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Abstract. Consider the Schrödinger operator with constant magnetic field and smooth
potential V : H(ϵ) = H + V (ϵx, ϵy), H = D2

x + (Dy + µx)2, (x, y) ∈ Ωd, with Dirichlet
boundary conditions. Here Ωd = Πd

j=1] − aj , aj [×Rd
y. The spectral properties of two

operators H and H(ϵ) are investigated. For ϵ small enough, we study the effect of the
slowly varying potential V (ϵx, ϵy). In particular, we derive asymptotic trace formula and
we give an asymptotic expansion in powers of ϵ of the spectral shift function corresponding
to (H(ϵ), H).

1. Introduction

The Hamiltonian for a system of d interacting electrons confined along the x-direction
and free to move along the y-direction in the presence of magnetic and electric potentials
is given by

(1.1) H(ϵ) :=
d∑

j=1

D2
xj
+ (Dyj + µjxj)

2 + V (ϵx, ϵy), Dν =
1

i
∂ν ,

where x = (x1, · · · , xd) ∈ Λd := Πd
j=1]− aj, aj[, y ∈ Rd, µ = (µ1, · · · , µd) with ϵ, aj, µj >

0. The potential V is assumed to be smooth and real-valued. The non-perturbed operator

H = D2
x + (Dy + µx)2 =

d∑
j=1

D2
xj
+ (Dyj + µjxj)

2

is defined on HD
Ωd

:= {u ∈ H2(Ωd);u|∂Ωd
= 0}, where H2(Ωd) stands for the second order

Sobolev space on Ωd := {(x, y) ∈ Rd × Rd;−aj < xj < aj} = Λd × Rd. The Fourier
transformation with respect to y reduces the spectral problem of H to an analysis of the
eigenvalues {el(k)}∞l=0 depending on k = (k1, · · · , kd) of the operator

H0(k) = D2
x + (k + µx)2 =

d∑
j=1

D2
xj
+ (kj + µjxj)

2,

2000 Mathematics Subject Classification. 81Q10 (35P20 47A55 47N50 81Q15).
Key words and phrases. Schrödinger operator, spectral shift function, asymptotic expansions,

limiting absorption theorem.
1



2 M. DIMASSI, H. YAZBEK AND T. WATANABE

on Λd with Dirichlet boundary condition.

When the electron moves freely in both directions (i.e. aj = ∞, H∞ = H on R2d),
the spectrum of H∞ exhibits infinitely degenerate eigenvalues, the so called Landau levels.
The two-dimensional version of (1.1) is generally considered to serve as a minimal model
for the integer quantum Hall, and has therefore been intensively investigated by physicists,
see for instance [19, 29].

When aj is finite, the spectrum of H is absolutely continuous, and coincides with
[e0(0),+∞[. The points ej(0) are thresholds in σ(H), and tends to the Landau level
when µ or aj is large enough (see Proposition 3.1). The application of the H(ϵ) spectrum
in the theory means that we take into consideration important factors like finite size of
the Hall system and the presence of a crystal lattice or impurities, and so on, in it. If
the scalar potential V tends to zero as |y| → ∞, the essential spectra of H(ϵ) and H
are the same, and discrete eigenvalues with finite multiplicities can arise in ] −∞, e0(0)[.
Moreover, it is reasonable to expect that the electric field creates embedded eigenvalues
and resonances on the second sheet. The principal topic of this paper centers around the
effect of the slowly varying decaying perturbation V (ϵx, ϵy) on the non-perturbed operator
H. Particular attention will be paid to the asymptotic behavior of the spectrum near the
thresholds ej(0).

The spectrum of the non-perturbed Hamiltonian H on a bounded domain Ω ⊂ R2 were
considered by many others. The asymptotic behavior of the bottom of the spectrum ofH as
µ tends to infinity has been treated for different geometry of Ω (see [14] and the references
cited therein). When Ω is the semi-infinite plane or the disk, the WKB approximations
of the energies and the eigenfunctions are obtained in [28]. For the counting function
of the number of eigenvalues of the two dimensional Schrödinger operator with magnetic
field we refer to [23, 27] and the monographs [14, 16]. The nature of the spectrum of
the operator H(1) on the half plane with Dirichlet boundary condition was studied in [2].
Other exciting spectral properties of the 2D Schrödinger operator with crossed magnetic
and electrical fields have been investigated in [4, 6, 18, 22, 26].

In [5] (see also [6]), Mourre’s theory and the spectral shift function near the thresholds
ej(0) were considered when ϵ = 1 and Ω1 =]− a, a[×R. In [8], the W.K.B approximation
method is used to study the dynamics and the bottom of the spectrum of the operator H(ϵ)
on Ω1. This method cannot used to describe all the spectrum of H(ϵ). On the other hand,
the multi-dimensional case (i.e., Ωd with d > 1) is more complicated, since the thresholds
ej(0) are in general degenerates when d > 1. Here we present an unified approach and
derive an explicit formula for the counting and spectral shift functions corresponding to
H and H(ϵ). Our goal is to give a rigorous way to recover the spectrum of H(ϵ) on Ωd,
(d ≥ 1) near any energy level λ, by studying systems of pseudo-differential operators which
have a principal symbol quite close to one of ej(ϵDy) + V (0, y)− z, where z is the spectral
parameter and ej(k) is an eigenvalue of H0(k).

The main results of this paper are briefly summarized here. Sections 2 and 3 are devoted
to the study of the non-perturbed operators H0(k) and H. We collect in Theorem 2.1 and
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Corollary 2.2 a few properties of the eigenvalues ej(k) and their corresponding eigenfunc-
tions Ψj(·, k). We introduce some type of ”density of states ρ”, related to H (see (2.14)),
and examine its regularity in Theorem 2.3. We show that t→ ρ(t) is analytic except at the
thresholds ej(0), and we give its asymptotic behavior near every point ej(0), j = 0, 1, · · · .
In section 3, we study the asymptotic behavior of ej(k) when µ tends to infinity. For k = 0,

j = 0 and µ large enough, it is well known that e0(0) − 1 ∼ 4π− 1
2a2µ

3
2 e−a2µ (see [3]). In

Proposition 3.1, we generalize this result for j ∈ N and |k| << µ. The proof uses the
parabolic cylinder functions.

In sections 4-7, we study the perturbed operator H(ϵ) when ϵ is small enough. First, we
give a complete asymptotic expansion in powers of ϵ of tr(Ψf(H(ϵ))) where f ∈ C∞

0 (R) and
Ψ is a multiplication operator by a real integrable function Ψ(y) ∈ L1(Rd). In particular, we
obtain a Weyl type asymptotics with optimal remainder estimates of the counting function
of eigenvalues of H(ϵ) in any closed interval in ] − ∞, e0(0)[. To investigate the effect of
the perturbation on the continuous spectrum of H, it is natural to study the spectral shift
function (SSF for short). When V vanishes as ∥y∥ → ∞ (see (4.1)), the SSF ξ(µ; ϵ) related
to H(ϵ) and H is well defined in the sense of distribution :

(1.2) tr
[
f(H(ϵ))− f(H)

]
= −⟨ξ′(·; ϵ), f(·)⟩ =

∫
R
ξ(µ; ϵ)f ′(µ)dµ, f ∈ C∞

0 (R).

The function ξ(µ; ϵ) is fixed up to a constant by the formula (1.2), and we normalize ξ(µ; ϵ)
so that ξ(µ; ϵ) = 0 for µ < inf(σ(H(ϵ)). The spectral shift function may be considered
as a generalization of the eigenvalues counting function. It is one of important physical
quantities in scattering theory, and it plays an important role in the study of the location
of resonances in various scattering problems. We refer to [25] and references cited there
for comprehensive information on related subjects.

Under assumption (4.1), we give in Theorem 4.3 a complete asymptotic expansion in
powers of ϵ of the left hand side of (1.2), and in Theorem 4.4, we establish a complete as-
ymptotic expansions in powers of ϵ for ξ(µ; ϵ). The leading coefficients of these asymptotics
are expressed in terms of the density ρ and the potential V (see (4.6) and (4.11)).

Let us provide a broad outline of the proof. Spectral properties of the free operator H
follow from the direct integral decomposition (7.10). According to Theorem 2.1, we may
write

H0(k) =
∑
j≥0

ej(k)πj(k),

where πj(k)u(x) = ⟨u(·),Ψj(·, k)⟩Ψj(x, k) is the projection on Ψj(·, k). By (2.6) and (2.7),
the operators ej(Dy) and πj(Dy) are well defined as pseudo-differential operators. Thus,
for instance, if V (x, y) = V (y) is independent on x then

H(ϵ) = H0(Dy) + V (ϵy) =
∑
j≥0

[ej(Dy) + V (ϵy)] πj(Dy).

Since V is bounded, and limj→∞ ej(k) = +∞ uniformly with respect to k, it follows by
an elliptic argument that (ej(Dy) + V (ϵy) − z) is invertible for z in a bounded set and



4 M. DIMASSI, H. YAZBEK AND T. WATANABE

j > N , with N large enough. This allows one to reduce the spectral study of H(ϵ) on
L2(Ωd) near z to the study of a system of ϵ-pseudo-differential operators on L2(Rd

y), whose
diagonal entries are (ej(ϵDy) + V (y) − z), j = 0, · · · , N (see Propositions 6.1-6.2). Now,
the main results follow from standard Theorems of functional calculus and micro-local
analysis. When V depends on x, we use the fact that x is confined in a box, we then treat
for ϵ small enough V (ϵx, ϵy) as a perturbation of V (0, ϵy).

Notations : We shall employ the following standard notations. Given a complex function
fh depending on a small positive parameter h, the relation fh = O(hN) means that there
exist CN , hN > 0 such that |fh| ≤ CNh

N for all h ∈]0, hN [. The relation fh = O(h∞) means
that, for all N ∈ N := {0, 1, 2, . . .}, we have fh = O(hN). We write fh ∼

∑∞
j=0 ajh

j if, for

each N ∈ N, we have fh −
∑N

j=0 ajh
j = O(hN+1). We adopt the notation N∗ := N \ {0}.

Let H be a Hilbert space. The scalar product in H will be denoted by ⟨·, ·⟩. The set of
linear bounded operators from H1 to H2 is denoted by L(H1,H2) and L (H1) in the case
where H1 = H2.

2. The non-perturbed Hamiltonians H0(k) and H

In this section we study the non-perturbed operator H0(k) and H. In particular, we
introduce an integrated density of states, ρ, corresponding to H.

The operator H is unitarily equivalent to

(2.1) FHF∗ =

∫ ⊕

Rd

H0(k)dk,

where F is the partial Fourier transform with respect to y given by

(Fu)(x, k) = 1

(2π)d/2

∫
Rd

e−iyku(x, y)dy,

and

(2.2) H0(k) = D2
x + (k + µx)2,

is the operator defined on HΛd
:= {u ∈ H2(Λd); u|∂Λd

= 0}. In what follows, we will
consider HΛd

as a Hilbert space equipped with the standard scalar product of H2(Λd).

We first consider the two dimensional case (i.e, d = 1, Ω1 =]−a, a[×R). From the Sturm-
Liouville theory (see [21]), it is well-known that H0(k) has a simple discrete spectrum:
e0(k) < e1(k) < · · · . The change of variable x 7→ −x implies that el(k) = el(−k). Since
the eigenvalues are simple, an ordinary analytic perturbation theory shows that el(k) (and
the corresponding eigenfunction) are analytic functions in k (see [20, 24]).

Theorem 2.1. The eigenvalue ej(k) satisfies :

(2.3) ke′j(k) > 0 (k ̸= 0), and e′j(0) = 0, e′′j (0) > 0.
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Moreover, for every fixed j ∈ N and any a, µ > 0, the following properties hold :

(2.4) ej(k) = ej(0) +
∞∑
l=1

αj,lk
2l (k → 0), αj,1 > 0,

(2.5) ej(k) = k2 − 2aµk + νj(2µk)
2/3(1 + o(1)), (k → +∞),

where 0 < ν0 < ν1 < · · · < νj < · · · are the eigenvalues of the operator D2
x + x on R+.

The normalized eigenfunctions Ψn(·, k) corresponding to en(k) can be chosen real-valued
and analytic with respect to k satisfying :

(2.6) ∀p ∈ N, ∃Cp, such that

∫ a

−a

(
∂pkΨn(x, k)

)2
dx ≤ Cp, ∥Ψn(·, k)∥L2(−a,a) = 1.

For all p ∈ N, there exists Cp > 0 such that

(2.7) |∂pken(k)| ≤ Cp(1 + |k|)2−p.

Proof. The assertion (2.3) is proved in [15] (see Theorem 2 in [15]). Formula (2.4) follows
from the fact that ej(k) is an even real analytic function with e′′j (0) > 0.

To prove (2.5), consider the operator H̃(k) = D2
x+2µxk+k2. Replacing x by t = µ(x+a)

and rescaling t 7→ λt/µ (with λ = (2µk)1/3) we transform H̃(k) into λ2G−2aµk+k2, where

G = D2
t + t : L2([0, b]) → L2([0, b]), b = 2λa,

is the Airy operator with Dirichlet boundary condition. The general solution of the equa-
tion D2

t u(t) + tu(t) = 0 can be written as a linear combination of the Airy functions
:

u(t) = C+Ai(t) + C−Bi(t).

We recall that Bi(t) = Ai(e2πi/3x). Using the fact that v(t) = u(t−νj) satisfies the equation
Gv = νjv, we deduce from the boundary conditions v(0) = v(b) = 0, the quantization
condition on the eiguenvalues νj of the operator G

Ai(−νj) = Bi(−νj)
Ai(−νj + b)

Bi(−νj + b)
.

Since the right-hand side of the above equality tends to zero as b tends to +∞, −νj are
approximated (when k → +∞) by the zeros of the Airy function Ai(x). Consequently, the
eigenvalues λ0(k) < λ1(k) < · · · of H̃(k) satisfies

(2.8) λj(k) = k2 − 2aµk + νj(2µk)
2/3(1 + o(1)) (k → +∞).

Let A and B be self-adjoint operators that are bounded from below. We write A ≤ B if
and only if D(B) ⊂ D(A) and

(Au, u) ≤ (Bu, u) ∀u ∈ D(B).

Using the above inequality and the fact that x ∈ [−a, a], we obtain

H0(k)− µ2a2 ≤ H̃(k) = H0(k)− µ2x2 ≤ H0(k),
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which together with Theorem XIII.1 in [24] yields

ej(k)− µ2a2 ≤ λj(k) ≤ ej(k).

Thus (2.5) follows from (2.8) and the above inequality.

Next we prove (2.6). Let Ψn(·, k) be the normalized real-valued analytic function corre-
sponding to en(k). Since Ψn is real and ∥Ψn(·, k)∥ = 1, it follows that

(2.9)
∂

∂k

∫ a

−a

Ψn(x, k)
2dx = 0 = 2

∫ a

−a

Ψn(x, k)
∂

∂k
Ψn(x, k)dx.

Put Ĥ(k) = H0(k)−k2, and let Γn be a simple closed contour around en(k)−k2 such that

dist(Γn, σ(Ĥ(k))) ≥ C > 0 uniformly on k. Let Πn(k) be the orthogonal projection onto
the eigenspace spanned by Ψn(·, k), that is for u(x) ∈ HΛ2

(2.10) Πn(k)u(x) =
1

2πi

∫
Γn

(Ĥ(k)− z)−1dz = ⟨u(·) ,Ψn(·, k)⟩Ψn(x, k).

From (2.9) we deduce that Πn(k)∂kΨn(·, k) = 0. Combining this with the fact that

Πn(k)Ψn(·, k) = Ψn(·, k) and using (2.10) as well as the fact that ∂kĤ(k) = 2µx, we
get

(2.11) ∂kΨn(x, k) = ∂kΠn(k)Ψn(x, k) =
−1

2πi

∫
Γn

(Ĥ(k)− z)−12µx(Ĥ(k)− z)−1dzΨn(x, k),

which yields
∥∂kΨn(·, k)∥ = O(1)∥Ψn(·, k)∥ = O(1).

We now proceed by induction using (2.11).

To prove (2.7), we differentiate the equality (H0(k)− en(k))Ψn(·, k) = 0 with respect to
k we get (

2(x+ k)− en(k)
)
Ψn(x, k) =

(
H0(k)− en(k)

)
∂kΨn(x, k).

Taking the product scalar of both sides of the above equality with Ψn(·, k) and using the
self adjointeness of H0(k), as well as well as the fact that Ψn is real valued and normalized
we obtain the formula

(2.12) ∂ken(k) = 2

∫ a

−a

xΨn(x, k)
2dx+ 2k,

which yields (2.7) for p = 1. For p ≥ 2, we differentiate (2.12) and we use (2.6).

□

We return now to the general case d ≥ 1. Let
(
ejl (kj)

)
l∈N and

(
Ψj

l (xj, kj)
)
l∈N be the

eigenvalues and eigenvectors of the operator D2
xj
+(kj +µjxj)

2 given by Theorem 2.1. For

J = (j1, · · · , jd) ∈ Nd and k = (k1, · · · , kd) ∈ Rd, we denote

(2.13) eJ(k) = e1j1(k1) + · · ·+ edjd(kd), ΨJ(x, k) = Ψ1
j1
(x1, k1)× · · · ×Ψd

jd
(xd, kd).

By Theorem 2.1, we have
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Corollary 2.2. Fix d ≥ 1. The spectrum of the operator H0(k) on {u ∈ H2(Λd);u|∂Λd
= 0}

is discrete and coincides with {eJ(k); J ∈ Nd}. The family (ΨJ(·, k))J∈Nd is an orthonormal
basis in L2(Λd).

According to Theorem 2.1, Corollary 2.2, and the theory of decomposable operators (see
Theorem XIII. 85 in [24]) the spectrum of the operator H = D2

x+(Dy +µx)
2 with domain

HD
Ωd

is absolutely continuous, and given by

σ(H) =
⋃
J∈Nd

⋃
k∈Rd

eJ(k) = [e0(0),+∞[.

The points eJ(0) are thresholds in σ(H). From now on we denote this set by

Σ :=
⋃
J∈Nd

eJ(0) = σ(H0(0)).

For t0 ∈ Σ, we let St0 := {J ∈ Nd; eJ(0) = t0} and mt0 := #St0 be its multiplicity. In
order to formulate our results on the trace formula and the asymptotics of the spectral
shift function, we need to introduce the function ρ : R → R related to the non-perturbed
H by

(2.14) ρ(t) =
∑
J∈Nd

∫
{eJ (k)≤t}

dk

(2π)d
.

Obviously, ρ(t) = 0 for t < e0(0) = infσ(H). In an appendix, we shall prove that the
function ρ(t) is analytic except near Σ. More precisely, we have

Theorem 2.3. The function ρ is analytic except at Σ. Moreover, near any point t0 =
eJ(0) ∈ Σ, there exists analytic functions f and g such that :

ρ(t) = f(t− t0) + Y (t− t0)g(
√
t− t0),

for |t− t0| small enough with

g(t) ∼t→0

∑
J∈St0

vol(Sd−1)

d
√
det(∇

2eJ (0)
2

)
td.

Here Y (t) is the Heaviside function and Sd−1 stands for the unit sphere in Rd.

Remark 2.4. Notice that the singularity and the behavior of ρ near eJ(0) is similar to
those of the integrated density of states, ρ0(t), of −∆ on Rd near t = 0. We recall that

ρ0(t) = (2π)−dvol(BRd(0, 1))Y (t)td/2.

3. Asymptotic behavior of eigenvalues of H0(k) for µ≫ 1.

In this section, we investigate the asymptotic behavior of the eigenvalues of H0(k) when
µ tend to infinity. Without any loss of generality we may assume that d = 1, (i.e, Ω1 =
[−a, a] × R). For d > 1 we use (2.13). We set ej(k) and Ψj(k) as the j−th eigenvalue
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and the j-th eigenfunction of H0(k), respectively. In the following proposition we give the
asymptotic behavior of the eigenvalues ej(k) when µ tends to infinity.

Proposition 3.1. Fix j and a, we have :

ej(k)− µ(2j + 1) ∼
µ→∞

2
(
a
√
2µ
)2j+3

j!
√
2π

e−a2µe−k2/µ cosh(2ak)

×

[
1 +

(2j + 1)k

aµ
tanh(2ak) + j(2j + 1)

(
k

aµ

)2

+ o

(
k2

µ2

)]
,(3.1)

uniformly for |k| ≪ µ.

Proof. Change of variable x→ y − k/µ transforms H0(k) to

H̃0(k) = D2
y + µ2y2, on H[−a+k/µ,a+k/µ],

and again employ the change of variable y → z/(
√
2µ), we haveH0(k) is unitarily equivalent

to

(3.2) Ȟ0(k) = 2µ

(
D2

x +
x2

4

)
, on Ȟ[−z−,z+],

where

z± :=
√

2µ

(
a± k

µ

)
.(3.3)

Hence the eigenvalue problem for H0(k) can be reduced to the one for Ȟ0(k). Here let
uν(x) be the solution of the Weber’s equation[

D2
x +

x2

4
−
(
ν +

1

2

)]
uν(x) = 0,(3.4)

with boundary condition uν(z+) = uν(−z−) = 0. Then uν(x) can be written as a linear
combination of the parabolic cylinder functions Dν(z) and Dν(−z),

(3.5) uν(x) = A1Dν(x) + A2Dν(−x).

We recall that

Dν(z) =
2ν/2e−z2/4

√
π

[
Γ

(
ν + 1

2

)
cos(νπ/2)F1

(
−ν
2
;
1

2
;
z2

2

)
+
√
2zΓ

(
1 +

ν

2

)
sin(νπ/2)F1

(
1− ν

2
;
3

2
;
z2

2

)]
,

where F1 is the confluent hypergeometric function. For large |z| ≫ 1, we have

(3.6) Dν(z) = e−z2/4zν
[
1− ν(1− ν)

2z2
+ · · ·

]
, z ≫ 1,
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and for z ≪ −1,

Dν(z) = e−z2/4zν
[
1− ν(1− ν)

2z2
+ · · ·

]
(3.7)

−
√
2π

Γ(−ν)
eνπiez

2/4z−ν−1

[
1 +

(ν + 1)(ν + 2)

2z2
± · · ·

]
.

By the boundary condition uν(z+) = uν(−z−) = 0, we obtain from (3.5) the conditions on
the energy spectrum :

(3.8) Dν(z+)Dν(z−)−Dν(−z+)Dν(−z−) = 0.

Since z± tends to infinity as µ→ ∞, it follows from (3.6) and (3.7) that

Dν(z+)Dν(z−) = e−(z2++z2−)/4zν+z
ν
−
[
1 +O(z−2

± ) + · · ·
]

and

Dν(−z+)Dν(−z−) = e−(z2++z2−)/4zν+z
ν
−
[
1 +O(z−2

± ) + · · ·
]

+

√
2π

Γ(−ν)
eνπiez

2
+/4−z2−/4(z+)

−ν−1(z−)
ν
[
1 +O(z−2

± ) + · · ·
]

+

√
2π

Γ(−ν)
eνπiez

2
−/4−z2+/4(z+)

ν(z−)
−ν−1

[
1 +O(z−2

± ) + · · ·
]

+

( √
2π

Γ(−ν)

)2

e2νπie(z
2
++z2−)/4(z+z−)

−ν−1
[
1 +O(z−2

± ) + · · ·
]
.

By (3.8), we have

ez
2
+/4−z2−/4(z+)

−ν−1(z−)
ν
[
1 +O(z−2

± ) + · · ·
]

+ ez
2
−/4−z2+/4(z+)

ν(z−)
−ν−1

[
1 +O(z−2

± ) + · · ·
]

+

√
2π

Γ(−ν)
eνπie(z

2
++z2−)/4(z+z−)

−ν−1
[
1 +O(z−2

± ) + · · ·
]

= 0.

This implies(
e−z2−/2z2ν+1

− + e−z2+/2z2ν+1
+

) [
1 +O(z−2

± ) + · · ·
]
= −

√
2π

Γ(−ν)
eνπi

[
1 +O(z−2

± ) + · · ·
]

(3.9)

Recall that,

Γ(1 + z)Γ(−z) = − π

sin(πz)
, ∀z ∈ C \ Z.
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Combining this with (3.9) we get

(
z2ν+1
+ e−z2+/2 + z2ν+1

− e−z2−/2
)(

1 +O
(

1

z2±

))
=

√
2

π

e2πνi − 1

2i
Γ(1 + ν)

(
1 +O

(
1

z2±

))
.

(3.10)

Now we look for ν = j+αj(µ, k) for some fixed j, with αj(µ, k) tends to zero when µ tends
to infinity. As a first approximation, it follows from (3.10) that

(3.11) z2j+1
+ e−z2+/2 + z2j+1

− e−z2−/2 =
√
2πΓ(1 + j)αj(µ, k),

where we use

e2(j+αj)πi − 1√
2πi

∼
√
2παj(µ, k), as αj(µ, k) → 0.

Thus by using (3.3) and (3.11),

αj(µ, k)
√
2πΓ(1 + j)

= (
√
2µ)2j+1

((
a+

k

µ

)2j+1

e−µ(a+k/µ)2 +

(
a− k

µ

)2j+1

e−µ(a−k/µ)2

)

=
(
a
√

2µ
)2j+1

e−a2µe−k2/µ

[(
1 +

k

aµ

)2j+1

e−2ak +

(
1− k

aµ

)2j+1

e2ak

]

=
(
a
√

2µ
)2j+1

e−a2µe−k2/µ

[
2j+1∑
l=0

(
2j + 1
l

)(
k

aµ

)l (
e−2ak + (−1)2j−le2ak

)]

=
(
a
√
2µ
)2j+1

e−a2µe−k2/µ

×

[
2 cosh(2ak) +

2(2j + 1)k

aµ
sinh(2ak) + (2j)(2j + 1)

(
k

aµ

)2

cosh(2ak) + o

(
k2

µ2

)]
Consequently,

αj(µ, k)
√
2πΓ(1 + j) = 2

(
a
√
2µ
)2j+1

e−a2µe−k2/µ cosh(2ak)

×

[
1 +

(2j + 1)k

aµ
tanh(2ak) + j(2j + 1)

(
k

aµ

)2

+ o

(
k2

µ2

)]
.

Notice that, according to (2.2), (3.4) and the unitary equivalence of H0(k) and Ȟ0(k), the
eigenvalues of H0(k) satisfy

ej(k) = 2µ

(
j +

1

2
+ αj(µ, k)

)
.

Summing up and using that Γ(1 + j) = j! we obtain (3.1). □

Remark 3.2. For j = 0 and k = 0, (3.1) were obtained in [3].
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4. Perturbed Hamiltonian

Now, we investigate the effect of the slowly varying potential on the undisturbed operator
spectrum. First, we give a complete asymptotic expansion in powers of ϵ of tr(Ψf(H(ϵ)))
where f ∈ C∞

0 (R) and Ψ is an L1(Rd
y)-function. In particular, we obtain a Weyl type

asymptotics with optimal remainder estimates of the counting function of eigenvalues of
H(ϵ) below the essential spectra. Finally, we give a complete asymptotic expansion in
powers of ϵ of the spectral shift function corresponding to (H(ϵ), H).

We suppose that V is smooth, and there exists δ ≥ 0 such that :

(4.1) ∀α, β ∈ Nd, ∃Cα,β s.t supx∈Λd
|∂βx∂αy V (x, y)| ≤ Cα,β⟨y⟩−δ.

By the Weyl criterion (see [17, 24]), if δ > 0, the essential spectra of H and H(ϵ) are the
same:

σess(H(ϵ)) = σess(H) = σ(H) = [e0(0),+∞[.

First, we derive a local trace formula.

Theorem 4.1. Assume (4.1) with δ ≥ 0, and let Ψ be a smooth function such that ∂αyΨ ∈
L1(Rd

y) for |α| ≤ 2d+ 1 . Then for all f ∈ C∞
0 (R), the operator (Ψf(H(ϵ))) is trace class

and the following asymptotics hold :

(4.2) tr (Ψf(H(ϵ))) ∼
∞∑
j=0

ajϵ
−d+j,

with

(4.3) a0 = −
∫∫

Rd×Rt

Ψ(y)f ′(t)ρ(t− V (0, y))dydt.

Here f(H(ϵ)) is the operator given by the spectral theorem and Ψ : L2(Ωd) ∋ u →
Ψ(y)u(x, y) ∈ L2(Ωd) is the multiplication operator.

Let N([a, b]; ϵ) be the number of eigenvalues of H(ϵ) in [a, b] ⊂]−∞, e0(0)[ counted with
their multiplicity.

Corollary 4.2. Assume that V tends to zero at infinity, and let f ∈ C∞
0 (]−∞, e0(0)[;R).

We have

(4.4) tr(f(H(ϵ))) ∼
∞∑
j=0

bjϵ
−d+j,

with

(4.5) b0 = −
∫∫

Rd×Rt

f ′(t)ρ(t− V (0, y))dydt.

In particular,

(4.6) lim
ϵ↘0

[
ϵdN([a, b]; ϵ)

]
=

∫
Rd

[
ρ(b− V (0, y))− ρ(a− V (0, y))

]
dy.
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Theorem 4.3. Assume (4.1) with δ > d. For f ∈ C∞
0 (R) the operator f(H(ϵ))− f(H) is

trace class. Moreover, the following asymptotics holds

(4.7) tr(f(H(ϵ))− f(H)) ∼
∞∑
j=0

cjϵ
−d+j

with

(4.8) c0 =

∫∫
Rd×Rt

f ′(t)(ρ(t)− ρ(t− V (0, y))) dydt.

The above theorem, enables us to define the spectral shift function ξ(·, ϵ) ∈ D′(R),
related to the operators H(ϵ) and H (see (1.2)). Theorem 4.3 tel us that ξ(·, ϵ) converges
to
∫
ρ(t) − ρ(t − V (0, y))dy in the sense of distribution. Under a non-trapping condition,

the following result gives a pointwise asymptotic expansion in powers of ϵ of ξ′(·; ϵ).

Theorem 4.4. Fix λ > e0(0) with λ ̸∈ {e1(0), e2(0), · · · }, and assume that

(4.9) k · ∇ej(k)− y · ∇yV (0, y) ≥ c > 0 in {(y, k) ∈ R2d; ej(k) + V (0, y) = λ}.
There exists η > 0 such that the following complete asymptotic expansion holds uniformly
on t ∈]λ− η, λ+ η[:

(4.10) ξ′(t, ϵ) ∼
∞∑
j=0

κj(t)ϵ
−d+j,

with

(4.11) κ0(t) =

∫
(ρ′(t)− ρ′(t− V (0, y)))dy.

Comments. Let us briefly examine the above results and their generalizations.

• By (2.3), assumption (4.9) is satisfied under the following condition :

−y∇yV (0, y) ≥ 0 and − y∇yV (0, y) > 0, on {y ∈ Rd;V (0, y) = λ− ej(0)}.
• All results above will remain true if we substitute H by HW := H +W (x), where
W is defined for x ∈ Λd. In this case, the ρ distribution of the abovementioned
results is associated with operator HW .

• If W ̸= 0, the properties of the ρ distribution corresponding to the HW opera-
tor will change. Indeed, it depends on the critical point of the eigenvalues ej(k)
corresponding to the operator HW (k) = D2

x+(k+µx)2+W (x) on L2(Λd) (see Ap-
pendix 8). In particular, the set of ρ singularities is not only the defined threshold
Σ, but contains the critical values of the ej(k) eigenvalues. Note that statement
(2.3) is generally not true for W ̸= 0. Critical value can occur for λ = ej(k) with
λ > infkej(k).

• Let µ ∈ D′(R) be the distribution on R defined by

⟨µ, f⟩ =
∫ [

f(V (0, y))− f(0)
]
dy, f ∈ C∞

0 (R).
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As in [10, 12], using Theorem 4.4 and the definition of resonances by the analytic
distortion method one prove that near any point t ∈ Σ+ singsuppa(µ) there are at
least O(ϵ−d) resonances. Here singsuppa(µ) denotes the analytic singular support
of the distribution µ.

5. Effective Hamiltonian

We need some basic result about pseudodifferential operators with operator-valued sym-
bol (see [13] and the references cited therein). We shall consider a family of Hilbert space
AX , X = R2d satisfying :

(5.1) AX = AY ,∀X, Y ∈ R2d,

there exist N ∈ N and C > 0 such that for all u ∈ A0 and all X, Y ∈ R2d we have

(5.2) ∥u∥AX
≤ C⟨X − Y ⟩N∥u∥AY

.

Notice that (5.1) means that only the norm of AX depends on X, not on the space itself.
Let BX be a second family with the same properties. We say that p ∈ C∞(R2d;L(A0,B0))
belongs to the symbol class S0(R2d;L(AX ,BX)) if for every α ∈ N2d there exists Cα such
that

(5.3) ∥∂αXp∥L(AX ,BX) ≤ Cα, ∀X ∈ R2d.

If p depends on a semi-classical parameter ϵ and possibly on other parameters as well, we
require (5.3) to hold uniformly with respect to these parameters. For ϵ-dependent symbols,
we say that p(y, k; ϵ) has an asymptotic expansion in powers of ϵ , and we write

p(y, k; ϵ) ∼
∑
j

pj(y, k)ϵ
j in S0(R2d;L(AX ,BX))

if for every N ∈ N, ϵ−N−1
(
p(y, k; ϵ)−

∑N
j=0 pj(y, k)ϵ

j
)
∈ S0(R2d;L(AX ,BX)).

We can then associate to p an ϵ-pseudo-differential operator

pw(y, ϵDy; ϵ)u(y) =

∫∫
e

i
ϵ
(y−t)kp(

y + t

2
, k; ϵ)u(t)

dtdk

(2πϵ)d
, u ∈ A0.

Here we use the Weyl quantization. Similarly to the scalar case, the following results hold.

Theorem 5.1. Let p ∈ S0(R2d;L(AX ,BX)) where AX ,BX satisfy (5.1) and (5.2) then
pw(y, ϵDy, ϵ) is uniformly continuous from S(Rd;A0) into S(Rd;B0).

Theorem 5.2. Assume AX = A0 and BX = B0 for all X ∈ R2d. If p ∈ S0(R2d;L(A0,B0))
then pw(y, ϵDy; ϵ) is bounded from L2(Rd,A0) into L

2(Rd,B0).

Let CX be a third Hilbert space which satisfies (5.1), (5.2).
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Theorem 5.3. Let p ∈ S0(R2d;L(BX , CX)), q ∈ S0(R2d;L(AX ,BX)). Then

pw(y, ϵDy) ◦ qw(y, ϵDy) = rw(y, ϵDy; ϵ),

where r is given by

(5.4) r(y, k; ϵ) ∼
∑
j=0

1

j!
(
iϵ

2
σ(Dy, Dk;Dx, Dξ))

jp(y, k)q(x, ξ)|x=y,k=ξ.

5.1. Grushin problem: brief description. In this paragraph we recall the basic results
about Grushin problem. Let H1, H2 and H3 be three Hilbert spaces, and let P ∈ L(H1, H3)
be self-adjoint. Assume that there exist R+ ∈ L(H1, H2) and R− ∈ L(H2, H3) such that
the following operator

P(z) =

(
P − z R−
R+ 0

)
: H1 ×H2 → H3 ×H2

is bijective for z ∈ Ω. Here Ω is an open bounded set in C. Let

E(z) =
(
E(z) E+(z)
E−(z) Eeff(z)

)
be its inverse. We refer to the problem P(z) as a Grushin problem and the operator Eeff(z)
is called effective Hamiltonian. Notice that, an effective Hamiltonian is a Hamiltonian
that acts in a reduced space and only describes a part of the eigenvalue spectrum of
the true Hamiltonian P . Morally, effective Hamiltonians are much simpler than the true
Hamiltonian and hence their eigensystems can often be determined analytically or with
little effort numerically.

The following useful properties (relating the operator P and its effective Hamiltonian)
are consequences of the identities E ◦ P = I and P ◦ E = I:

(5.5) (P − z) is invertible if and only if Eeff(z) is invertible,

(5.6) dim ker(P − z) = dimker(Eeff(z)),

(5.7) (P − z)−1 = E(z)− E+(z)E
−1
eff (z)E−(z),

(5.8) E−1
eff (z) = −R+(P − z)−1R−.

The last two equalities hold for all ℑz ̸= 0. On the other hand, since z 7→ (P − z) is
holomorphic, it follows that the operators E(z), E±(z) and Eeff(z) are also holomorphic in
z ∈ Ω. Moreover, we have

(5.9) ∂zEeff(z) = E−(z)E+(z).

This identity comes from the fact that R± are independent of z.
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6. Spectral Reduction to an ϵ-pseudodifferential operator

Throughout this section we assume that V is independent on x. The proof of the general
case is quite similar with minor modifications (see Remark 7.2). Fix an interval I = [α, β],
and set

U = {J ∈ Nd; eJ(k) ≤ β + ∥V ∥∞}.
According to Theorem 2.1 and Corollary 2.2, eJ(0) (respectively eJ(k)) tends to infinity as
|J | → ∞ (respectively |k| → ∞). Therefore U is finite. In what follows, (Ψ0(·, k), · · · ,ΨN−1(·, k))
denotes the family (ΨJ(·, k))J∈U, where N = #U.

To shorten notation, we omit the index d in Ωd and Λd. For k ∈ Rd, let HΛ,k = HΛ be
the Hilbert space with k-dependent norm: ∥u∥2Λ,k = ∥u∥2H2(Λ)+ |k|4∥u∥2L2(Λ). We denote by

CN
k the space CN equipped with norm (1 + |k|2)| · |CN .

By the change of variable y 7→ y/ϵ, the operator H(ϵ) is unitarily equivalent to

(6.1) H1 := H1,0 + V (y),

where

H1,0 :=
d∑

j=1

D2
xj
+ (ϵDyj + µjxj)

2.

Let G(y, k) = H0(k) + V (y) be the linear bounded operator from HΛ into L2(Λ), where
H0(k) is given by (2.2). Obviously, G ∈ S0(R2d;L(HΛ,k, L

2(Λ)). Thus, by quantizing G
we have

G(y, ϵDy) = H1.

More precisely, H1 can be viewed as an ϵ-pseudo-differential operator on y with operator
valued symbol G(y, k).

For k ∈ Rd, and N ∈ N∗, define R+(k) : L
2(Λ) → CN , R−(k) = R∗

+(k) : CN → L2(Λ) by

R+(k)u = (⟨u,Ψ0(·, k)⟩, · · · , ⟨u,ΨN−1(·, k)⟩),

R−(k)(c1, · · · , cN) =
N−1∑
j=0

cjΨj(·, k).

According to Corollary 2.2 the family (ΨJ(·, k))J∈Nd is an orthonormal basis in L2(Λ).
Hence, a simple computation yields

(6.2)

R+(k)R−(k) = ICN ,

R−(k)R+(k)u =
N−1∑
j=0

⟨u,Ψj(·, k)⟩Ψj(·, k) =: ΠNu, ∀u ∈ L2(Λ).

The following proposition reduces the spectral study of the operatorG(y, k) : HΛ,k → L2(Λ)
near the energy z, to the study of an N ×N -square matrix Eeff(y, k, z).
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Proposition 6.1. Fix a bounded interval I. There exists N ∈ N∗ such that for all z ∈ I
the operator

(6.3) P(y, k) :=

(
G(y, k)− z R−(k)
R+(k) 0

)
: HΛ,k × CN → L2(Λ)× CN

k ,

is bijective with bounded two-sided inverse

(6.4) E(y, k, z) :=
(
ĜN(y, k, z) R−(k)
R+(k) Eeff(y, k, z)

)
.

Here ĜN(y, k, z) = (G(y, k)− z)−1(1− ΠN) and Eeff(y, k, z) is the square diagonal matrix
(z − ej(k)− V (0, y))δij)0≤i,j≤N−1. Moreover

(6.5) P ∈ S0(R2d;L(HΛ,k × CN ;L2(Λ)× CN
k )).

(6.6) E ∈ S0(R2d;L(L2(Λ)× CN
k ;HΛ,k × CN)).

Proof. By construction, we have

eJ(k) + V (y)− z ≥ c > 0,

uniformly for (z, k, y) ∈ I × R2d and J ̸∈ U. Thus, the operator

(G(y, k)− z)−1(1− ΠN) : L
2(Λ) → HΛ,Y ,

is well-defined and uniformly bounded on (z, y, k) ∈ I ×R2d. Using (6.2), an easy compu-
tation shows that P(y, k) ◦ E(y, k, z) = I and E(y, k, z) ◦ P(y, k) = I. On the other hand,
it follows from (2.6) that (y, k) → R−(k) ∈ S0(R2d;L(CN ;L2(Λ)) and (y, k) → R+(k) ∈
S0(R2d;L(HΛ,k;CN)).

□

Proposition 6.2. The operator

(6.7) P :=

(
G(y, ϵDy)− z R−(ϵDy)
R+(ϵDy) 0

)
: HD

Ω ×H2(Rd;CN) → L2(Ω)× L2(Rd;CN),

is bijective with an inverse

E(z; ϵ) := Ew(z; ϵ) =

(
Ew(y, ϵDy, z; ϵ) Ew

+(y, ϵDy, z; ϵ)
Ew

−(y, ϵDy, z; ϵ) Ew
eff(y, ϵDy, z; ϵ)

)
,

uniformly bounded with respect to z ∈ I and ϵ small enough. Moreover, E(z; ϵ) depend
holomorphically on z, and E(y, k, z; ϵ) has an asymptotic expansion in S0(R2d;L(L2(Λ) ×
CN

k ;HΛ,k × CN)), i.e.,

(6.8) E(y, k, z; ϵ) =
(
E(y, k, z; ϵ) E+(y, k, z; ϵ)
E−(y, k, z; ϵ) Eeff(y, k, z; ϵ)

)
∼

∞∑
j=0

Ej(y, k, z)ϵj.

In particular Eeff(y, k, z; ϵ) ∼
∑∞

j=0Eeff,j(y, k, z)ϵ
j in S0(R2d;L(CN

k ;CN)). The leading

terms E0(y, k, z) and Eeff,0(y, k, z) are given by Proposition 6.1, i.e.,

E0(y, k, z) = E(y, k, z; 0) and Eeff,0(y, k, z) = Eeff(y, k, z; 0).
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Proof. The fact that P can be viewed as an ϵ-pseudodifferential operator valued symbol
P(y, k) and Theorem 5.3 show that

(6.9) Pw(y, ϵDy) ◦ Ew(y, ϵDy, z) = I + ϵRw(y, ϵDy, z; ϵ)

where R(y, k, z; ϵ) ∼
∑∞

j=0 Rj(y, k, z)ϵ
j in S0(R2d;L(L2(Λ)×CN ;L2(Λ)×CN)). It follows

from Theorem 5.2 that Rw(y, ϵDy, z; ϵ) is uniformly bounded for z ∈ I and |ϵ| ≤ 1. Thus,
for ϵ small enough the right hand side of (6.9) is invertible. On the other hand we know
that if P = pw(y, k, ϵ) is an invertible ϵ-pseudo-differential with p(y, k; ϵ) ∼

∑∞
j=0 pj(y, k)ϵ

j

then its inverse qw is also an ϵ-pseudodifferential operator with q(y, k; ϵ) ∼
∑∞

j=0 qj(y, k)ϵ
j.

Consequently, Ew(y, ϵDy, z; ϵ) := Ew(y, ϵDy, z) ◦ (I + ϵRw(y, ϵDy, z; ϵ))
−1 satisfies all the

desired properties. □

Remark 6.3. Let E0(z) be the operator given by Proposition 6.2 corresponding to the
non-perturbed operator H0 (i.e., V = 0). Since P(y, k) = P(k) is y-independent, we have

E0(z) =
(
ĜN(ϵDy, z) E0

+(ϵDy)
E0

−(ϵDy) E0
eff(ϵDy, z)

)
,

where E0
+(k) = R−(k), E

0
−(k) = R+(k) and E

0
eff(k, z) = ((z − ej(k))δij)0≤i,j≤N−1

7. Proof of the main results

7.1. Proof of Theorem 4.1. In the following we fix a bounded interval I containing
supp(f), and we apply Proposition 6.1 and Proposition 6.2 on I. For the simplicity of
the notation we ignore the dependence of E,E+, E−, Eeff on (y, k, z, ϵ). We denote by
E0, E0

+, E
0
−, E

0
eff the operators given by Proposition 6.2 corresponding to the case V = 0

(see Remark 6.3). We shall sometimes use the same symbol for an ϵ-pseudodifferential
operator and for its Weyl symbol.

Applying formulas (5.7) and (5.8) to Proposition 6.2 we obtain

(7.1) (H1 − z)−1 = E − E+E
−1
eff E−,

(7.2) ∂zEeff = E−E+.

Assume that f ∈ C∞
0 (R) is real-valued, we can construct an almost analytic extension

f̃ ∈ C∞
0 (C) of f satisfying the following properties (see [13]) :

(7.3) f̃(z) = f(z),∀z ∈ R,

for all N ∈ N there exists CN such that

(7.4) |∂f̃
∂z

(z)| ≤ CN |ℑz|N .
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Let H be any self-adjoint operator, the Dynkin-Helffer-Sjöstrand formula reads [13]:

(7.5) f(H) = − 1

π

∫
∂f̃

∂z
(z)(z −H)−1L(dz), with z = x+ iy,

which yields

(7.6) f(H1) = − 1

π

∫
∂f̃

∂z
(z)(z −H1)

−1L(dz).

Here L(dz) is the Lebesgue measure on the complex plane C ∼ R2
x,y.

Inserting (7.1) in the right hand side of (7.6) and using the fact that z → Ew(y, ϵDy, z; ϵ)
is holomorphic, we get

(7.7) f(H1) = − 1

π

∫
∂f̃

∂z
(z)E+E

−1
eff E−L(dz).

Here and in what follows we use the fact that
∫
∂zf̃(z)K(z)L(dz) = 0 provided that K(z)

is holomorphic in a neighborhood of supp(f̃). We recall that the principal symbol of Eeff

is given by

Eeff,0(y, k, z) = ((z − V (y)− ej(k))δi,j)0≤i,j≤N−1,

and that ej(k) ∼ |k|2 at infinity from (2.5) in Theorem 2.1. For j = 0, · · · , N − 1, let ẽj(k)
be a smooth function such that ẽj(k) = ej(k) for |k| large enough and

(7.8) |z − V (y)− ẽj(k)| ≥ c0(1 + |k|2), ∀ (z, y, k) ∈ suppf̃ × Rd × Rd.

Put

Ẽeff(y, k, z; ϵ) = Eeff(y, k, z; ϵ) + Ẽeff(y, k, z)− Eeff(y, k, z),

where Ẽeff(y, k, z) = ((z−V (y)−ẽj(k))δi,j)0≤i,j≤N−1. We conclude from (7.8) that Ẽeff(y, k, z; ϵ)

is elliptic for ϵ small enough, hence that Ẽeff := Ẽw
eff(y, ϵDy, z; ϵ) is invertible and holomor-

phic for z ∈ supp(f̃), and finally that∫
∂f̃

∂z
(z)E+Ẽ

−1
eff E−L(dz) = 0.

Combining the above equality with (7.7), we obtain

(7.9) f(H1) = − 1

π

∫
∂f̃

∂z
(z)E+(E

−1
eff − Ẽ−1

eff )E−L(dz).

Let Ψ be as in Theorem 4.1. Writing E−1
eff − Ẽ−1

eff = Ẽ−1
eff (Ẽeff − Eeff)E

−1
eff and using the

fact that Ẽeff − Eeff = ((ej(k) − ẽj(k))1≤i,j≤N has a compact support, we deduce that the

operator Ψ
(
E+Ẽ

−1
eff (Ẽeff − Eeff)E

−1
eff E−

)
is trace class. Thus, by using the cyclicity of the
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trace we get

(7.10)

tr
(
Ψf(H1)

)
= − 1

π

∫
∂f̃

∂z
(z)tr

(
E−1

eff − Ẽ−1
eff )E−ΨE+

)
L(dz),

= tr
(
− 1

π

∫
∂f̃

∂z
(z)E−1

eff E−ΨE+L(dz)
)
.

In the last equality we have used the fact the operator Ẽ−1
eff E−ΨE+ is holomorphic on

z ∈ supp(f̃).

According to Proposition 6.2 and Theorem 5.3 the operator A = E−ΨE+ is an ϵ-
pseudodifferential operator on L2(Rd;CN) with A = Aw(y, ϵDy, z; ϵ) where A(y, k, z; ϵ) ∼∑∞

j=0Aj(y, k, z)ϵ
j in S0(R2d;L(CN ;CN)). Moreover, from Proposition 6.1 we haveA0(y, k, z) =

Ψ(y).

The proof of the following lemma is similar to the one in [7].

Lemma 7.1. Fix δ ∈]0, 1/2[. There exists r ∈ S0(R2d;L(CN ,CN)) such that r(y, k; ϵ) ∼∑∞
j=0 rj(y, k)ϵ

j and

rw(y, ϵDy; ϵ) = − 1

π

∫
|ℑz|≥ϵδ

∂f̃

∂z
(z)E−1

eff E−ΨE+L(dz),

with

r0(y, k) = − 1

π

∫
∂f̃

∂z
(z)
(
(z − ej(k)− V (y))−1 δi,j

)
0≤i,j≤N−1

L(dz)Ψ(y).

We now turn to the proof of Theorem 4.1. If we restrict the integral in the right hand
side of (7.10) to the domain |ℑz| ≤ ϵδ then we get a term O(ϵ∞) in trace norm. Here

we have used the fact that |∂f̃
∂z
(z)| = O(|ℑz|M) for all M ∈ N (see (7.4)). If we restrict

our attention to the domain |ℑz| ≥ ϵδ then by Lemma 7.1 we get a complete asymptotic
expansion in powers of ϵ, which yields (4.3). To finish the proof let us compute a0. We
have

a0 =

∫∫
t̂r(r0(y, k))

dydk

(2π)d
=

N−1∑
j=0

∫∫ (
− 1

π

∫
∂f̃

∂z
(z)(z − ej(k)− V (y))−1L(dz)

)
Ψ(y)

dydk

(2π)d
.

Here t̂r stands for the trace of square matrices. Since 1
π
∂z

1
z−z0

= δ(· − z0), it follows that

− 1
π

∫
∂f̃
∂z
(z)(z − ej(k)− V (y))−1L(dz) = f(ej(k) + V (y)). Consequently,

a0 =
N−1∑
j=0

∫∫
f(ej(k) + V (y))Ψ(y)

dydk

(2π)d
=
∑
j

∫∫
f(ej(k) + V (y))Ψ(y)

dydk

(2π)d
.
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In the above equality we have used the fact that ej(k)+V (y) ̸∈ supp(f) for (y, k) ∈ Rd×Rd

and j ̸∈ {0, · · · , N − 1}. Combining this with the obvious equality∑
j

∫
f(ej(k) + V (y))

dk

(2π)d
= −

∑
j

∫
f ′(t)

∫
ej(k)≤t−V (y)

dkdt = −
∫
f ′(t)ρ(t− V (y))dt,

we get (4.3).

7.2. Proof of Corollary 4.2. Let f be as in Corollary 4.2, and fix η > 0 small enough
such that supp(f) ⊂]−∞, e0(0)−η]. Put ωη := {y ∈ Rd;∃(j, k) ∈ N×Rd s.t. ej(k)+V (y) ∈
supp(f)}. Since V tends to zero at infinity and ej(k) ≥ ej(0) for all j, k, it follows that ωη

is a compact set.

Let Ṽ be a smooth function such that Ṽ (y) ∈ [−η/2, η/2] for all y ∈ Rd and Ṽ (y) = V (y)
for |y| large enough. Put

Ẽeff(y, k, z; ϵ) = Eeff(y, k, z; ϵ) + (Ṽ (y)− V (y))IN .

By construction of Ṽ , we have

|z − ej(k)− Ṽ (y)| ≥ C(1 + |k|2),

uniformly on (j, y, k) ∈ N× R2d and z in small complex neighborhood of supp(f̃).

Hence, the principal symbol Ẽeff(y, k, z) = ((z − Ṽ (y) − ej(k))δi,j)0≤i,j≤N−1 of Ẽeff is
elliptic. We can now proceed analogously to the proof of (7.9), and obtain

(7.11) f(H1) = − 1

π

∫
∂f̃

∂z
(z)E+(E

−1
eff − Ẽ−1

eff )E−L(dz).

Let ψ ∈ C∞
0 (Rd) be equal to one in a neighborhood of supp(Ṽ − V = Ẽeff −Eeff). Writing

E+(E
−1
eff − Ẽ−1

eff )E− = E+Ẽ
−1
eff (Ẽeff − Eeff)E

−1
eff E− and using the fact that supp(1 − ψ) ∩

supp(Ṽ − V ) = ∅, we deduce from (7.11) and (5.4) that ∥(1 − ψ)f(H1)∥tr = O(ϵ∞).
Consequently,

(7.12) tr(f(H1)) = tr(ψf(H1)) +O(ϵ∞),

which together with Theorem 4.1 yields (4.4) and (4.5). Notice that the right hand side of
(7.12) is independent modulo O(ϵ∞) of the choice of ψ, since ψ = 1 near the characteristic
set Ση of Eeff .

It remains to prove (4.6). For every small η > 0, choose fη, fη ∈ C∞
0 (R; [0, 1]) with

1[a+η,b−η] ≤ fη ≤ 1[a,b] ≤ fη ≤ 1[a−η,b+η].

It then suffices to observe that

tr
[
fη(H(ϵ))

]
≤ N([a, b]; ϵ) ≤ tr

[
fη(H(ϵ))

]
,

which yields

lim
η↘0

lim
ϵ↘0

(
(2πϵ)dtr

[
fη(H(ϵ))

])
≤ lim

ϵ↘0
(2πϵ)dN([a, b]; ϵ) ≤ lim

η↘0
lim
ϵ↘0

(
(2πϵ)dtr

[
fη(H(ϵ))

])
,
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and to apply Theorem 4.1.

7.3. Proof of Theorem 4.3. We only mention the steps in the proof of Theorem 4.3
which are the same as in the proof of Theorem 4.1. Fix z0 < inf(σ(Hj)) (j = 0, 1), and let
m > d/2 + 1. From the assumption (4.1) the operator (H1 − z0)

−m − (H0 − z0)
−m is trace

class. Therefore, f(H1)− f(H0) is trace class for all f ∈ C∞
0 (R). In contrast to the proof

of Theorem 4.1, we don’t need to introduce the function Ψ, since f(H1) − f(H0) is trace
class.

As in the proof of (7.7), Proposition 6.2 and Remark 6.3 yield

f(H0) = − 1

π

∫
∂f̃

∂z
(z)E0

+(E
0
eff)

−1
E0

−L(dz),

which together with (7.7) gives

(7.13) tr (f(H1)− f(H0)) = tr

(
− 1

π

∫
∂f̃

∂z
(z)
[
E1

+Eeff
−1E1

− − E0
+(E

0
eff)

−1
E0

−

]
L(dz)

)
,

Next, analysis similar to that in the proof of (7.10) shows that

(7.14) tr (f(H1)− f(H0)) = tr

(
− 1

π

∫
∂f̃

∂z
(z)
[
Eeff

−1E1
−E

1
+ − (E0

eff)
−1
E0

−E
0
+

]
L(dz)

)
.

According to (5.9), Proposition 6.2 and Remark 6.3, we have

∂zEeff = E1
−E

1
+, ∂zE

0
eff = E0

−E
0
+.

Combining this with (7.14), we obtain

(7.15) tr (f(H1)− f(H0)) = tr

(
− 1

π

∫
∂f̃

∂z
(z)
[
Eeff

−1∂zEeff − (E0
eff)

−1
∂zE

0
eff

]
L(dz)

)
.

We now apply the same arguments after Lemma 7.1, with (7.10) replaced by (7.15), to
obtain Theorem 4.3.

7.4. Proof of Theorem 4.4. The starting point is formula (7.15). Let θ and g be C∞-
functions with compact support such that θ = 1 near zero, g = 1 on ]λ − η, λ + η[
and supp(g) ⊂]λ − 2η, λ + 2η[. We choose η > 0 small enough so that (4.9) holds on
]λ− 2η, λ + 2η[. Applying (1.2) and (7.15) to the function f(x) = g(x)(F−1

ϵ θ)(λ− x), we
obtain

(7.16)
− ⟨ξ′(·; ϵ), g(·)(F−1

ϵ θ)(λ− ·)⟩ = tr
(
g(H1)(F−1

ϵ θ)(λ−H1)− g(H0)(F−1
ϵ θ)(λ−H0)

)
= tr

(
− 1

π

∫
∂g̃

∂z
(z)(F−1

ϵ θ)(λ− z)
[
Eeff

−1∂zEeff − (E0
eff)

−1
∂zE

0
eff

]
L(dz)

)
.
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Here g̃ is an almost analytic extension of g, and F−1
ϵ is the semi-classical Fourier transform

of θ :

(F−1
ϵ θ)(τ) =

1

(2πϵ)

∫
R
e

i
ϵ
tτθ(t)dt.

A symbol (y, k) → A(y, k, z) ∈ L(CN ;CN) is non-trapping at the energy z = z0 if and
only if there exists a scalar escape function G ∈ C∞(R2d;R) such that

∃C > 0,
∂G

∂y
· ∂A
∂k

− ∂G

∂k
· ∂A
∂y

≥ C, ∀(y, k) with detA(y, k, z0) = 0.

According to Proposition 6.2, Eeff is an ϵ-pseudodifferential operator. On the other hand,
the assumption (4.9) means that the classical symbol corresponding to Eeff is non-trapping.
The asymptotic expansion with respect to ϵ of an integral similar to the right-hand side of
the second equality in (7.16) have been studied by many authors (see [1, 9, 11, 13, 25] and
the references given therein). In particular, under the assumption (4.9), it follows from the
arguments in the proofs of Theorems 2.5 and 2.6 in [9] (see also [1]) that the left-hand side
of (7.16) has a complete asymptotic expansion in powers of ϵ, and

ξ′(τ, ϵ)g(τ) = ⟨ξ′(·; ϵ), g(·)(F−1
ϵ θ)(τ − ·)⟩+O(ϵ∞),

uniformly for τ ∈]λ− 2η, λ+2η[. This implies (4.10). The explicit formula of κ0(t) follows
from (4.8).

Remark 7.2. We will now show how to treat the case when V depends on x. The only
modification to be made is the proof of Proposition 6.1. Fix m ∈ N∗. By Taylor’s formula
we have

(7.17) V (ϵx, y) = V (0, y) +
m∑

|α|=1

ϵ|α|

α!
xα

∂α

∂xα
V (0, y) + ϵm+1O(1) =: V (0, y) + ϵW (x, y; ϵ),

uniformly for (x, y) ∈ Ωd. Let P(y, k) and E(y, k, z) be the operators given in Proposition
6.1 corresponding to the operator V (y) = V (0, y). Now, consider the Grushin problem
related to G̃(y, k, ϵ) = G(y, k) + ϵW (x, y, ϵ) :

P̃(y, k, , ϵ) =

(
G̃(y, k, ϵ)− z R−(k)

R+(k) 0

)
= P(y, k) + ϵ

(
W 0
0 0

)
: HΛ,k ×CN → L2(Λ)×CN

k ,

Since W (·, y, ϵ) : HΛ,k → L2(Λ) is uniformly bounded with respect to y ∈ Rd and

ϵ ∈ [0, 1], it follows from Proposition 6.1 that, for ϵ small enough the operator P̃(y, k, , ϵ)
is bijective with bounded two-sided inverse
(7.18)

Ẽ(y, k, z; ϵ) :=
(
ĜN(y, k, z; ϵ) E+(k, z, ϵ)
E−(k, z, ϵ) Eeff(y, k, z; ϵ)

)
=

(
I + ϵE(y, k, z)

(
W 0
0 0

))−1

E(y, k, z).

From (7.17) and the above equality it follows that, modulo O(ϵm+1), Ẽ(y, k, z; ϵ) has an
asymptotic expansion in powers of ϵ in S0(R2d;L(L2(Λ) × CN

k ;HΛ,k × CN)). This gives
Proposition 6.1 when V depends on (x, y).
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We can now proceed analogously to the proof of the case V = V (y).

8. Appendix : Proof of Theorem 2.3

Fix J = (j1, j2, · · · , jd) ∈ Nd, and let eJ(k) = ej1(k1) + · · ·+ ejd(kd) be one eigenvalue of
the operator H0(k). Set

κ(t) =

∫
{k∈Rd;eJ (k)≤t}

dk.

Lemma 8.1. The function κ is analytic in a neighborhood of R \ {eJ(0)}.

Proof. Fix t0 ̸= eJ(0), and let ε be a small positive constant such that ∇eJ(k) ̸= 0 when
k ∈ Σϵ(t0) := e−1

J (]t0 − ε, t0 + ε[). Without any loss of generality we may assume that

∂k1eJ(k) ̸= 0 for all k ∈ Σϵ(t0). By the change of variable U : k 7→ k̃ = (eJ(k), k2, ..., kd),
we have ∫

{k∈Σϵ(t0) ; eJ (k)≤t}
dk =

∫
{k̃∈U(Σϵ(t0)) ; k̃1≤t}

Jac(U−1(k̃))dk̃.

Clearly the right-hand side of the above equality is analytic. Combining this with the fact
that

∫
{k∈Rd\Σϵ(t0) ; eJ (k)≤t} dk is constant for t near t0, we get the lemma. □

Thus, the function ρ is analytic in a neighborhood of Σ = R \ σ(H0(0)). The remainder
of the proof of Theorem 2.3 is a simple consequence of the following lemma.

Lemma 8.2. There exists an analytic function g with g(s) ∼s→0
vol(Sd−1)

d

√
det(

∇2eJ (0)

2
)
sd such that

κ(t) = Y (t− eJ(0))g(
√
t− eJ(0)),

for |t− eJ(0)| small enough. Here Y (t) is the Heaviside function, and Sd−1 stands for the
unit sphere in Rd.

Proof. By Morse Lemma there exist a neighborhood V of k = 0, ε > 0 and a local analytic
diffeomorphism D : V → B(0, ϵ) satisfying D(k) = k +O(k2) such that

eJ ◦ D−1(k) = eJ(0) +
1

2
⟨∇2eJ(0)k, k⟩.

On the other hand, for |t− eJ(0)| small enough we have

{k ∈ Rd; eJ(k) ≤ t} = {k ∈ V ; eJ(k) ≤ t}.
Thus making the change of variable k = D−1(ξ) and using polar coordinates, we obtain

κ(t) =

∫
{k∈V ; eJ (k)≤t}

dk =
(
det

(
∇2eJ(0)

2

))−1/2
∫
{ξ∈B(0,ϵ) ; |ξ|2≤t−eJ (0)}

Jac(D−1(ξ))dξ

=
(
det

(
∇2eJ(0)

2

))−1/2
∫ √

max(t−eJ (0),0)

0

∫
Sd−1

Jac(D−1(rω)) rd−1drdω,

which yields the lemma since Jac(D−1(rω)) = 1 +O(r). □
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We now turn to the proof of Theorem 2.3. For t0 ∈ Σ, we let St0 := {J ∈ Nd; eJ(0) = t0}
and mt0 := #St0 be its multiplicity. Writing

ρ(t) =
∑

(j1,··· ,jd )̸∈Σt0

∫
{k∈Rd;ej1 (k1)+···+ejd (kd)≤t}

dk

︸ ︷︷ ︸
(1)

+
∑

(j1,··· ,jd)∈Σt0

∫
{k∈Rd;ej1 (k1)+···+ejd (kd)≤e}

dk

︸ ︷︷ ︸
(2)

.

It follows from Theorem 2.1 that ∇keJ(k) = ∇k(ej1(k1) + · · · + ejd(kd)) ̸= 0 on Ση(t0) for
η small enough and (j1, · · · , jd) ̸∈ St0 . Combining this with Lemma, we deduce that (1)
is analytic for |t− t0| small enough. Thus applying Lemma 8.2 to each term of (2) we get
Theorem 2.3.
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[23] Miranda and G. Raikov, Discrete spectrum of quantum Hall effect Hamiltonians II: Periodic edge

potentials. Asymptot. Anal. 79 (2012), 325–345.
[24] M. Reed and B. Simon, Methods of modern mathematical physics. IV, Academic Press, New York,

Analysis of operators, 1978.
[25] D. Robert, Relative time-delay for perturbations of elliptic operators and semiclassical asymptotics.

Journal of Functional Analysis, 126 (1994), 36–82.
[26] D. Sambou, On eigenvalue accumulation for non-sellf-djoint magnetic operators. J. Math. Pures

Appl.,108 (2017), 306–332.
[27] Shirai, Shin-ichi, Strong-electric-field eigenvalue asymptotics for the Iwatsuka model. J. Math. Phys.,

46 (2005), 052112, 1–22.
[28] D. Spehnery, R. Narevich and E. Akkermans, Semiclassical spectrum of integrable systems in a mag-

netic field. J. Phys. A: Math. Gen., 31 (1998), 6531–6545.
[29] O. Viehweger, W. Pook, M. JanBen, and J. Hajdu, “Note on the quantum Hall effect in cylinder

geometry”, Z. Phys. B 78 (1990), 11–16.

Mouez Dimassi, IMB (UMR-CNRS 5251), UNIVERSITÉ DE BORDEAUX, 351 COURS DE
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