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Cars

Technical information on 18 cars:

I car model (MOD),

I cylinder capacity (CYL),

I power (POW),

I length (LEN),

I width (WID).

I weight (WGT),

I speed (SPD),

I finish (FIN),

I price (PRI).

Source: (Saporta, 2011)
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Data

MOD CYL POW LEN WID WGT SPD FIN PRI

ALFASUD-TI-1350 1350 79 393 161 870 165 B 30570

AUDI-100-L 1588 85 468 177 1110 160 TB 39990

SIMCA-1300-GLS 1294 68 424 168 1050 152 M 29600

CITROEN-GS-CLUB 1222 59 412 161 930 151 M 28250

FIAT-132-1600GLS 1585 98 439 164 1105 165 B 34900

LANCIA-BETA-1300 1297 82 429 169 1080 160 TB 35480

PEUGEOT-504 1796 79 449 169 1160 154 B 32300

RENAULT-16-TL 1565 55 424 163 1010 140 B 32000

RENAULT-30-TS 2664 128 452 173 1320 180 TB 47700

TOYOTA COROLLA 1166 55 399 157 815 140 M 26540

ALFETTA-1.66 1570 109 428 162 1060 175 TB 42395

PRINCESS-1800HL 1798 82 445 172 1160 158 B 33990

DATSUN-200L 1998 115 469 169 1370 160 TB 43980

TAUNUS-2000-GL 1993 98 438 170 1080 167 B 35010

RANCHO 1442 80 431 166 1129 144 TB 39450

MAZDA-9295 1769 83 440 165 1095 165 M 27900

OPEL-REKORD-L 1979 100 459 173 1120 173 B 32700

LADA-1300 1294 68 404 161 955 140 M 22100
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Radar diagrams I

Given the small number of variables here, one can represent
each individual with a radar diagram.
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Radar diagrams II
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Radar diagrams III

There are some radars, small or big, but most of the time
harmonious: variables have the same evolution.

It’s possible to distinguish some models with a specific
shape, for example small sport cars (faster compared to
other small cars).
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Boxplots
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Standard deviations

CYL POW LEN WID WGT SPD

373.9 20.4 22.1 5.3 137.0 12.1
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Scatter plots
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Correlation matrix

CYL POW LEN WID WGT SPD

CYL 1.0000000 0.7966277 0.7014619 0.6297572 0.7889520 0.6649340

POW 0.7966277 1.0000000 0.6413624 0.5208320 0.7652930 0.8443795

LEN 0.7014619 0.6413624 1.0000000 0.8492664 0.8680903 0.4759285

WID 0.6297572 0.5208320 0.8492664 1.0000000 0.7168739 0.4729453

WGT 0.7889520 0.7652930 0.8680903 0.7168739 1.0000000 0.4775956

SPD 0.6649340 0.8443795 0.4759285 0.4729453 0.4775956 1.0000000
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Data

p quantitative variables measured on n individuals.

The data set that is represented in terms of an n× p matrix:

X =
(
x ji

)
i∈{1,...,n},j∈{1,...,p}

,

where the n rows are the individuals and the p columns are
the variables.

x ji : value of X j measured on individual i .



Case study

Problem

Method

PCA on the case
study

References

15/61

Dataset matrix

Variables

1 . . . j . . . p

Individuals

1 x11 . . . x j1 . . . xp1
...

...
...

...

i x1i . . . x ji . . . xpi
...

...
...

...

n x1n . . . x jn . . . xpn
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Individuals and variables

Commonly individual i refers to vector:

Xi =
(
x1i , . . . , x

p
i

)>
and variable j to vector:

X j =
(
x j1, . . . , x

j
n

)>
.
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Weights

The sample should be representative: a miniature of the
population it comes from. If not, one assign to each
individual i a weight ωi (e.g from a survey design):

I ∀i ∈ {1, . . . , n} : ωi > 0 ,

I
∑n

i=1 ωi = 1 .

One consider the matrix:

W = diag (ω1, . . . , ωn) .

Usually weights are uniform:

∀i ∈ {1, . . . , n} : ωi =
1

n
,

that is:

W =
1

n
In .
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Barycenter

The barycenter of the data set is:

G = X>W 1n =
n∑

i=1

ωiXi

where 1n is a n dimensional vector with all its components
equal to 1.
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Problem

To study and interpret X, we would like to plot the n
individuals in the p-dimensional space Rp. Obviously it’s
impossible and we need to reduce the number of variables.

Choosing some variables among the data set would be
totally arbitrary.

Principal Component Analysis (PCA) uses an orthogonal
linear transformation to convert a set of correlated variables
into a set of linearly uncorrelated variables (principal
components).

The goal of PCA is to summarize the correlations among the
data set with a smaller set of variables: the data set can
often be interpreted in just a few principal components.
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PCA steps

I Calculate the principal components which iteratively
extracts the maximum variance from the data.

I Determine how many principal components should be
considered.

I Interpret the principal components.

I Analyse the individuals projections onto principal
components (in practice 2-3).
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Cow, camel or horse ?

Reference: (Fénelon, 2000)
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Standardisation I

Consider the sample mean and standard deviation:

x j =
n∑

i=1

ωi x
j
i ,

s2j =
n∑

i=1

ωi

(
x ji − x j

)2
.

The centered representation of the individual i is:

∀j ∈ {1, . . . , p} : y ji = x ji − x j .

The standardized representation of the individual i is:

∀j ∈ {1, . . . , p} : z ji =
x ji − x j

sj
.
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Standardisation II

PCA capture the total variance in the data set, PCA results
depend on the scales of variables.
So PCA requires that the input variables have similar scales
of measurement.

I PCA: based on the centered representation.

I Standardized PCA: based on the standardized
representation.
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Dissimilarity metric

We consider the following distance between 2 individuals i1
and i2 in Rp:

d2
M (i1, i2) = (X1i − Xi2)>Q (Xi1 − Xi2)

with:

I M = Ip for a PCA,

I M = diag
(

1
s21
, . . . , 1

s2p

)
:= D 1

s2
for a standardized PCA.

For (x , y) ∈ Rp × Rp, we define the inner product:

〈x , y〉M = x>M y

and the norm:
‖x‖2M = x>M x .
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Inertia I

The total inertia Itot of the data set is:

Itot =
n∑

i=1

ωi d
2
M (i ,G ) .
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Inertia II

The projected inertia IH of the data set on the affine
subspace H is:

IH =
n∑

i=1

ωi d
2
M

(
PH(i),PH(G )

)
.

where PH is the orthogonal projection on H.

IH is a measure of the remaining information after projection
on H. The aim is to find H for which IH is maximized.
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Inertia III

The residual inertia JH of the data set is:

JH =
n∑

i=1

ωi d
2
M (i ,PH(i))



Case study

Problem

Method

PCA on the case
study

References

29/61

Inerties IV

It can be shown (Huygens theorem) that:

Itot = IH + JH .

Moreover the subspace H contains G , so PH(G ) = G , and:

n∑
i=1

n∑
i ′=1

ωi ωi ′ d
2
M

(
i , i ′
)

= 2 Itot ,

n∑
i=1

n∑
i ′=1

ωi ωi ′ d
2
M

(
PH(i),PH

(
i ′
))

= 2 IH .
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Conclusion for inertia

In conclusion, we search a subspace H that:

I maximizes IH ,

I minimizes JH ,

I maximizes the sum of the distances between the
projected individuals on H.
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Variance-covariance and correlation matrixes

Let S be the variance-covariance matrix of the data set:

S = X>W X− G>G .

For (i , j) ∈ {1, . . . , p}2, the element (j1, j2) of the matrix is:

si ,j = cov
(
X i ,X j

)
The i-th diagonal element is s2i .

The correlation matrix R is:

R = D 1
s
S D 1

s
= Z>W Z .

Note that cov (respectively var, corr) is the empirical
covariance (respectively variance, correlation).
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Total inertia

It can be shown that:

Itot = Tr (MS) .

So:

I For a PCA:

Itot =

p∑
j=1

s2j .

I For a standardized PCA:

Itot = p .
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Eigenvalues and eigenvectors I

The matrix SM is:

I Symmetric
So SM is diagonalizable, there exists an orthogonal
matrix P (PP> = Ip) a diagonal matrix which entries
are eigenvalues (λ1, . . . , λp) such that:

SM = P diag (λ1, . . . , λp) P> .

I Positive semidefinite
Eigenvalues are nonnegative.
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Eigenvalues and eigenvectors II

We consider that eigenvalues (λ1, . . . , λp) are in descending
order:

λ1 ≥ . . . ≥ λp ≥ 0 .

For α ∈ {1, . . . , p}, we consider eigenvector uα associated to
λα, such that ‖uα‖M−1 = 1.

This vector is called factor.
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Idea

Finding the k-dimensional subspace which maximizes the
projected inertia is equivalent to find the k eigenvectors
associated to the k biggest eigenvalues of the matrix SM.
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Theorem

For a k-dimensional space:

I Hk which maximizes projected inertia is:

Hk = vect (u1, . . . , uk) .

I Projected inertia on α-th factor uα is equal to the α-th
eigenvalue:

Iuα = λα .

Each components eigenvalue represents how much
variance it explains.

I Projected inertia on Hk is the sum of the k biggest
eigenvalues:

IHk
=

k∑
α=1

λα .

The resolution of the problem can be iteratively computed.
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Principal components

We define p new variables called principal components.

For α ∈ {1, . . . , p}, principal component is:

Cα =

p∑
j=1

ujαX
j = Xuα ∈ Rn ,

Principal components are uncorrelated:

∀ (α, β) ∈ {1, . . . , p}2 : cov
(
Cα,Cβ

)
=

{
0 si α 6= β

λα si α = β
.
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Other interpretation

I The first principal component is the linear combination
of the variables that has the maximal variance among
all linear combinations.

I The second principal component is the linear
combination of the variables that has the maximal
variance among all linear combinations uncorrelated to
the first principal component

I . . .
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Correlation between the principal components
and the original variables I

For the PCA, correlation between α-th principal component
and j-th original variables is:

corr
(
Cα,X j

)
=

√
λα
sj

ujα .

So:
p∑

j=1

s2j corr2
(
Cα,X j

)
= λα .
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Correlation between the principal components
and the original variables II

For the standardized PCA, correlation between α-th principal
component and j-th original variables is:

corr
(
Cα,X j

)
=
√
λα ujα .

So:
p∑

j=1

corr2
(
Cα,X j

)
= λα .
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Correlation circle I

It’s possible to visualize correlations between principal
components ans original variables.

In the factorial space (α, β), we plot the vector X j with
coordinates

(
corr

(
Cα,X j

)
, corr

(
Cβ,X j

))
.

In the case of the standardized PCA, vectors are inside the
unit circle called correlation circle.
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Correlation circle II
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Correlation circle III

In the factorial space (α, β):

I A variable close to the correlation circle can be
considered well represented by the factorial space.

I 2 variables close to the correlation circle, nearly
orthogonal, have a small correlation.
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Determination of the number of principal
components

I Kayser criterium
Retain components with eigenvalues greater than their
mean (1 in standardized PCA).

I Scree plot criterium
Find in the scree plot a steep curve followed by a bend
and then a flat or horizontal line (retain as number of
principal components the last point before the flat line).

I Percentage of total inertia resumed
Some classic values: 80%, 90%.
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Quality of representation I

2 individuals that have close projections aren’t necessarily
close.

It’s possible to appreciate the projection deformation by
calculating the cosine of the angle between the individual
and the factorial space.
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Quality of representation II
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Quality of representation III
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Quality of representation IV

The quality of representation of Xi onto the α-th factor is:

CO2α (i) = cos2 (θi ) =
(Cαi )2∑p
j=1

(
C j
i

)2 .
(uα)α∈{1,...,p} being orthogonal, the quality of representation
on a factorial space is additive:

CO2α+β (i) = CO2α (i) + CO2β(i) .

We have
∑p

α=1 CO2α(i) = 1.
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Contribution

The contribution of the i-th individual onto the α-th factor
is:

CTRα (i) = ωi
(Cαi )2

λα

where Cαi is the coordinate of the i-th individual onto the
α-th factor.

We have:
n∑

i=1

CTRα (i) = 1 .

Note that the interpretation of the contributions depends on
the number of individuals.
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PCA “big data compatible”

I Singular Value Decomposition (SVD) is commonly used
for PCA but it’s also possible to use the Nonlinear
Iterative PArtial Least Squares (NIPALS) algorithm
which:

I gives more numerically accurate results,
I but is slower to calculate,
I and suffers from a loss of orthogonality in the case of

very-high-dimensional datasets with a large degree of
column collinearity.

I In the case of too many individuals: covariance matrix
can be incrementally computed.

I In the case of too many variables: it’s possible to use
methods like very sparse random projections.

Note that there are some specific libraries in R, for exemple
bigpca.

http://web.stanford.edu/~hastie/Papers/Ping/KDD06_rp.pdf
https://cran.r-project.org/web/packages/bigpca/index.html
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Screeplot
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Total inertia resumed
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Number of principal components

With I = 6:

I I1 = 4.42, τ1 = 73.7% ,

I I2 = 0.86, τ2 = 14.3% .

On the first factorial space:

τ1⊕2 =
Iu1⊕u2
I

= 87.9% .



Case study

Problem

Method

PCA on the case
study

References

55/61

Projections on the first factorial space I
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Projections on the first factorial space II
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Projections on the first factorial space III
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Quality of representation on the first factorial
space I
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Quality of representation on the first factorial
space II
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Contributions on the first factorial space
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Tufféry, S. (2011). Data mining and statistics for decision
making. Wiley series in Computational Statistics. Wiley.


	Case study
	Problem
	Method
	PCA on the case study

