Introduction to statistical learning 2.1 Unsupervised learning: Principal Component Analysis

V. Lefieux

June 2018

(ロ)、(型)、(E)、(E)、 E) の(の)

Case study

Problem

Method

PCA on the case study

Table of contents

Case study

Problem

Method

PCA on the case study

Case study

Problem

Method

PCA on the case study

References

Table of contents

Case study

Problem

Method

PCA on the case study

Case study

Problem

Method

PCA on the case study

References

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○ 3/61</p>

Cars

Technical information on 18 cars:

- car model (MOD),
- cylinder capacity (CYL),
- ▶ power (POW),
- length (LEN),
- width (WID).
- weight (WGT),
- speed (SPD),
- finish (FIN),
- price (PRI).

Source: (Saporta, 2011)

Case study

Problem

Method

PCA on the case study

References

4/61

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Data

MOD	CYL	POW	LEN	WID	WGT	SPD	FIN	PRI	_
ALFASUD-TI-1350	1350	79	393	161	870	165	В	30570	-
AUDI-100-L	1588	85	468	177	1110	160	ТВ	39990	_
SIMCA-1300-GLS	1294	68	424	168	1050	152	м	29600	-
CITROEN-GS-CLUB	1222	59	412	161	930	151	м	28250	_
FIAT-132-1600GLS	1585	98	439	164	1105	165	В	34900	_
LANCIA-BETA-1300	1297	82	429	169	1080	160	ТВ	35480	-
PEUGEOT-504	1796	79	449	169	1160	154	В	32300	
RENAULT-16-TL	1565	55	424	163	1010	140	В	32000	_
RENAULT-30-TS	2664	128	452	173	1320	180	ТВ	47700	-
TOYOTA COROLLA	1166	55	399	157	815	140	м	26540	-
ALFETTA-1.66	1570	109	428	162	1060	175	ТВ	42395	_
PRINCESS-1800HL	1798	82	445	172	1160	158	В	33990	
DATSUN-200L	1998	115	469	169	1370	160	ТВ	43980	
TAUNUS-2000-GL	1993	98	438	170	1080	167	В	35010	_
RANCHO	1442	80	431	166	1129	144	тв	39450	-
MAZDA-9295	1769	83	440	165	1095	165	М	27900	_
OPEL-REKORD-L	1979	100	459	173	1120	173	В	32700	_
LADA-1300	1294	68	404	161	955	140	M	22100	-

Case study

Radar diagrams I

Case study

Problem

Method

PCA on the case study

References

6/61

Given the small number of variables here, one can represent each individual with a radar diagram.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Radar diagrams II

Case study

Problem

Method

PCA on the case study

References

There are some radars, small or big, but most of the time harmonious: variables have the same evolution.

It's possible to distinguish some models with a specific shape, for example small sport cars (faster compared to other small cars).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Case study

Problen

Method

PCA on the case study

Boxplots

<ロト < 部 > < E > < E > E の Q (* 9/61

Case study

Standard deviations

Case study

Problem

Method

PCA on the case study

CYL	POW	LEN	WID	WGT	SPD
373.9	20.4	22.1	5.3	137.0	12.1

Scatter plots

Case study

Problem

Method

PCA on the case study

References

Correlation matrix

Case study

Problem

Method

PCA on the case study

	CYL	POW	LEN	WID	WGT	SPD
CYL	1.0000000	0.7966277	0.7014619	0.6297572	0.7889520	0.6649340
POW	0.7966277	1.0000000	0.6413624	0.5208320	0.7652930	0.8443795
LEN	0.7014619	0.6413624	1.0000000	0.8492664	0.8680903	0.4759285
WID	0.6297572	0.5208320	0.8492664	1.0000000	0.7168739	0.4729453
WGT	0.7889520	0.7652930	0.8680903	0.7168739	1.0000000	0.4775956
SPD	0.6649340	0.8443795	0.4759285	0.4729453	0.4775956	1.0000000

Table of contents

Case study

Problem

Method

PCA on the case study

Case stud

Problem

Method

PCA on the case study

References

<□ ▶ < @ ▶ < E ▶ < E ▶ E のQ 0 13/61

p quantitative variables measured on n individuals.

The data set that is represented in terms of an $n \times p$ matrix:

$$\mathbb{X} = \left(x_i^j\right)_{i \in \{1, \dots, n\}, j \in \{1, \dots, p\}}$$

where the n rows are the individuals and the p columns are the variables.

(ロ)、

 x_i^j : value of X^j measured on individual *i*.

Case study

Problem

Method

PCA on the case study

Dataset matrix

Case study

Problem

Method

PCA on the case study

References

Individuals and variables

Commonly individual *i* refers to vector:

$$X_i = \left(x_i^1, \ldots, x_i^p\right)^\top$$

and variable j to vector:

$$X^j = \left(x_1^j, \ldots, x_n^j\right)^ op$$
.

Case study

Problem

Method

PCA on the case study

Weights

The sample should be representative: a miniature of the population it comes from. If not, one assign to each individual *i* a weight ω_i (e.g from a survey design):

$$\blacktriangleright \quad \forall i \in \{1,\ldots,n\} : \omega_i > 0$$

•
$$\sum_{i=1}^{n} \omega_i = 1$$
.

One consider the matrix:

 $W = \operatorname{diag}(\omega_1,\ldots,\omega_n)$.

Usually weights are uniform:

$$\forall i \in \{1,\ldots,n\}: \omega_i = \frac{1}{n}$$

that is:

$$W = \frac{1}{n} \mathsf{I}_n$$
 .

Case study

Problem

Method

PCA on the case study

References

Barycenter

The barycenter of the data set is:

$$G = \mathbb{X}^\top W \mathbf{1}_n = \sum_{i=1}^n \omega_i X_i$$

-

(ロト (個) (E) (E) (E) E のQの

where $\mathbf{1}_n$ is a *n* dimensional vector with all its components equal to 1.

Case study

Problem

Method

PCA on the case study

Problem

To study and interpret X, we would like to plot the *n* individuals in the *p*-dimensional space \mathbb{R}^p . Obviously it's impossible and we need to reduce the number of variables.

Choosing some variables among the data set would be totally arbitrary.

Principal Component Analysis (PCA) uses an orthogonal linear transformation to convert a set of correlated variables into a set of linearly uncorrelated variables (principal components).

The goal of PCA is to summarize the correlations among the data set with a smaller set of variables: the data set can often be interpreted in just a few principal components.

Case study

Problem

Method

PCA on the case study

PCA steps

- Calculate the principal components which iteratively extracts the maximum variance from the data.
- Determine how many principal components should be considered.

- Interpret the principal components.
- Analyse the individuals projections onto principal components (in practice 2-3).

Case study

Problem

Method

PCA on the case study

Cow, camel or horse ?

Case study

Problem

Method

PCA on the case study

References

Reference: (Fénelon, 2000)

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 21/61

Table of contents

Case study

Problem

Method

PCA on the case study

Case stud

Problem

Method

PCA on the case study

References

<□▶ < @▶ < ≧▶ < ≧▶ ≧ り < ♡ 22/61

Standardisation I

Consider the sample mean and standard deviation:

$$\begin{split} \overline{x^j} &= \sum_{i=1}^n \omega_i \, x_i^j \ ,\\ s_j^2 &= \sum_{i=1}^n \omega_i \left(x_i^j - \overline{x^j} \right)^2 \ . \end{split}$$

The centered representation of the individual *i* is:

$$\forall j \in \{1,\ldots,p\} : y_i^j = x_i^j - \overline{x^j}$$
.

The standardized representation of the individual *i* is:

$$orall j \in \{1,\ldots,p\}: z_i^j = rac{x_i^j - \overline{x^j}}{s_j} \; .$$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の Q (P 23/6)

Case study Problem Method PCA on the case study PCA capture the total variance in the data set, PCA results depend on the scales of variables.

So PCA requires that the input variables have similar scales of measurement.

- PCA: based on the centered representation.
- Standardized PCA: based on the standardized representation.

Case study

Problem

Method

PCA on the case study

References

24/61

Dissimilarity metric

We consider the following distance between 2 individuals i_1 and i_2 in \mathbb{R}^p :

$$d_{M}^{2}(i_{1},i_{2}) = (X_{1i} - X_{i_{2}})^{\top} Q(X_{i_{1}} - X_{i_{2}})$$

with:

•
$$M = I_p$$
 for a PCA,
• $M = \text{diag}\left(\frac{1}{s_1^2}, \dots, \frac{1}{s_p^2}\right) := D_{\frac{1}{s^2}}$ for a standardized PCA.

For $(x, y) \in \mathbb{R}^p \times \mathbb{R}^p$, we define the inner product:

$$\langle x, y \rangle_M = x^\top M y$$

and the norm:

$$\|x\|_M^2 = x^\top M x \; .$$

(□) (個) (目) (目) (目) (25/6)

Method

Inertia I

The total inertia \mathcal{I}_{tot} of the data set is:

$$\mathcal{I}_{tot} = \sum_{i=1}^{n} \omega_i \, d_M^2(i, G) \; .$$

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 臣 の�?

Case study

Problem

Method

PCA on the case study

References

26/61

Inertia II

The projected inertia \mathcal{I}_H of the data set on the affine subspace H is:

$$\mathcal{I}_H = \sum_{i=1}^n \omega_i \, d_M^2 \Big(P_H(i), P_H(G) \Big) \; .$$

where P_H is the orthogonal projection on H.

 \mathcal{I}_H is a measure of the remaining information after projection on *H*. The aim is to find *H* for which \mathcal{I}_H is maximized.

Case study

Problem

Method

PCA on the case study

Inertia III

The residual inertia \mathcal{J}_H of the data set is:

$$\mathcal{J}_{H} = \sum_{i=1}^{n} \omega_{i} d_{M}^{2} (i, P_{H}(i))$$

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 臣 の�?

Case study

Problem

Method

PCA on the case study

References

28/61

Inerties IV

It can be shown (Huygens theorem) that:

$$\mathcal{I}_{tot} = \mathcal{I}_H + \mathcal{J}_H$$
 .

Case study

Problen

Method

PCA on the case study

References

Moreover the subspace H contains G, so $P_H(G) = G$, and:

$$\sum_{i=1}^{n} \sum_{i'=1}^{n} \omega_{i} \omega_{i'} d_{M}^{2}(i,i') = 2 \mathcal{I}_{tot} ,$$
$$\sum_{i=1}^{n} \sum_{i'=1}^{n} \omega_{i} \omega_{i'} d_{M}^{2} \left(P_{H}(i), P_{H}(i') \right) = 2 \mathcal{I}_{H} .$$

Conclusion for inertia

In conclusion, we search a subspace H that:

- maximizes \mathcal{I}_H ,
- minimizes \mathcal{J}_H ,
- maximizes the sum of the distances between the projected individuals on *H*.

Problem

Method

PCA on the case study

References

30/61

Variance-covariance and correlation matrixes

Let S be the variance-covariance matrix of the data set:

 $S = \mathbb{X}^\top W \mathbb{X} - G^\top G$.

For $(i,j) \in \{1,\ldots,p\}^2$, the element (j_1,j_2) of the matrix is:

$$s_{i,j} = \operatorname{cov}\left(X^{i}, X^{j}
ight)$$

The *i*-th diagonal element is s_i^2 .

The correlation matrix R is:

$$R = D_{\frac{1}{s}} S D_{\frac{1}{s}} = \mathbb{Z}^{\top} W \mathbb{Z} .$$

Note that cov (respectively var, corr) is the empirical covariance (respectively variance, correlation).

Case study

Problem

Method

PCA on the case study

Total inertia

It can be shown that:

$$\mathcal{I}_{tot} = \mathsf{Tr}(MS)$$
 .

So:

For a PCA:

$${\cal I}_{tot} = \sum_{j=1}^{
ho} s_j^2 \; .$$

For a standardized PCA:

$$\mathcal{I}_{tot} = p$$
 .

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = のへで

Case study

Problem

Method

PCA on the case study

Eigenvalues and eigenvectors I

The matrix SM is:

Symmetric

So *SM* is diagonalizable, there exists an orthogonal matrix $P(PP^{\top} = I_p)$ a diagonal matrix which entries are eigenvalues $(\lambda_1, \ldots, \lambda_p)$ such that:

$$SM = P \operatorname{diag}(\lambda_1, \ldots, \lambda_p) P^{\top}$$

.

Positive semidefinite

Eigenvalues are nonnegative.

Case study

Problem

Method

PCA on the case study

Eigenvalues and eigenvectors II

We consider that eigenvalues $(\lambda_1, \ldots, \lambda_p)$ are in descending order:

$$\lambda_1 \geq \ldots \geq \lambda_p \geq 0$$
 .

For $\alpha \in \{1, \ldots, p\}$, we consider eigenvector u_{α} associated to λ_{α} , such that $\|u_{\alpha}\|_{M^{-1}} = 1$.

This vector is called factor.

Case study

Problem

Method

PCA on the case study

References

34/61

Idea

Case study

Problem

Method

PCA on the case study

References

Finding the k-dimensional subspace which maximizes the projected inertia is equivalent to find the k eigenvectors associated to the k biggest eigenvalues of the matrix SM.

Theorem

For a *k*-dimensional space:

► *H_k* which maximizes projected inertia is:

 $H_k = \operatorname{vect}(u_1,\ldots,u_k) \ .$

Projected inertia on α-th factor u_α is equal to the α-th eigenvalue:

 $I_{u_{\alpha}} = \lambda_{\alpha}$.

Each components eigenvalue represents how much variance it explains.

Projected inertia on H_k is the sum of the k biggest eigenvalues:

$$I_{H_k} = \sum_{\alpha=1}^{\kappa} \lambda_{\alpha}$$

١.

The resolution of the problem can be iteratively computed.

References

36/61

Principal components

We define *p* new variables called principal components.

For $\alpha \in \{1, \ldots, p\}$, principal component is:

$$C^{\alpha} = \sum_{j=1}^{p} u_{\alpha}^{j} X^{j} = \mathbb{X} u_{\alpha} \in \mathbb{R}^{n} ,$$

Principal components are uncorrelated:

$$\forall (\alpha, \beta) \in \{1, \dots, p\}^2 : \operatorname{cov} \left(C^{\alpha}, C^{\beta} \right) = \begin{cases} 0 & \text{ si } \alpha \neq \beta \\ \lambda_{\alpha} & \text{ si } \alpha = \beta \end{cases}$$

.

< □ ▶ < 圖 ▶ < 필 ▶ < 필 ▶ ■ ⑦ Q ♡ 37/61

Case study

Problem

Method

PCA on the case study

Other interpretation

- The first principal component is the linear combination of the variables that has the maximal variance among all linear combinations.
- The second principal component is the linear combination of the variables that has the maximal variance among all linear combinations uncorrelated to the first principal component

Case study

Problem

Method

PCA on the case study

References

38/61

Correlation between the principal components and the original variables I

For the PCA, correlation between α -th principal component and *j*-th original variables is:

$$\operatorname{corr}\left(C^{lpha},X^{j}
ight)=rac{\sqrt{\lambda_{lpha}}}{s_{j}}u_{lpha}^{j}\;.$$

So:

$$\sum_{j=1}^{p} s_{j}^{2} \operatorname{corr}^{2} \left(C^{\alpha}, X^{j} \right) = \lambda_{\alpha} \ .$$

Case study

Problem

Method

PCA on the case study

Correlation between the principal components and the original variables II

For the standardized PCA, correlation between α -th principal component and *j*-th original variables is:

$$\operatorname{corr}\left(\mathcal{C}^{lpha}, X^{j}
ight) = \sqrt{\lambda_{lpha}} \,\, u^{j}_{lpha} \,\, .$$

So:

$$\sum_{j=1}^{p}\operatorname{corr}^{2}\left(C^{\alpha},X^{j}\right)=\lambda_{\alpha}\ .$$

イロト (周) (ヨ) (ヨ) (ヨ) () ()

Case study

Problem

Method

PCA on the case study

References

40/61

It's possible to visualize correlations between principal components ans original variables.

In the factorial space (α, β) , we plot the vector X^j with coordinates $(\operatorname{corr} (C^{\alpha}, X^j), \operatorname{corr} (C^{\beta}, X^j))$.

In the case of the standardized PCA, vectors are inside the unit circle called correlation circle.

Case study

Problem

Method

PCA on the case study

Correlation circle II

Case study

Problem

Method

PCA on the case study

Correlation circle III

In the factorial space (α, β) :

- A variable close to the correlation circle can be considered well represented by the factorial space.
- 2 variables close to the correlation circle, nearly orthogonal, have a small correlation.

Case study

Problem

Method

PCA on the case study

Determination of the number of principal components

Kayser criterium

Retain components with eigenvalues greater than their mean (1 in standardized PCA).

Scree plot criterium

Find in the scree plot a steep curve followed by a bend and then a flat or horizontal line (retain as number of principal components the last point before the flat line).

Percentage of total inertia resumed Some classic values: 80%, 90%.

Case study

Problen

Method

PCA on the case study

Quality of representation I

2 individuals that have close projections aren't necessarily close.

It's possible to appreciate the projection deformation by calculating the cosine of the angle between the individual and the factorial space.

Case study

Problen

Method

PCA on the case study

References

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ の Q @ 45/61

Quality of representation II

Quality of representation III

Case study

Problem

Method

PCA on the case study

Quality of representation IV

The quality of representation of X_i onto the α -th factor is:

$$\mathsf{CO2}_{\alpha}\left(i\right) = \cos^{2}\left(\theta_{i}\right) = \frac{\left(C_{i}^{\alpha}\right)^{2}}{\sum_{j=1}^{p}\left(C_{i}^{j}\right)^{2}}$$

 $(u_{\alpha})_{\alpha \in \{1,...,p\}}$ being orthogonal, the quality of representation on a factorial space is additive:

 $\operatorname{CO2}_{\alpha+\beta}(i) = \operatorname{CO2}_{\alpha}(i) + \operatorname{CO2}_{\beta}(i)$.

We have $\sum_{\alpha=1}^{p} \text{CO2}_{\alpha}(i) = 1$.

Case study

Problem

Method

PCA on the case study

References

Contribution

The contribution of the *i*-th individual onto the α -th factor is:

$$\mathsf{CTR}_{\alpha}(i) = \omega_i \frac{(C_i^{\alpha})^2}{\lambda_{\alpha}}$$

where C_i^{α} is the coordinate of the *i*-th individual onto the α -th factor.

We have:

$$\sum_{i=1}^{n} \mathsf{CTR}_{\alpha}(i) = 1 \; .$$

Note that the interpretation of the contributions depends on the number of individuals.

Case study

Problen

Method

PCA on the case study

PCA "big data compatible"

- Singular Value Decomposition (SVD) is commonly used for PCA but it's also possible to use the Nonlinear Iterative PArtial Least Squares (NIPALS) algorithm which:
 - gives more numerically accurate results,
 - but is slower to calculate,
 - and suffers from a loss of orthogonality in the case of very-high-dimensional datasets with a large degree of column collinearity.
- In the case of too many individuals: covariance matrix can be incrementally computed.
- In the case of too many variables: it's possible to use methods like very sparse random projections.

Note that there are some specific libraries in R, for exemple *bigpca*.

Case stud

Problem

Method

PCA on the case study

Table of contents

Case study

Problem

Method

PCA on the case study

Case stud

Problem

Method

PCA on the case study

References

<□▶ < @▶ < ≧▶ < ≧▶ ≧ りへで 51/61

Screeplot

Case stud

Problem

Method

PCA on the case study

References

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○ 52/61</p>

Total inertia resumed

Case study

Problem

Method

PCA on the case study

References

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○ 53/61</p>

Number of principal components

With I = 6:

- ▶ $I_1 = 4.42, \ \tau_1 = 73.7\%$,
- ▶ $I_2 = 0.86$, $\tau_2 = 14.3\%$.

On the first factorial space:

$$au_{1\oplus 2} = rac{I_{u_1\oplus u_2}}{I} = 87.9\%$$
 .

Case study

Problem

Method

PCA on the case study

Projections on the first factorial space I

Projections on the first factorial space II

Projections of individuals: with individuals names

Case stud

Problen

Method

PCA on the case study

References

< ロト < 母 ト < 臣 ト < 臣 ト 三 の Q (P) 56/61</p>

Projections on the first factorial space III

Projections of individuals: depending on price classes

Case stud

Problem

Method

PCA on the case study

Quality of representation on the first factorial space I

The 10 individuals with the biggest qualities of representation

Case stud

Problem

Method

PCA on the case study

Quality of representation on the first factorial space II

3 ALFETTA-1.66 2 ALFASUD-TI-1350 RENAULT-30-T Dim 2 (14.27%) -FIAT 132-1600GLS TAUNUS-2000-GL TOYOTA COROLLA OPEL-REKORD-L 0 DA-1300 DÂTSUN-200L SIMCA-1300-GLS PRINCESS-1800HL 5 RANCHO PEUGEOT-504 RENAULT-16-TI AUDI-100-L 2 -2 0 2 Dim 1 (73.68%) イロト イ母ト イヨト イヨト ヨー のくで

The individuals with a quality of representation over 0.5

Case study

Problem

Method

PCA on the case study

Contributions on the first factorial space

The 10 individuals with the biggest contributions

Case stud

Problen

Method

PCA on the case study

References

<ロト < 団 ト < 臣 ト < 臣 ト 王 の Q C 60/61

References

- Fénelon, J.-P. (2000). *Qu'est-ce que l'analyse des données ?* SEISAM.
- Saporta, G. (2011). *Probabilités, analyse des données et statistique*. Technip, 3 edition.
- Tufféry, S. (2011). *Data mining and statistics for decision making*. Wiley series in Computational Statistics. Wiley.

Problem Method PCA on the cas study