
′

for s ∈ N0 with some λ′ > 0 and θ′ > 0 depending on a, b.
Hence, for any θ, λ ≥ 0, we get

ps(θ, λ)σ−qs = ps(θ, λ)cqs(ρ−s)q ≤ ps(θ, λ)ps(qθ′, λ′)(ρ−s)q ≤ ps(θ∗, λ∗)(ρ−s)q,

where θ∗ := θ + qθ′ and λ∗ := max(λ, λ′). We derive that∑
s∈F

ps(θ, λ)σ−qs ≤
∑
s∈F

ps(θ∗, λ∗)(ρ−s)q.

Now applying [14, Lemma 6.2] to the right-hand side we obtain the desired result.

Lemma A.5 Let 0 < q <∞, ca,bk be defined as in (4.2) and let (δj)j∈N be a sequence of numbers
strictly larger than 1 such that (δ−1

j )j∈N ∈ `q(N). Assume that there exists a sequence of positive

number (ρj)j∈N such that ca,bk ρ−kj < δ−kj , k, j ∈ N. For the sequence (σs)s∈F given as in (4.3),
and ξ > 1, let m1(ξ) be the number defined by (3.3). Then we have for every ξ > 1,

m1(ξ) ≤ C log ξ, (A.3)

with the constant C independent of ξ.

Proof. The proof relies on Lemma A.1 and a technique from the proof of [46, Lemma 2.8(ii)].
Fix a number p satisfying 0 < p < q and let the sequence (βs)s∈F be given by

β−1
s :=

{
max(σ−1

s , j−1/p) if s = ej ,

σ−1
s otherwise.

Notice that the sequence (α−1
s )s∈F defined by

α−1
s :=

{
j−1/p if s = ej ,

0 otherwise,

belongs to `q(F). On the other hand, from Lemma A.4 one can see that the sequence (σ−1
s )s∈F

belongs to `q(F). This implies that the sequence (β−1
s )s∈F belongs to `q(F). Hence, by Lemma

A.1 the set Λβ(ξ) :=
{
s ∈ F : βqs ≤ ξ

}
is finite. Notice also that (βs)s∈F is increasing and

Λβ(ξ) is downward closed. Put n := |Λβ(ξ)|. Then the set Λβ(ξ)contains n largest elements of
(βs)s∈F. Therefore by the construction of (βs)s∈F we have

min
s∈Λβ(ξ)

β−1
s = β−1

sn ≥ n
−1/p.

Since ca,bk ρ−kj ≤ δ−kj , k, j ∈ N and (δj)j∈N be a sequence of numbers strictly larger than 1 and

(δ−1
j )j∈N ∈ `q(N), there exists δ < 1 such that ca,bk ρ−kj ≤ δ for k, j ∈ N. Therefore have for r > 1,

sup
|s|1=r

β−1
s = sup

|s|1=r
σ−1
s ≤ δr.
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Let r̄ > 1 be an integer such that n−1/p > δr̄. Then one can see that

max
s∈Λβ(ξ)

|s|1 < r̄.

For the function g(t) := δt, its inverse is defined as g−1(x) = log x
log δ . Hence we get r̄ < g−1(n−1/p),

and consequently,
max

s∈Λβ(ξ)
|s|1 < g−1(n−1/p) ≤ C log n = C log |Λβ(ξ)|.

By Lemma A.1 we obtain the inequality |Λβ(ξ)| ≤ Cξ which together with the inclusion Λ(ξ) ⊂
Λβ(ξ) proves (A.3).

Lemma A.6 Let the Jacobi polynomial Js be written in the form

Js(y) =
s∑
`=0

as,`y
`, (A.4)

then
s∑
`=0

|as,`| ≤ Ka+b9
s. (A.5)

Proof. It is well-known that for each s ∈ N, the univariate Jacobi polynomial Js can be written
as

Js(y) =
Γ(a+ s+ 1)

s!Γ(a+ b+ s+ 1)

s∑
m=0

(
s

m

)
Γ(a+ b+ s+m+ 1)

Γ(a+m+ 1)

(
y − 1

2

)m
,

where Γ is the gamma function. Putting

Am := 2−m
(
s

m

)
Γ(a+ b+ s+m+ 1)

Γ(a+m+ 1)
, Bs :=

Γ(a+ s+ 1)

s!Γ(a+ b+ s+ 1)
,

we have

Js(y) = Bs

s∑
m=0

Am(y − 1)m = Bs

s∑
m=0

Am

m∑
`=0

(
m

`

)
(−1)m−`y`

= Bs

s∑
`=0

s∑
m=`

Am

(
m

`

)
(−1)m−`y`.

Hence

s∑
`=0

|as,`| ≤ Bs
s∑
`=0

s∑
m=`

Am

(
m

`

)
= Bs

s∑
m=0

Am

m∑
`=0

(
m

`

)
= Bs

s∑
m=0

2mAm. (A.6)

Let

B(x, y) :=

∫ 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)

Γ(x+ y)

be the beta function. It is decreasing in x and in y. Hence for m ≤ s,

Γ(a+ b+ s+m+ 1)

Γ(a+m+ 1)
=

Γ(b+ s)

B(a+m+ 1, b+ s)
≤ Γ(b+ s)

B(a+ s+ 1, b+ s)
=

Γ(a+ b+ 2s+ 1)

Γ(a+ s+ 1)
.
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This together with (A.6) gives

s∑
`=0

|as,`| ≤ Bs
Γ(a+ b+ 2s+ 1)

Γ(a+ s+ 1)

s∑
m=0

(
s

m

)
= 2s

Γ(a+ b+ 2s+ 1)

s!Γ(a+ b+ s+ 1)
=

2s

B(s, a+ b+ s+ 1)
.

(A.7)

Since the beta function is decreasing in each variable, it is enough to estimate the right-hand

side for a+ b ≥ 0. By using Stirling’s formula for the beta function B(x, y) ∼
√

2π x
x−1/2yy−1/2

(x+y)x+y−1/2 ,

from (A.7) we get for every s ∈ N,

s∑
`=0

|as,`| ≤ C
2s(a+ b+ 2s+ 1)a+b+2s+1/2

ss−1/2(a+ b+ s+ 1)a+b+s+1/2
≤ C 2s(2(a+ b+ s+ 1))a+b+2s+1/2

ss−1/2(a+ b+ s+ 1)a+b+s+1/2

≤ C2a+b+3s+1/2 (a+ b+ s+ 1)s

ss−1/2

≤ C8s
√
s

(
a+ b+ 1

s
+ 1

)s
≤ Ka+b9

s.

Acknowledgments. The work of Dinh Dũng and Van Kien Nguyen is funded by Vietnam
National Foundation for Science and Technology Development (NAFOSTED) under Grant No.
102.01-2020.03. A part of this work was done when the authors were working at the Vietnam
Institute for Advanced Study in Mathematics (VIASM). They would like to thank the VIASM
for providing a fruitful research environment and working condition.

References

[1] M. Ali and A. Nouy. Approximation of smoothness classes by deep ReLU networks.
arXiv:2007.15645, 2020.

[2] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding deep neural networks with
rectified linear units. Electronic Colloquium on Computational Complexity, Report No. 98,
2017.
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[15] D. Dũng. Linear collocation approximation for parametric and stochastic elliptic PDEs.
Mat. Sb., 210:103–227, 2019.
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