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Introduction

The regularization methods (e.g Ridge, LASSO, LARS,
LOLA) allow to answer several problems:

I Model selection.

I Collinearity correction.

I Cases of “fat matrix”: n < p (sparse methods).
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Model

Let consider the regression model:

Y = β1X1 + β2X2 + . . .+ βpXp + ε

where ε is the error.

Let (xi1, . . . , xip, yi )i∈{1,...,n} be n observations of

(X1, . . . ,Xp,Y ):

∀i ∈ {1, . . . , n} : yi = β1xi1 + β2xi2 + . . .+ βpxip + εi .
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Ridge estimator I

The Ridge estimator of β = (β1, . . . , βp) in the multiple

linear model, β̂
Ridge

, is solution of:

min
β

n∑
i=1

yi −
p∑

j=1

βjxij

2

+ λ

p∑
j=1

β2j

where λ ≥ 0 is a `2 penalty term.
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Ridge estimator II

It’s also the solution of the problem:

min
β

n∑
i=1

yi −
p∑

j=1

βjxij

2

subject to

p∑
j=1

β2j ≤ c .

Note that:

I (Y ,X1, . . . ,Xp) are centered.

I We exclude the constant in the optimization problem.

I Optimal hyperparameter is obtained by cross-validation.
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Matrix form

We can write:

min
β

(Y − Xβ)> (Y − Xβ) + λβ>β.

where:

Y =


y1
...

yn

 , X =


x11 . . . x1p

...
...

xn1 . . . xnp.

 , β =


β1
...

βp

 .

The solution is:

β̂Ridge =
(
X>X + λ Ip

)−1
X>Y .

It’s still a linear estimator in Y.
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Singular value decomposition

The singular value decomposition is a factorization M of a
(m, n)-dimensional matrix of the form:

M = UDV>

where U (left-singular vectors) and V (right-singular
vectors) are (m,m) and (n, n)-dimensional orthogonal
matrixes, and D is a “diagonal” (m, n)-dimensional matrix
with nonnegative values.
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Shrinkage I

Assume that n > p.
Singular value decomposition is:

X = UDV> .

where:

I U U> = U>U = In,

I V V> = V>V = Ip,

I Diagonal components of D are such that:

d1 ≥ . . . ≥ dp ≥ 0 .
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Shrinkage II

We can write:

Xβ̂Ridge = UD
(
D>D + λ Ip

)−1
D>U>Y .

Let
(
u1, . . . , up

)
be the columns of U.

Thus columns of UD are
(
d1u

1, . . . , dpu
p
)

and we have:

Xβ̂Ridge =

p∑
j=1

uj

(
d2
j

d2
j + λ2

)
uj
>
Y .

For λ = 0, it’s the OLS solution:

Xβ̂ =

p∑
j=1

ujuj
>
Y .
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Shrinkage III

I The j-th component is “constrained” by
d2
j

d2
j +λ

2 .

I Smallest the coefficients are, more constrained they are.

I If λ is large, components are more constrained.

I Bias increases with λ, variance decreases with λ.

I Watch out for overfitting with small values of λ.
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Shrinkage IV
If variables are centered, the variance-covariance matrix is:

1

n
X>X =

1

n
VD>DV> .

We know that:

D>D = diag
(
d2
1 , . . . , d

2
p

)
.

Let
(
v1, . . . , vp

)
be the colums of V .

One can show that Xv j is j-th principal component of X,

with variance
d2
j

n .
The last principal components are more constrained that the
first ones (large values for dj).
The degrees of freedom is defined by:

df (λ) =

p∑
j=1

d2
j

d2
j + λ2

.
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Shrinkage I

The LASSO estimator (Least Absolute Shrinkage and
Seletion Operator) of β = (β1, . . . , βp) in the multiple linear

model, β̂
LASSO

, is solution of:

min
β

n∑
i=1

yi −
p∑

j=1

βjxij

2

+ λ

p∑
j=1

|βj |

where λ ≥ 0 is a `1 penalty term.
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Shrinkage II

It’s also the solution of the problem:

min
β

n∑
i=1

yi −
p∑

j=1

βjxij

2

subject to

p∑
j=1

|βj | ≤ c .

Note that:

I (Y ,X1, . . . ,Xp) are centered.

I We exclude the constant in the optimization problem.

I Optimal hyperparameter is obtained by cross-validation.



Introduction

Ridge estimator

LASSO regression

Generalization of
Ridge and LASSO

LARS regression

References

18/25

Properties

I It isn’t a linear estimator in Y.

I There is no explicit formula for the LASSO estimator.

I If λ→ +∞, (βj)j∈{1,...,p} tend towards 0.

I If X is such that X>X = Ip, the solution of:

min
β

n∑
i=1

yi −
p∑

j=1

βjxij

2

+ 2λ

p∑
j=1

|βj |

is explicit:

∀j ∈ {1, . . . , p} : β̂LASSOj = sign
(
β̂j

)(∣∣∣β̂j ∣∣∣− λ)1|β̂j |≥λ
where β̂j is the OLS estimator (“soft thresholding” of
the OLS estimator).
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Criterion `q

Ridge and LASSO estimators are particular cases of the
following minimization problem:

min
β

n∑
i=1

yi −
p∑

j=1

βjxij

2

+ λ

p∑
j=1

|βj |q

where λ ≥ 0 is a penalty term (obtained by cross validation)
and q ∈ R+.
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Elastic Net regularization

The Elastic Net regularization combines the `1 and `2

penalties of the Ridge and LASSO methods:

min
β

n∑
i=1

yi −
p∑

j=1

βjxij

2

+λ

α p∑
j=1

|βj |+ (1− α)

p∑
j=1

β2j


where λ ≥ 0 and α ∈ ]0, 1[ are penalty terms (obtained by
cross validation).
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Principle

From Hastie et al. (2009):

Forward stepwise regression builds a model sequentially,
adding one variable at a time. At each step, it identifies the
best variable to include in the active set, and then updates
the least squares fit to include all the active variables. Least
angle regression uses a similar strategy, but only enters “as
much” of a predictor as it deserves.
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Algorithm

After standardizing the predictors (zero mean and unit
variance):

1. Initialization: e = Y − ȳ1n, β = 0.

2. Find the most correlated predictor Xj with residual e.

3. “Move” βj towards corr (xj , e) until another Xk is more
correlated with the current residual.

4. “Move” βj and βk towards a direction defined by the
OLS estimation of the residual on the (Xj ,Xk) until
another predictor Xl is more correlated with the current
residual.

5. Continue in this way until all predictors have been
considered.
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